1
|
Guo W, Tian J, Wang Y, Zhang Y, Yan J, Du Y, Zhang Y, Han Q. Web-Based Dynamic Nomogram for Predicting Risk of Mortality in Heart Failure with Mildly Reduced Ejection Fraction. Risk Manag Healthc Policy 2024; 17:1959-1972. [PMID: 39156077 PMCID: PMC11330247 DOI: 10.2147/rmhp.s474862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
Purpose This study aimed to develop an integrative dynamic nomogram, including N-terminal pro-B type natural peptide (NT-proBNP) and estimated glomerular filtration rate (eGFR), for predicting the risk of all-cause mortality in HFmrEF patients. Patients and Methods 790 HFmrEF patients were prospectively enrolled in the development cohort for the model. The least absolute shrinkage and selection operator (LASSO) regression and Random Survival Forest (RSF) were employed to select predictors for all-cause mortality. Develop a nomogram based on the Cox proportional hazard model for predicting long-term mortality (1-, 3-, and 5-year) in HFmrEF. Internal validation was conducted using Bootstrap, and the final model was validated in an external cohort of 338 consecutive adult patients. Discrimination and predictive performance were evaluated by calculating the time-dependent concordance index (C-index), area under the ROC curve (AUC), and calibration curve, with clinical value assessed via decision curve analysis (DCA). Integrated discrimination improvement (IDI) and net reclassification improvement (NRI) were used to assess the contributions of NT-proBNP and eGFR to the nomogram. Finally, develop a dynamic nomogram using the "Dynnom" package. Results The optimal independent predictors for all-cause mortality (APSELNH: A: angiotensin-converting enzyme inhibitors/angiotensin receptor blockers/angiotensin receptor-neprilysin inhibitor (ACEI/ARB/ARNI), P: percutaneous coronary intervention/coronary artery bypass graft (PCI/CABG), S: stroke, E: eGFR, L: lg of NT-proBNP, N: NYHA, H: healthcare) were incorporated into the dynamic nomogram. The C-index in the development cohort and validation cohort were 0.858 and 0.826, respectively, with AUCs exceeding 0.8, indicating good discrimination and predictive ability. DCA curves and calibration curves demonstrated clinical applicability and good consistency of the nomogram. NT-proBNP and eGFR provided significant net benefits to the nomogram. Conclusion In this study, the dynamic APSELNH nomogram developed serves as an accessible, functional, and effective clinical decision support calculator, offering accurate prognostic assessment for patients with HFmrEF.
Collapse
Affiliation(s)
- Wei Guo
- Department of Cardiology, the 1st Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, People’s Republic of China
| | - Jing Tian
- Department of Cardiology, the 1st Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, People’s Republic of China
| | - Yajing Wang
- Department of Cardiology, the 1st Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, People’s Republic of China
| | - Yajing Zhang
- Department of Cardiology, the 1st Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, People’s Republic of China
| | - Jingjing Yan
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi Province, People’s Republic of China
| | - Yutao Du
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi Province, People’s Republic of China
| | - Yanbo Zhang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi Province, People’s Republic of China
- Shanxi Provincial Key Laboratory of Major Diseases Risk Assessment, Taiyuan, Shanxi Province, People’s Republic of China
| | - Qinghua Han
- Department of Cardiology, the 1st Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, People’s Republic of China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, People’s Republic of China
| |
Collapse
|
2
|
Zhang L, Wang W, Huo X, He G, Liu Y, Li Y, Lei L, Li J, Pu B, Peng Y, Li J. Predicting the risk of 1-year mortality among patients hospitalized for acute heart failure in China. Am Heart J 2024; 272:69-85. [PMID: 38490563 DOI: 10.1016/j.ahj.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND We aimed to develop and validate a model to predict 1-year mortality risk among patients hospitalized for acute heart failure (AHF), build a risk score and interpret its application in clinical decision making. METHODS By using data from China Patient-Centred Evaluative Assessment of Cardiac Events Prospective Heart Failure Study, which prospectively enrolled patients hospitalized for AHF in 52 hospitals across 20 provinces, we used multivariate Cox proportional hazard model to develop and validate a model to predict 1-year mortality. RESULTS There were 4,875 patients included in the study, 857 (17.58%) of them died within 1-year following discharge of index hospitalization. A total of 13 predictors were selected to establish the prediction model, including age, medical history of chronic obstructive pulmonary disease and hypertension, systolic blood pressure, Kansas City Cardiomyopathy Questionnaire-12 score, angiotensin converting enzyme inhibitor or angiotensin receptor blocker at discharge, discharge symptom, N-terminal pro-brain natriuretic peptide, high-sensitivity troponin T, serum creatine, albumin, blood urea nitrogen, and highly sensitive C-reactive protein. The model showed a high performance on discrimination (C-index was 0.759 [95% confidence interval: 0.739, 0.778] in development cohort and 0.761 [95% confidence interval: 0.731, 0.791] in validation cohort), accuracy, calibration, and outperformed than several existed risk scores. A point-based risk score was built to stratify low- (0-12), intermediate- (13-16), and high-risk group (≥17) among patients. CONCLUSIONS A prediction model using readily available predictors was developed and internal validated to predict 1-year mortality risk among patients hospitalized for AHF. It may serve as a useful tool for individual risk stratification and informing decision making to improve clinical care.
