1
|
Visan AI, Negut I. Integrating Artificial Intelligence for Drug Discovery in the Context of Revolutionizing Drug Delivery. Life (Basel) 2024; 14:233. [PMID: 38398742 PMCID: PMC10890405 DOI: 10.3390/life14020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Drug development is expensive, time-consuming, and has a high failure rate. In recent years, artificial intelligence (AI) has emerged as a transformative tool in drug discovery, offering innovative solutions to complex challenges in the pharmaceutical industry. This manuscript covers the multifaceted role of AI in drug discovery, encompassing AI-assisted drug delivery design, the discovery of new drugs, and the development of novel AI techniques. We explore various AI methodologies, including machine learning and deep learning, and their applications in target identification, virtual screening, and drug design. This paper also discusses the historical development of AI in medicine, emphasizing its profound impact on healthcare. Furthermore, it addresses AI's role in the repositioning of existing drugs and the identification of drug combinations, underscoring its potential in revolutionizing drug delivery systems. The manuscript provides a comprehensive overview of the AI programs and platforms currently used in drug discovery, illustrating the technological advancements and future directions of this field. This study not only presents the current state of AI in drug discovery but also anticipates its future trajectory, highlighting the challenges and opportunities that lie ahead.
Collapse
Affiliation(s)
| | - Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Ilfov, Romania;
| |
Collapse
|
2
|
Sato H. Development of Clinical Pharmaceutical Services <i>via</i> Artificial Intelligence Adaptation. YAKUGAKU ZASSHI 2022; 142:337-340. [DOI: 10.1248/yakushi.21-00178-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hiroyasu Sato
- Department of Pharmacy, Obihiro Kosei General Hospital
| |
Collapse
|
3
|
Bahmad HF, Demus T, Moubarak MM, Daher D, Alvarez Moreno JC, Polit F, Lopez O, Merhe A, Abou-Kheir W, Nieder AM, Poppiti R, Omarzai Y. Overcoming Drug Resistance in Advanced Prostate Cancer by Drug Repurposing. Med Sci (Basel) 2022; 10:medsci10010015. [PMID: 35225948 PMCID: PMC8883996 DOI: 10.3390/medsci10010015] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is the second most common cancer in men. Common treatments include active surveillance, surgery, or radiation. Androgen deprivation therapy and chemotherapy are usually reserved for advanced disease or biochemical recurrence, such as castration-resistant prostate cancer (CRPC), but they are not considered curative because PCa cells eventually develop drug resistance. The latter is achieved through various cellular mechanisms that ultimately circumvent the pharmaceutical’s mode of action. The need for novel therapeutic approaches is necessary under these circumstances. An alternative way to treat PCa is by repurposing of existing drugs that were initially intended for other conditions. By extrapolating the effects of previously approved drugs to the intracellular processes of PCa, treatment options will expand. In addition, drug repurposing is cost-effective and efficient because it utilizes drugs that have already demonstrated safety and efficacy. This review catalogues the drugs that can be repurposed for PCa in preclinical studies as well as clinical trials.
Collapse
Affiliation(s)
- Hisham F. Bahmad
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (J.C.A.M.); (F.P.); (R.P.); (Y.O.)
- Correspondence: or ; Tel.: +1-786-961-0216
| | - Timothy Demus
- Division of Urology, Columbia University, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (T.D.); (A.M.N.)
| | - Maya M. Moubarak
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon; (M.M.M.); (W.A.-K.)
- CNRS, IBGC, UMR5095, Universite de Bordeaux, F-33000 Bordeaux, France
| | - Darine Daher
- Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon;
| | - Juan Carlos Alvarez Moreno
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (J.C.A.M.); (F.P.); (R.P.); (Y.O.)
| | - Francesca Polit
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (J.C.A.M.); (F.P.); (R.P.); (Y.O.)
| | - Olga Lopez
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| | - Ali Merhe
- Department of Urology, Jackson Memorial Hospital, University of Miami, Leonard M. Miller School of Medicine, Miami, FL 33136, USA;
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon; (M.M.M.); (W.A.-K.)
| | - Alan M. Nieder
- Division of Urology, Columbia University, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (T.D.); (A.M.N.)
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| | - Robert Poppiti
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (J.C.A.M.); (F.P.); (R.P.); (Y.O.)
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| | - Yumna Omarzai
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (J.C.A.M.); (F.P.); (R.P.); (Y.O.)
