1
|
Kline KE, Russell AL, Stezoski JP, Gober IG, Dimeo EG, Janesko-Feldman K, Drabek T, Kochanek PM, Wagner AK. Differential Effects of Targeted Temperature Management on Sex-Dependent Outcomes After Experimental Asphyxial Cardiac Arrest. Ther Hypothermia Temp Manag 2024; 14:299-309. [PMID: 38386544 PMCID: PMC11665272 DOI: 10.1089/ther.2023.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Asphyxial cardiac arrest (ACA) survivors face lasting neurological disability from hypoxic ischemic brain injury. Sex differences in long-term outcomes after cardiac arrest (CA) are grossly understudied and underreported. We used rigorous targeted temperature management (TTM) to understand its influence on survival and lasting sex-specific neurological and neuropathological outcomes in a rodent ACA model. Adult male and female rats underwent either sham or 5-minute no-flow ACA with 18 hours TTM at either ∼37°C (normothermia) or ∼36°C (mild hypothermia). Survival, temperature, and body weight (BW) were recorded over the 14-day study duration. All rats underwent neurological deficit score (NDS) assessment on days 1-3 and day 14. Hippocampal pathology was assessed for cell death, degenerating neurons, and microglia on day 14. Although ACA females were less likely to achieve return of spontaneous circulation (ROSC), post-ROSC physiology and biochemical profiles were similar between sexes. ACA females had significantly greater 14-day survival, NDS, and BW recovery than ACA males at normothermia (56% vs. 29%). TTM at 36°C versus 37°C improved 14-day survival in males, producing similar survival in male (63%) versus female (50%). There were no sex or temperature effects on CA1 histopathology. We conclude that at normothermic conditions, sex differences favoring females were observed after ACA in survival, NDS, and BW recovery. We achieved a clinically relevant ACA model using TTM at 36°C to improve long-term survival. This model can be used to more fully characterize sex differences in long-term outcomes and test novel acute and chronic therapies.
Collapse
Affiliation(s)
- Kelsey E. Kline
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ashley L. Russell
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jason P. Stezoski
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ian G. Gober
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Emma G. Dimeo
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Keri Janesko-Feldman
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tomas Drabek
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Patrick M. Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amy K. Wagner
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Bányai B, Vass Z, Kiss S, Balogh A, Brandhuber D, Karvaly G, Kovács K, Nádasy GL, Hunyady L, Dörnyei G, Horváth EM, Szekeres M. Role of CB1 Cannabinoid Receptors in Vascular Responses and Vascular Remodeling of the Aorta in Female Mice. Int J Mol Sci 2023; 24:16429. [PMID: 38003619 PMCID: PMC10671338 DOI: 10.3390/ijms242216429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Both the endocannabinoid system (ECS) and estrogens have significant roles in cardiovascular control processes. Cannabinoid type 1 receptors (CB1Rs) mediate acute vasodilator and hypotensive effects, although their role in cardiovascular pathological conditions is still controversial. Estrogens exert cardiovascular protection in females. We aimed to study the impact of ECS on vascular functions. Experiments were performed on CB1R knockout (CB1R KO) and wild-type (WT) female mice. Plasma estrogen metabolite levels were determined. Abdominal aortas were isolated for myography and histology. Vascular effects of phenylephrine (Phe), angiotensin II, acetylcholine (Ach) and estradiol (E2) were obtained and repeated with inhibitors of nitric oxide synthase (NOS, Nω-nitro-L-arginine) and of cyclooxygenase (COX, indomethacin). Histological stainings (hematoxylin-eosin, resorcin-fuchsin) and immunostainings for endothelial NOS (eNOS), COX-2, estrogen receptors (ER-α, ER-β) were performed. Conjugated E2 levels were higher in CB1R KO compared to WT mice. Vasorelaxation responses to Ach and E2 were increased in CB1R KO mice, attenuated by NOS-inhibition. COX-inhibition decreased Phe-contractions, while it increased Ach-relaxation in the WT group but not in the CB1R KO. Effects of indomethacin on E2-relaxation in CB1R KO became opposite to that observed in WT. Histology revealed lower intima/media thickness and COX-2 density, higher eNOS and lower ER-β density in CB1R KO than in WT mice. CB1R KO female mice are characterized by increased vasorelaxation associated with increased utilization of endothelial NO and a decreased impact of constrictor prostanoids. Our results indicate that the absence or inhibition of CB1Rs may have beneficial vascular effects.