Collapse
Affiliation(s)
- Lihua Zhang
- National Clinical Research Center for Cardiovascular Diseases, NHC Key Laboratory of Clinical Research for Cardiovascular Medications, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Wang
- National Clinical Research Center for Cardiovascular Diseases, NHC Key Laboratory of Clinical Research for Cardiovascular Medications, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiqian Huo
- National Clinical Research Center for Cardiovascular Diseases, NHC Key Laboratory of Clinical Research for Cardiovascular Medications, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guangda He
- National Clinical Research Center for Cardiovascular Diseases, NHC Key Laboratory of Clinical Research for Cardiovascular Medications, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanchen Liu
- National Clinical Research Center for Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Guangdong, China
| | - Yan Li
- National Clinical Research Center for Cardiovascular Diseases, NHC Key Laboratory of Clinical Research for Cardiovascular Medications, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lubi Lei
- National Clinical Research Center for Cardiovascular Diseases, NHC Key Laboratory of Clinical Research for Cardiovascular Medications, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingkuo Li
- National Clinical Research Center for Cardiovascular Diseases, NHC Key Laboratory of Clinical Research for Cardiovascular Medications, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Boxuan Pu
- National Clinical Research Center for Cardiovascular Diseases, NHC Key Laboratory of Clinical Research for Cardiovascular Medications, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue Peng
- National Clinical Research Center for Cardiovascular Diseases, NHC Key Laboratory of Clinical Research for Cardiovascular Medications, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Li
- Department, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China; National Clinical Research Center for Cardiovascular Diseases, NHC Key Laboratory of Clinical Research for Cardiovascular Medications, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Xu Z, Hu Y, Shao X, Shi T, Yang J, Wan Q, Liu Y. The Efficacy of Machine Learning Models for Predicting the Prognosis of Heart Failure: A Systematic Review and Meta-Analysis. Cardiology 2024:1-19. [PMID: 38648752 DOI: 10.1159/000538639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/28/2024] [Indexed: 04/25/2024]
Abstract
INTRODUCTION Heart failure (HF) is a major global public health concern. The application of machine learning (ML) to identify individuals at high risk and enable early intervention is a promising approach for improving HF prognosis. We aim to systematically evaluate the performance and value of ML models for predicting HF prognosis. METHODS PubMed, Web of Science, Scopus, and Embase online databases were searched up to April 30, 2023, to identify studies on the use of ML models to predict HF prognosis. HF prognosis primarily encompasses readmission and mortality. The meta-analysis was conducted by MedCalc software. Subgroup analyses include grouping based on types of ML models, time intervals, sample sizes, the number of predictive variables, validation methods, whether to conduct hyperparameter optimization and calibration, data set partitioning methods. RESULTS A total of 31 studies were included. The most common ML models were random forest, boosting, support vector machine, neural network. The area under the receiver operating characteristic curve (AUC) for predicting HF readmission was 0.675 (95% CI: 0.651-0.699, p < 0.001), and the AUC for predicting HF mortality was 0.790 (95% CI: 0.765-0.816, p < 0.001). Subgroup analyses revealed that models with the prediction time interval of 1 year, sample sizes ≥10,000, the number of predictive variables ≥100, external validation, hyperparameter tuning, calibration adjustment, and data set partitioning using 10-fold cross-validation exhibited favorable performance within their respective subgroups. CONCLUSION The performance of ML models in predicting HF readmission is relatively poor, while its performance in predicting HF mortality is moderate. The quality of the relevant studies is generally low, it is essential to enhance the predictive capabilities of ML models through targeted improvements in practical applications.
