1
|
Lasaad S, Nickerson AJ, Crambert G, Satlin LM, Kleyman TR. Going with the flow: New insights regarding flow induced K + secretion in the distal nephron. Physiol Rep 2024; 12:e70087. [PMID: 39428258 PMCID: PMC11491169 DOI: 10.14814/phy2.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024] Open
Abstract
K+ secretion in the distal nephron has a critical role in K+ homeostasis and is the primary route by which K+ is lost from the body. Renal K+ secretion is enhanced by increases in dietary K+ intake and by increases in tubular flow rate in the distal nephron. This review addresses new and important insights regarding the mechanisms underlying flow-induced K+ secretion (FIKS). While basal K+ secretion in the distal nephron is mediated by renal outer medullary K+ (ROMK) channels in principal cells (PCs), FIKS is mediated by large conductance, Ca2+/stretch activated K+ (BK) channels in intercalated cells (ICs), a distinct cell type. BK channel activation requires an increase in intracellular Ca2+ concentration ([Ca2+]i), and both PCs and ICs exhibit increases in [Ca2+]i in response to increases in tubular fluid flow rate, associated with an increase in tubular diameter. PIEZO1, a mechanosensitive, nonselective cation channel, is expressed in the basolateral membranes of PCs and ICs, where it functions as a mechanosensor. The loss of flow-induced [Ca2+]i transients in ICs and BK channel-mediated FIKS in microperfused collecting ducts isolated from mice with IC-specific deletion of Piezo1 in the CCD underscores the importance of PIEZO1 in the renal regulation of K+ transport.
Collapse
Affiliation(s)
- Samia Lasaad
- Department of PediatricsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | - Gilles Crambert
- Centre de Recherche Des Cordeliers, Institut National de la Santé et de la Recherche Scientifique (INSERM)Sorbonne Université, Université Paris Cité, Laboratoire de Physiologie Rénale et TubulopathiesParisFrance
- Unité Métabolisme et Physiologie RénaleCentre National de la Recherche Scientifique (CNRS) EMR 8228ParisFrance
| | - Lisa M. Satlin
- Department of PediatricsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Thomas R. Kleyman
- Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Cell Biology and Department of Pharmacology and Chemical BiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
2
|
Cheng YJG, Chen CC, Cheng CJ. Postnatal renal tubule development: roles of tubular flow and flux. Curr Opin Nephrol Hypertens 2024; 33:518-525. [PMID: 38913022 PMCID: PMC11290981 DOI: 10.1097/mnh.0000000000001007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
PURPOSE OF REVIEW Postnatal renal tubule development is critical to adult kidney function. Several postnatal changes regulate the differentiation and proliferation of renal tubular cells. Here, we review the literature and our efforts on thick ascending limb (TAL) development in Bartter syndrome (BS). RECENT FINDINGS Glomerular filtrate quickly increases after birth, imposing fluid shear stress and circumferential stretch on immature renal tubules. Recent studies showed that kidney organoids under flow (superfusion) have better development of tubular structures and the expression of cilia and solute transporters. These effects are likely mediated by mechanosensors, such as cilia and the piezo1 channel. Improved renal oxygenation and sodium pump-dependent active transport can stimulate mitochondrial respiration and biogenesis. The functional coupling between transport and mitochondria ensures ATP supply for energy-demanding reactions in tubular cells, including cell cycle progression and proliferation. We recently discovered that postnatal renal medulla maturation and TAL elongation are impaired in Clc-k2-deficient BS mice. Primary cultured Clc-k2-deficient TAL cells have G1-S transition and proliferation delay. These developmental defects could be part of the early pathogenesis of BS and worsen the phenotype. SUMMARY Understanding how tubular flow and transepithelial ion fluxes regulate renal tubule development may improve the treatment of congenital renal tubulopathies.
Collapse
Affiliation(s)
- Yi-Jing G. Cheng
- Division of Nephrology, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, U.S.A
| | - Chien-Chou Chen
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chih-Jen Cheng
- Division of Nephrology, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, U.S.A
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
3
|
Alper SL, Chebib FT. Dietary potassium loads call on intercalated cell PIEZO1 to go with the flow. Kidney Int 2024; 106:350-353. [PMID: 38797328 DOI: 10.1016/j.kint.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Affiliation(s)
- Seth L Alper
- Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; Vascular Biology Research Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston Massachusetts, USA; Broad Institute of Harvard and Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA.
| | - Fouad T Chebib
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
4
|
Yuan X, Zhao X, Wang W, Li C. Mechanosensing by Piezo1 and its implications in the kidney. Acta Physiol (Oxf) 2024; 240:e14152. [PMID: 38682304 DOI: 10.1111/apha.14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
Piezo1 is an essential mechanosensitive transduction ion channel in mammals. Its unique structure makes it capable of converting mechanical cues into electrical and biological signals, modulating biological and (patho)physiological processes in a wide variety of cells. There is increasing evidence demonstrating that the piezo1 channel plays a vital role in renal physiology and disease conditions. This review summarizes the current evidence on the structure and properties of Piezo1, gating modulation, and pharmacological characteristics, with special focus on the distribution and (patho)physiological significance of Piezo1 in the kidney, which may provide insights into potential treatment targets for renal diseases involving this ion channel.