Collapse
Affiliation(s)
- Bálint Bányai
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (B.B.); (S.K.); (G.L.N.); (L.H.); (E.M.H.)
| | - Zsolt Vass
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 17 Vas Street, 1088 Budapest, Hungary; (Z.V.); (A.B.); (D.B.)
| | - Stella Kiss
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (B.B.); (S.K.); (G.L.N.); (L.H.); (E.M.H.)
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 17 Vas Street, 1088 Budapest, Hungary; (Z.V.); (A.B.); (D.B.)
| | - Anikó Balogh
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 17 Vas Street, 1088 Budapest, Hungary; (Z.V.); (A.B.); (D.B.)
| | - Dóra Brandhuber
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 17 Vas Street, 1088 Budapest, Hungary; (Z.V.); (A.B.); (D.B.)
| | - Gellért Karvaly
- Department of Laboratory Medicine, Faculty of Medicine, Semmelweis University, 4 Nagyvárad Square, 1089 Budapest, Hungary; (G.K.); (K.K.)
| | - Krisztián Kovács
- Department of Laboratory Medicine, Faculty of Medicine, Semmelweis University, 4 Nagyvárad Square, 1089 Budapest, Hungary; (G.K.); (K.K.)
| | - György L. Nádasy
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (B.B.); (S.K.); (G.L.N.); (L.H.); (E.M.H.)
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (B.B.); (S.K.); (G.L.N.); (L.H.); (E.M.H.)
- Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, 2 Magyar Tudósok Körútja, 1117 Budapest, Hungary
| | - Gabriella Dörnyei
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 17 Vas Street, 1088 Budapest, Hungary; (Z.V.); (A.B.); (D.B.)
| | - Eszter Mária Horváth
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (B.B.); (S.K.); (G.L.N.); (L.H.); (E.M.H.)
| | - Mária Szekeres
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (B.B.); (S.K.); (G.L.N.); (L.H.); (E.M.H.)
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 17 Vas Street, 1088 Budapest, Hungary; (Z.V.); (A.B.); (D.B.)
| |
Collapse
|
3
|
Merkely P, Bakos M, Bányai B, Monori-Kiss A, Horváth EM, Bognár J, Benkő R, Oláh A, Radovits T, Merkely B, Ács N, Nádasy GL, Török M, Várbíró S. Sex Differences in Exercise-Training-Related Functional and Morphological Adaptation of Rat Gracilis Muscle Arterioles. Front Physiol 2021; 12:685664. [PMID: 34322036 PMCID: PMC8313298 DOI: 10.3389/fphys.2021.685664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/17/2021] [Indexed: 12/17/2022] Open
Abstract
Background The cardiovascular effects of training have been widely investigated; however, few studies have addressed sex differences in arteriolar adaptation. In the current study, we examined the adaptation of the gracilis arterioles of male and female rats in response to intensive training. Methods Wistar rats were divided into four groups: male exercise (ME) and female exercise (FE) animals that underwent a 12-week intensive swim-training program (5 days/week, 200 min/day); and male control (MC) and female control (FC) animals that were placed in water for 5 min daily. Exercise-induced cardiac hypertrophy was confirmed by echocardiography. Following the training, the gracilis muscle arterioles were prepared, and their biomechanical properties and functional reactivity were tested, using pressure arteriography. Collagen and smooth muscle remodeling were observed in the histological sections. Results Left ventricular mass was elevated in both sexes in response to chronic training. In the gracilis arterioles, the inner radius and wall tension increased in female animals, and the wall thickness and elastic modulus were reduced in males. Myogenic tone was reduced in the ME group, whereas norepinephrine-induced vasoconstriction was elevated in the FE group. More pronounced collagen staining was observed in the ME group than in the MC group. Relative hypertrophy and tangential stress of the gracilis arterioles were higher in females than in males. The direct vasoconstriction induced by testosterone was lower in females and was reduced as an effect of exercise in males. Conclusion The gracilis muscle arteriole was remodeled as a result of swim training, and this adaptation was sex dependent.