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| |
Collapse
|
4
|
Lee CY, Chen YPP. New Insights Into Drug Repurposing for COVID-19 Using Deep Learning. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:4770-4780. [PMID: 34546931 PMCID: PMC8843052 DOI: 10.1109/tnnls.2021.3111745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/20/2021] [Accepted: 09/08/2021] [Indexed: 05/21/2023]
Abstract
The coronavirus disease 2019 (COVID-19) has continued to spread worldwide since late 2019. To expedite the process of providing treatment to those who have contracted the disease and to ensure the accessibility of effective drugs, numerous strategies have been implemented to find potential anti-COVID-19 drugs in a short span of time. Motivated by this critical global challenge, in this review, we detail approaches that have been used for drug repurposing for COVID-19 and suggest improvements to the existing deep learning (DL) approach to identify and repurpose drugs to treat this complex disease. By optimizing hyperparameter settings, deploying suitable activation functions, and designing optimization algorithms, the improved DL approach will be able to perform feature extraction from quality big data, turning the traditional DL approach, referred to as a "black box," which generalizes and learns the transmitted data, into a "glass box" that will have the interpretability of its rationale while maintaining a high level of prediction accuracy. When adopted for drug repurposing for COVID-19, this improved approach will create a new generation of DL approaches that can establish a cause and effect relationship as to why the repurposed drugs are suitable for treating COVID-19. Its ability can also be extended to repurpose drugs for other complex diseases, develop appropriate treatment strategies for new diseases, and provide precision medical treatment to patients, thus paving the way to discover new drugs that can potentially be effective for treating COVID-19.
Collapse
Affiliation(s)
- Chun Yen Lee
- Department of Computer Science and Information TechnologyLa Trobe UniversityMelbourneVIC3086Australia
| | - Yi-Ping Phoebe Chen
- Department of Computer Science and Information TechnologyLa Trobe UniversityMelbourneVIC3086Australia
| |
Collapse
|
5
|
Gupta R, Srivastava D, Sahu M, Tiwari S, Ambasta RK, Kumar P. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol Divers 2021; 25:1315-1360. [PMID: 33844136 PMCID: PMC8040371 DOI: 10.1007/s11030-021-10217-3] [Citation(s) in RCA: 302] [Impact Index Per Article: 100.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
Drug designing and development is an important area of research for pharmaceutical companies and chemical scientists. However, low efficacy, off-target delivery, time consumption, and high cost impose a hurdle and challenges that impact drug design and discovery. Further, complex and big data from genomics, proteomics, microarray data, and clinical trials also impose an obstacle in the drug discovery pipeline. Artificial intelligence and machine learning technology play a crucial role in drug discovery and development. In other words, artificial neural networks and deep learning algorithms have modernized the area. Machine learning and deep learning algorithms have been implemented in several drug discovery processes such as peptide synthesis, structure-based virtual screening, ligand-based virtual screening, toxicity prediction, drug monitoring and release, pharmacophore modeling, quantitative structure-activity relationship, drug repositioning, polypharmacology, and physiochemical activity. Evidence from the past strengthens the implementation of artificial intelligence and deep learning in this field. Moreover, novel data mining, curation, and management techniques provided critical support to recently developed modeling algorithms. In summary, artificial intelligence and deep learning advancements provide an excellent opportunity for rational drug design and discovery process, which will eventually impact mankind. The primary concern associated with drug design and development is time consumption and production cost. Further, inefficiency, inaccurate target delivery, and inappropriate dosage are other hurdles that inhibit the process of drug delivery and development. With advancements in technology, computer-aided drug design integrating artificial intelligence algorithms can eliminate the challenges and hurdles of traditional drug design and development. Artificial intelligence is referred to as superset comprising machine learning, whereas machine learning comprises supervised learning, unsupervised learning, and reinforcement learning. Further, deep learning, a subset of machine learning, has been extensively implemented in drug design and development. The artificial neural network, deep neural network, support vector machines, classification and regression, generative adversarial networks, symbolic learning, and meta-learning are examples of the algorithms applied to the drug design and discovery process. Artificial intelligence has been applied to different areas of drug design and development process, such as from peptide synthesis to molecule design, virtual screening to molecular docking, quantitative structure-activity relationship to drug repositioning, protein misfolding to protein-protein interactions, and molecular pathway identification to polypharmacology. Artificial intelligence principles have been applied to the classification of active and inactive, monitoring drug release, pre-clinical and clinical development, primary and secondary drug screening, biomarker development, pharmaceutical manufacturing, bioactivity identification and physiochemical properties, prediction of toxicity, and identification of mode of action.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Devesh Srivastava
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Swati Tiwari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
6
|
Lee H, Kang J, Yeo J. Medical Specialty Recommendations by an Artificial Intelligence Chatbot on a Smartphone: Development and Deployment. J Med Internet Res 2021; 23:e27460. [PMID: 33882012 PMCID: PMC8104000 DOI: 10.2196/27460] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/03/2021] [Accepted: 04/17/2021] [Indexed: 01/22/2023] Open