Collapse
Affiliation(s)
- Zhaohui Xu
- Department of Cardiovascular Disease, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,
| | - Yinqin Hu
- Department of Cardiovascular Disease, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinyi Shao
- The Grier School, Tyrone, Pennsylvania, USA
| | - Tianyun Shi
- Department of Cardiovascular Disease, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiahui Yang
- Department of Cardiovascular Disease, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiqi Wan
- Department of Cardiovascular Disease, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongming Liu
- Department of Cardiovascular Disease, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Cardiovascular Disease, Anhui Provincial Hospital of Integrated Medicine, Hefei Anhui, China
| |
Collapse
|
4
|
Huang Y, Zheng Z, Ma M, Xin X, Liu H, Fei X, Wei L, Chen H. Improving Performance of Outcome Prediction for In-patients with Acute Myocardial Infarction Based on Embedding Representation Learned from Electronic Medical Records: Development and Validation Study (Preprint). J Med Internet Res 2022; 24:e37486. [PMID: 35921141 PMCID: PMC9386580 DOI: 10.2196/37486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/02/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
Background The widespread secondary use of electronic medical records (EMRs) promotes health care quality improvement. Representation learning that can automatically extract hidden information from EMR data has gained increasing attention. Objective We aimed to propose a patient representation with more feature associations and task-specific feature importance to improve the outcome prediction performance for inpatients with acute myocardial infarction (AMI). Methods Medical concepts, including patients’ age, gender, disease diagnoses, laboratory tests, structured radiological features, procedures, and medications, were first embedded into real-value vectors using the improved skip-gram algorithm, where concepts in the context windows were selected by feature association strengths measured by association rule confidence. Then, each patient was represented as the sum of the feature embeddings weighted by the task-specific feature importance, which was applied to facilitate predictive model prediction from global and local perspectives. We finally applied the proposed patient representation into mortality risk prediction for 3010 and 1671 AMI inpatients from a public data set and a private data set, respectively, and compared it with several reference representation methods in terms of the area under the receiver operating characteristic curve (AUROC), area under the precision-recall curve (AUPRC), and F1-score. Results Compared with the reference methods, the proposed embedding-based representation showed consistently superior predictive performance on the 2 data sets, achieving mean AUROCs of 0.878 and 0.973, AUPRCs of 0.220 and 0.505, and F1-scores of 0.376 and 0.674 for the public and private data sets, respectively, while the greatest AUROCs, AUPRCs, and F1-scores among the reference methods were 0.847 and 0.939, 0.196 and 0.283, and 0.344 and 0.361 for the public and private data sets, respectively. Feature importance integrated in patient representation reflected features that were also critical in prediction tasks and clinical practice. Conclusions The introduction of feature associations and feature importance facilitated an effective patient representation and contributed to prediction performance improvement and model interpretation.
Collapse
Affiliation(s)
- Yanqun Huang
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Zhimin Zheng
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Moxuan Ma
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Xin Xin
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Honglei Liu
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Xiaolu Fei
- Information Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lan Wei
- Information Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hui Chen
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Guo W, Wang Z, Ma M, Chen L, Yang H, Li D, Du W. Semi‐supervised multiple empirical kernel learning with pseudo empirical loss and similarity regularization. INT J INTELL SYST 2022. [DOI: 10.1002/int.22690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wei Guo
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education East China University of Science and Technology Shanghai People's Republic of China
- Department of Computer Science and Engineering East China University of Science and Technology Shanghai People's Republic of China
| | - Zhe Wang
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education East China University of Science and Technology Shanghai People's Republic of China
- Department of Computer Science and Engineering East China University of Science and Technology Shanghai People's Republic of China
| | - Menghao Ma
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education East China University of Science and Technology Shanghai People's Republic of China
- Department of Computer Science and Engineering East China University of Science and Technology Shanghai People's Republic of China
| | - Lilong Chen
- Department of Computer Science and Engineering East China University of Science and Technology Shanghai People's Republic of China
| | - Hai Yang
- Department of Computer Science and Engineering East China University of Science and Technology Shanghai People's Republic of China
| | - Dongdong Li
- Department of Computer Science and Engineering East China University of Science and Technology Shanghai People's Republic of China
| | - Wenli Du
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education East China University of Science and Technology Shanghai People's Republic of China
| |
Collapse
|
6
|
Vellameeran FA, Brindha T. An integrated review on machine learning approaches for heart disease prediction: Direction towards future research gaps. BIO-ALGORITHMS AND MED-SYSTEMS 2021. [DOI: 10.1515/bams-2020-0069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Objectives
To make a clear literature review on state-of-the-art heart disease prediction models.