Collapse
Affiliation(s)
- Petra Merkely
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
| | - Marcell Bakos
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
| | - Bálint Bányai
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Anna Monori-Kiss
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Eszter M Horváth
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Judit Bognár
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary.,Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Rita Benkő
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Attila Oláh
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Nándor Ács
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
| | - György L Nádasy
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Marianna Török
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
| | - Szabolcs Várbíró
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
4
|
Török M, Merkely P, Monori-Kiss A, Horváth EM, Sziva RE, Péterffy B, Jósvai A, Sayour AA, Oláh A, Radovits T, Merkely B, Ács N, Nádasy GL, Várbíró S. Network analysis of the left anterior descending coronary arteries in swim-trained rats by an in situ video microscopic technique. Biol Sex Differ 2021; 12:37. [PMID: 34039432 PMCID: PMC8152314 DOI: 10.1186/s13293-021-00379-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/04/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND We aimed to identify sex differences in the network properties and to recognize the geometric alteration effects of long-term swim training in a rat model of exercise-induced left ventricular (LV) hypertrophy. METHODS Thirty-eight Wistar rats were divided into four groups: male sedentary, female sedentary, male exercised and female exercised. After training sessions, LV morphology and function were checked by echocardiography. The geometry of the left coronary artery system was analysed on pressure-perfused, microsurgically prepared resistance artery networks using in situ video microscopy. All segments over > 80 μm in diameter were studied using divided 50-μm-long cylindrical ring units of the networks. Oxidative-nitrative (O-N) stress markers, adenosine A2A and estrogen receptor (ER) were investigated by immunohistochemistry. RESULTS The LV mass index, ejection fraction and fractional shortening significantly increased in exercised animals. We found substantial sex differences in the coronary network in the control groups and in the swim-trained animals. Ring frequency spectra were significantly different between male and female animals in both the sedentary and trained groups. The thickness of the wall was higher in males as a result of training. There were elevations in the populations of 200- and 400-μm vessel units in males; the thinner ones developed farther and the thicker ones closer to the orifice. In females, a new population of 200- to 250-μm vessels appeared unusually close to the orifice. CONCLUSIONS Physical activity and LV hypertrophy were accompanied by a remodelling of coronary resistance artery network geometry that was different in both sexes.
Collapse
Affiliation(s)
- Marianna Török
- Department of Obstetrics and Gynecology, Semmelweis University, Üllői u. 78/a, Budapest, 1082 Hungary
| | - Petra Merkely
- Department of Obstetrics and Gynecology, Semmelweis University, Üllői u. 78/a, Budapest, 1082 Hungary
| | - Anna Monori-Kiss
- Institute of Clinical Experimental Research, Semmelweis University, Tűzoltó u. 37-47, Budapest, 1094 Hungary
| | - Eszter Mária Horváth
- Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, Budapest, 1094 Hungary
| | - Réka Eszter Sziva
- Department of Obstetrics and Gynecology, Semmelweis University, Üllői u. 78/a, Budapest, 1082 Hungary
- Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, Budapest, 1094 Hungary
| | - Borbála Péterffy
- Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, Budapest, 1094 Hungary
| | - Attila Jósvai
- Department of Neurosurgery, Military Hospital, Róbert Károly körút 44, Budapest, 1134 Hungary
| | - Alex Ali Sayour
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122 Hungary
| | - Attila Oláh
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122 Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122 Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122 Hungary
| | - Nándor Ács
- Department of Obstetrics and Gynecology, Semmelweis University, Üllői u. 78/a, Budapest, 1082 Hungary
| | - György László Nádasy
- Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, Budapest, 1094 Hungary
| | - Szabolcs Várbíró
- Department of Obstetrics and Gynecology, Semmelweis University, Üllői u. 78/a, Budapest, 1082 Hungary
| |
Collapse
|
5
|
Vitamin D Deficiency Induces Elevated Oxidative and Biomechanical Damage in Coronary Arterioles in Male Rats. Antioxidants (Basel) 2020; 9:antiox9100997. [PMID: 33076449 PMCID: PMC7602574 DOI: 10.3390/antiox9100997] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/01/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Several reports prove interconnection between vitamin D (VD) deficiency and increased cardiovascular risk. Our aim was to investigate the effects of VD status on biomechanical and oxidative–nitrative (O–N) stress parameters of coronary arterioles in rats. Methods: 4-week-old male Wistar rats were divided into a control group (11 animals) with optimal VD supply (300 IU/kgbw/day) and a VD-deficient group (11 animals, <5 IU/kg/day). After 8 weeks, coronary arteriole segments were prepared. Geometrical, elastic, and biomechanical characteristics were measured by in vitro arteriography. O–N stress markers were investigated by immunohistochemistry. Results: Inner radius decreased; wall thickness and wall-thickness/lumen diameter ratio increased; tangential wall stress and elastic modulus were reduced in VD-deficient group. No difference could be found in wall-cross-sectional area, intima-media area %. While the elastic elements of the vessel wall decreased, the α-smooth muscle actin (α-SMA) immunostaining intensity showed no changes. Significant elevation was found in the lipid peroxidation marker of 4-hidroxy-2-nonenal (HNE), while other O–N stress markers staining intensity (poly(ADP)ribose, 3-nitrotyrosine) did not change. Conclusions: Inward eutrophic remodeling has developed. The potential background of these impairments may involve the initial change in oxidative damage markers (HNE). These mechanisms can contribute to the increased incidence of the cardiovascular diseases in VD deficiency.