Abstract
Background The COVID-19 pandemic has limited daily activities and even contact between patients and primary care providers. This makes it more difficult to provide adequate primary care services, which include connecting patients to an appropriate medical specialist. A smartphone-compatible artificial intelligence (AI) chatbot that classifies patients’ symptoms and recommends the appropriate medical specialty could provide a valuable solution. Objective In order to establish a contactless method of recommending the appropriate medical specialty, this study aimed to construct a deep learning–based natural language processing (NLP) pipeline and to develop an AI chatbot that can be used on a smartphone. Methods We collected 118,008 sentences containing information on symptoms with labels (medical specialty), conducted data cleansing, and finally constructed a pipeline of 51,134 sentences for this study. Several deep learning models, including 4 different long short-term memory (LSTM) models with or without attention and with or without a pretrained FastText embedding layer, as well as bidirectional encoder representations from transformers for NLP, were trained and validated using a randomly selected test data set. The performance of the models was evaluated on the basis of the precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC). An AI chatbot was also designed to make it easy for patients to use this specialty recommendation system. We used an open-source framework called “Alpha” to develop our AI chatbot. This takes the form of a web-based app with a frontend chat interface capable of conversing in text and a backend cloud-based server application to handle data collection, process the data with a deep learning model, and offer the medical specialty recommendation in a responsive web that is compatible with both desktops and smartphones. Results The bidirectional encoder representations from transformers model yielded the best performance, with an AUC of 0.964 and F1-score of 0.768, followed by LSTM model with embedding vectors, with an AUC of 0.965 and F1-score of 0.739. Considering the limitations of computing resources and the wide availability of smartphones, the LSTM model with embedding vectors trained on our data set was adopted for our AI chatbot service. We also deployed an Alpha version of the AI chatbot to be executed on both desktops and smartphones. Conclusions With the increasing need for telemedicine during the current COVID-19 pandemic, an AI chatbot with a deep learning–based NLP model that can recommend a medical specialty to patients through their smartphones would be exceedingly useful. This chatbot allows patients to identify the proper medical specialist in a rapid and contactless manner, based on their symptoms, thus potentially supporting both patients and primary care providers.
Collapse
Affiliation(s)
- Hyeonhoon Lee
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Jaehyun Kang
- Department of Computer Science, Yonsei University, Seoul, Republic of Korea
| | - Jonghyeon Yeo
- School of Computer Science and Engineering, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
7
|
Singh G, Papoutsoglou EA, Keijts-Lalleman F, Vencheva B, Rice M, Visser RG, Bachem CW, Finkers R. Extracting knowledge networks from plant scientific literature: potato tuber flesh color as an exemplary trait. BMC PLANT BIOLOGY 2021; 21:198. [PMID: 33894758 PMCID: PMC8070292 DOI: 10.1186/s12870-021-02943-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Scientific literature carries a wealth of information crucial for research, but only a fraction of it is present as structured information in databases and therefore can be analyzed using traditional data analysis tools. Natural language processing (NLP) is often and successfully employed to support humans by distilling relevant information from large corpora of free text and structuring it in a way that lends itself to further computational analyses. For this pilot, we developed a pipeline that uses NLP on biological literature to produce knowledge networks. We focused on the flesh color of potato, a well-studied trait with known associations, and we investigated whether these knowledge networks can assist us in formulating new hypotheses on the underlying biological processes. RESULTS We trained an NLP model based on a manually annotated corpus of 34 full-text potato articles, to recognize relevant biological entities and relationships between them in text (genes, proteins, metabolites and traits). This model detected the number of biological entities with a precision of 97.65% and a recall of 88.91% on the training set. We conducted a time series analysis on 4023 PubMed abstract of plant genetics-based articles which focus on 4 major Solanaceous crops (tomato, potato, eggplant and capsicum), to determine that the networks contained both previously known and contemporaneously unknown leads to subsequently discovered biological phenomena relating to flesh color. A novel time-based analysis of these networks indicates a connection between our trait and a candidate gene (zeaxanthin epoxidase) already two years prior to explicit statements of that connection in the literature. CONCLUSIONS Our time-based analysis indicates that network-assisted hypothesis generation shows promise for knowledge discovery, data integration and hypothesis generation in scientific research.
Collapse
Affiliation(s)
- Gurnoor Singh
- Plant Breeding, Wageningen University & Research, PO Box 386, Wageningen, 6700AJ The Netherlands
| | | | | | | | - Mark Rice
- IBM Netherlands, Amsterdam, The Netherlands
| | - Richard G.F. Visser
- Plant Breeding, Wageningen University & Research, PO Box 386, Wageningen, 6700AJ The Netherlands
| | - Christian W.B. Bachem
- Plant Breeding, Wageningen University & Research, PO Box 386, Wageningen, 6700AJ The Netherlands
| | - Richard Finkers
- Plant Breeding, Wageningen University & Research, PO Box 386, Wageningen, 6700AJ The Netherlands
| |
Collapse
|