Methods
It reviews 61 research papers and states the significant analysis. Initially, the analysis addresses the contributions of each literature works and observes the simulation environment. Here, different types of machine learning algorithms deployed in each contribution. In addition, the utilized dataset for existing heart disease prediction models was observed.
Results
The performance measures computed in entire papers like prediction accuracy, prediction error, specificity, sensitivity, f-measure, etc., are learned. Further, the best performance is also checked to confirm the effectiveness of entire contributions.
Conclusions
The comprehensive research challenges and the gap are portrayed based on the development of intelligent methods concerning the unresolved challenges in heart disease prediction using data mining techniques.
Collapse
Affiliation(s)
| | - Thomas Brindha
- Department of Information Technology , Noorul Islam Centre for Higher Education , Kanyakumari , India
| |
Collapse
|
7
|
Kumar PR, Ravichandran S, Narayana S. Ensemble classification technique for heart disease prediction with meta-heuristic-enabled training system. BIO-ALGORITHMS AND MED-SYSTEMS 2020. [DOI: 10.1515/bams-2020-0033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
Objectives
This research work exclusively aims to develop a novel heart disease prediction framework including three major phases, namely proposed feature extraction, dimensionality reduction, and proposed ensemble-based classification.
Methods
As the novelty, the training of NN is carried out by a new enhanced optimization algorithm referred to as Sea Lion with Canberra Distance (S-CDF) via tuning the optimal weights. The improved S-CDF algorithm is the extended version of the existing “Sea Lion Optimization (SLnO)”. Initially, the statistical and higher-order statistical features are extracted including central tendency, degree of dispersion, and qualitative variation, respectively. However, in this scenario, the “curse of dimensionality” seems to be the greatest issue, such that there is a necessity of dimensionality reduction in the extracted features. Hence, the principal component analysis (PCA)-based feature reduction approach is deployed here. Finally, the dimensional concentrated features are fed as the input to the proposed ensemble technique with “Support Vector Machine (SVM), Random Forest (RF), K-Nearest Neighbor (KNN)” with optimized Neural Network (NN) as the final classifier.
Results
An elaborative analyses as well as discussion have been provided by concerning the parameters, like evaluation metrics, year of publication, accuracy, implementation tool, and utilized datasets obtained by various techniques.
Conclusions
From the experiment outcomes, it is proved that the accuracy of the proposed work with the proposed feature set is 5, 42.85, and 10% superior to the performance with other feature sets like central tendency + dispersion feature, central tendency qualitative variation, and dispersion qualitative variation, respectively.
Results
Finally, the comparative evaluation shows that the presented work is appropriate for heart disease prediction as it has high accuracy than the traditional works.
Collapse
Affiliation(s)
- Parvathaneni Rajendra Kumar
- Department of Information Technology, Faculty of Engineering and Technology , Annamalai University Annamalainagar - 608002 , Tamil Nadu , India
| | - Suban Ravichandran
- Department of Information Technology, Faculty of Engineering and Technology , Annamalai University Annamalainagar - 608002 , Tamil Nadu , India
| | | |
Collapse
|
8
|
Shiny Irene D, Sethukarasi T, Vadivelan N. Heart disease prediction using hybrid fuzzy K-medoids attribute weighting method with DBN-KELM based regression model. Med Hypotheses 2020; 143:110072. [PMID: 32721791 DOI: 10.1016/j.mehy.2020.110072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/20/2020] [Accepted: 06/30/2020] [Indexed: 02/05/2023]
Abstract
Automated prediction can be offered for further treatment to make effective and relieve the difficulties in the diagnosis of heart condition of patient. In this paper, a hybrid method is proposed combining FKMAW and DBNKELM based ensemble method to enhance medical diagnosis process. Firstly, the input attributes are weighed using a fuzzy k-medoids clustering based attribute weighting (FKMAW) method. Subsequently, the medical data classification performance is improved by applying the weighing method and the linearly separable dataset is obtained with the transformation of non-linearly separable dataset. With the weighted attributes, a regression model based heart disease prediction scheme is proposed combining Deep belief Network and Extreme learning machine (DBNKELM), in which Extreme learning machine is the top layer of the deep belief network to work as a regression model. The results demonstrate that FKMAW + DBNKELM achieved good performance in rectifying the problems in medical data classification for all the six datasets.
Collapse
Affiliation(s)
- D Shiny Irene
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| | - T Sethukarasi
- Department of Computer Science and Engineering, R.M.K. Engineering College, Chennai, India
| | - N Vadivelan
- Department of Computer Science and Engineering, Teegala Krishna Reddy Engineering College, Meerpet, Hyderabad, India
| |
Collapse
|