Collapse
|
6
|
Török M, Monori-Kiss A, Pál É, Horváth E, Jósvai A, Merkely P, Barta BA, Mátyás C, Oláh A, Radovits T, Merkely B, Ács N, Nádasy GL, Várbíró S. Long-term exercise results in morphological and biomechanical changes in coronary resistance arterioles in male and female rats. Biol Sex Differ 2020; 11:7. [PMID: 32051031 PMCID: PMC7017613 DOI: 10.1186/s13293-020-0284-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/05/2020] [Indexed: 12/16/2022] Open
Abstract
Background Biomechanical remodeling of coronary resistance arteries in physiological left ventricular hypertrophy has not yet been analyzed, and the possible sex differences are unknown. Methods Wistar rats were divided into four groups: male and female sedentary controls (MSe and FSe) and male and female animals undergoing a 12-week intensive swim training program (MEx and FEx). On the last day, the in vitro contractility, endothelium-dependent dilatation, and biomechanical properties of the intramural coronary resistance arteries were investigated by pressure microarteriography. Elastica and collagen remodeling were studied in histological sections. Results A similar outer radius and reduced inner radius resulted in an elevated wall to lumen ratio in the MEx and FEx animals compared to that in the sedentary controls. The wall elastic moduli increased in the MEx and FEx rats. Spontaneous and TxA2 agonist-induced tone was increased in the FEx animals, whereas endothelium-dependent relaxation became more effective in MEx rats. Arteries of FEx rats had stronger contraction, while arteries of MEx animals had improved dilation. Conclusions According to our results, the coronary arterioles adapted to an elevated load during long-term exercise, and this adaptation depended on sex. It is important to emphasize that in addition to differences, we also found many similarities between the sexes in the adaptive response to exercise. The observed sport adaptation in the coronary resistance arteries of rats may contribute to a better understanding of the physiological and pathological function of these arteries in active and retired athletes of different sexes.
Collapse
Affiliation(s)
- Marianna Török
- Department of Obstetrics and Gynecology, Semmelweis University, Üllői u. 78/a, Budapest, 1082, Hungary.
| | - Anna Monori-Kiss
- Institute of Clinical Experimental Research, Semmelweis University, Tűzoltó u. 37-47, Budapest, 1094, Hungary
| | - Éva Pál
- Institute of Clinical Experimental Research, Semmelweis University, Tűzoltó u. 37-47, Budapest, 1094, Hungary
| | - Eszter Horváth
- Department of Obstetrics and Gynecology, Semmelweis University, Üllői u. 78/a, Budapest, 1082, Hungary
| | - Attila Jósvai
- Department of Neurosurgery, Military Hospital, Róbert Károly körút 44, Budapest, 1134, Hungary
| | - Petra Merkely
- Department of Obstetrics and Gynecology, Semmelweis University, Üllői u. 78/a, Budapest, 1082, Hungary
| | - Bálint András Barta
- Heart and Vascular Center, Semmelweis University, Városmajor u 68, Budapest, 1122, Hungary
| | - Csaba Mátyás
- Heart and Vascular Center, Semmelweis University, Városmajor u 68, Budapest, 1122, Hungary
| | - Attila Oláh
- Heart and Vascular Center, Semmelweis University, Városmajor u 68, Budapest, 1122, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Városmajor u 68, Budapest, 1122, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Városmajor u 68, Budapest, 1122, Hungary
| | - Nándor Ács
- Department of Obstetrics and Gynecology, Semmelweis University, Üllői u. 78/a, Budapest, 1082, Hungary
| | - György László Nádasy
- Department of Physiology, Semmelweis University, Tűzoltó u 37-47, Budapest, 1094, Hungary
| | - Szabolcs Várbíró
- Department of Obstetrics and Gynecology, Semmelweis University, Üllői u. 78/a, Budapest, 1082, Hungary
| |
Collapse
|
7
|