Collapse
Affiliation(s)
- Xi Yuan
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoduo Zhao
- Department of Pathology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chunling Li
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Dalghi MG, DuRie E, Ruiz WG, Clayton DR, Montalbetti N, Mutchler SB, Satlin LM, Kleyman TR, Carattino MD, Shi YS, Apodaca G. Expression and localization of the mechanosensitive/osmosensitive ion channel TMEM63B in the mouse urinary tract. Physiol Rep 2024; 12:e16043. [PMID: 38724885 PMCID: PMC11082094 DOI: 10.14814/phy2.16043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
The epithelial cells that line the kidneys and lower urinary tract are exposed to mechanical forces including shear stress and wall tension; however, the mechanosensors that detect and respond to these stimuli remain obscure. Candidates include the OSCA/TMEM63 family of ion channels, which can function as mechanosensors and osmosensors. Using Tmem63bHA-fl/HA-fl reporter mice, we assessed the localization of HA-tagged-TMEM63B within the urinary tract by immunofluorescence coupled with confocal microscopy. In the kidneys, HA-TMEM63B was expressed by proximal tubule epithelial cells, by the intercalated cells of the collecting duct, and by the epithelial cells lining the thick ascending limb of the medulla. In the urinary tract, HA-TMEM63B was expressed by the urothelium lining the renal pelvis, ureters, bladder, and urethra. HA-TMEM63B was also expressed in closely allied organs including the epithelial cells lining the seminal vesicles, vas deferens, and lateral prostate glands of male mice and the vaginal epithelium of female mice. Our studies reveal that TMEM63B is expressed by subsets of kidney and lower urinary tract epithelial cells, which we hypothesize are sites of TMEM63B mechanosensation or osmosensation, or both.
Collapse
Affiliation(s)
- Marianela G. Dalghi
- Department of Medicine and George M. O'Brien Pittsburgh Center for Kidney ResearchUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Ella DuRie
- Department of Medicine and George M. O'Brien Pittsburgh Center for Kidney ResearchUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Wily G. Ruiz
- Department of Medicine and George M. O'Brien Pittsburgh Center for Kidney ResearchUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Dennis R. Clayton
- Department of Medicine and George M. O'Brien Pittsburgh Center for Kidney ResearchUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Nicolas Montalbetti
- Department of Medicine and George M. O'Brien Pittsburgh Center for Kidney ResearchUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Stephanie B. Mutchler
- Department of Medicine and George M. O'Brien Pittsburgh Center for Kidney ResearchUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Lisa M. Satlin
- Department of PediatricsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Thomas R. Kleyman
- Department of Medicine and George M. O'Brien Pittsburgh Center for Kidney ResearchUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of Cell BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of Chemical Biology & PharmacologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Marcelo D. Carattino
- Department of Medicine and George M. O'Brien Pittsburgh Center for Kidney ResearchUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of Cell BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Yun Stone Shi
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical SchoolNanjing UniversityNanjingChina
| | - Gerard Apodaca
- Department of Medicine and George M. O'Brien Pittsburgh Center for Kidney ResearchUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of Cell BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
6
|
Carrisoza-Gaytan R, Mutchler SM, Carattino F, Soong J, Dalghi MG, Wu P, Wang W, Apodaca G, Satlin LM, Kleyman TR. PIEZO1 is a distal nephron mechanosensor and is required for flow-induced K+ secretion. J Clin Invest 2024; 134:e174806. [PMID: 38426496 PMCID: PMC10904061 DOI: 10.1172/jci174806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/02/2024] [Indexed: 03/02/2024] Open
Abstract
Ca2+-activated BK channels in renal intercalated cells (ICs) mediate luminal flow-induced K+ secretion (FIKS), but how ICs sense increased flow remains uncertain. We examined whether PIEZO1, a mechanosensitive Ca2+-permeable channel expressed in the basolateral membranes of ICs, is required for FIKS. In isolated cortical collecting ducts (CCDs), the mechanosensitive cation-selective channel inhibitor GsMTx4 dampened flow-induced increases in intracellular Ca2+ concentration ([Ca2+]i), whereas the PIEZO1 activator Yoda1 increased [Ca2+]i and BK channel activity. CCDs from mice fed a high-K+ (HK) diet exhibited a greater Yoda1-dependent increase in [Ca2+]i than CCDs from mice fed a control K+ diet. ICs in CCDs isolated from mice with a targeted gene deletion of Piezo1 in ICs (IC-Piezo1-KO) exhibited a blunted [Ca2+]i response to Yoda1 or increased flow, with an associated loss of FIKS in CCDs. Male IC-Piezo1-KO mice selectively exhibited an increased blood [K+] in response to an oral K+ bolus and blunted urinary K+ excretion following a volume challenge. Whole-cell expression of BKα subunit was reduced in ICs of IC-Piezo1-KO mice fed an HK diet. We conclude that PIEZO1 mediates flow-induced basolateral Ca2+ entry into ICs, is upregulated in the CCD in response to an HK diet, and is necessary for FIKS.
Collapse
Affiliation(s)
| | | | - Francisco Carattino
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Joanne Soong
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Marianela G. Dalghi
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Peng Wu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - WenHui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Gerard Apodaca
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Cell Biology and
| | - Lisa M. Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Thomas R. Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Cell Biology and
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|