Szekeres M, Nádasy GL, Dörnyei G, Szénási A, Koller A. Remodeling of Wall Mechanics and the Myogenic Mechanism of Rat Intramural Coronary Arterioles in Response to a Short-Term Daily Exercise Program: Role of Endothelial Factors. J Vasc Res 2018; 55:87-97. [PMID: 29444520 DOI: 10.1159/000486571] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/29/2017] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Exercise elicits early adaptation of coronary vessels enabling the coronary circulation to respond adequately to higher flow demands. We hypothesized that short-term daily exercise induces biomechanical and functional remodeling of the coronary resistance arteries related to pressure. METHODS Male rats were subjected to a progressively increasing 4-week treadmill exercise program (over 60 min/day, 1 mph in the final step). In vitro pressure-diameter measurements were performed on coronary segments (119 ± 5 μm in diameter at 50 mm Hg) with microarteriography. The magnitude of the myogenic response and contribution of endogenous nitric oxide and prostanoid production to the wall mechanics and pressure-diameter relationship were assessed. RESULTS Arterioles isolated from exercised ani mals - compared to the sedentary group - had thicker walls, increased distensibility, and a decreased elastic modulus as a result of reduced wall stress in the low pressure range. The arterioles of exercised rats exhibited a more powerful myogenic response and less endogenous vasoconstrictor prostanoid modulation at higher pressures, while vasodilator nitric oxide modulation of diameter was augmented at low pressures (< 60 mm Hg). CONCLUSIONS A short-term daily exercise program induces remodeling of rat intramural coronary arterioles, likely resulting in a greater range of coronary autoregulatory function (constrictor and dilator reserves) and more effective protection against great changes in intraluminal pressure, contributing thereby to the optimization of coronary blood flow during exercise.
Collapse
Affiliation(s)
- Mária Szekeres
- Department of Morphology and Physiology, Semmelweis University, Budapest, Hungary.,Department of Physiology, Semmelweis University, Budapest, Hungary
| | - György L Nádasy
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Gabriella Dörnyei
- Department of Morphology and Physiology, Semmelweis University, Budapest, Hungary
| | - Annamária Szénási
- Department of Morphology and Physiology, Semmelweis University, Budapest, Hungary.,Department of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Akos Koller
- Department of Pathophysiology, Semmelweis University, Budapest, Hungary.,Department of Physiology, New York Medical College, Valhalla, New York, USA.,Research Group of Sportgenetics and Sportgerontology, Institute of Natural Sciences, University of Physical Education, Budapest, Hungary
| |
Collapse
|
8
|
Sanzari JK, Billings PC, Wilson JM, Diffenderfer ES, Arce-Esquivel AA, Thorne PK, Laughlin MH, Kennedy AR. Effect of electron radiation on vasomotor function of the left anterior descending coronary artery. LIFE SCIENCES IN SPACE RESEARCH 2015; 4:6-10. [PMID: 26072960 PMCID: PMC4452954 DOI: 10.1016/j.lssr.2014.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The left anterior descending (LAD, interventricular) coronary artery provides the blood supply to the mid-region of the heart and is a major site of vessel stenosis. Changes in LAD function can have major effects on heart function. In this report, we examined the effect of electron simulated solar particle event (eSPE) radiation on LAD function in a porcine animal model. Vasodilatory responses to adenosine diphosphate (ADP; 10(−9)–10(−4) M), bradykinin (BK; 10(−11)–10(−6) M), and sodium nitroprusside (SNP; 10(−10)–10(−4) M) were assessed. The LAD arteries from Control (non-irradiated) and the eSPE (irradiated) animals were isolated and exhibited a similar relaxation response following treatment with either ADP or SNP. In contrast, a significantly reduced relaxation response to BK treatment was observed in the eSPE irradiated group, compared to the control group. These data demonstrate that simulated SPE radiation exposure alters LAD function.
Collapse
Affiliation(s)
- Jenine K. Sanzari
- 3620 Hamilton Walk, Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul C. Billings
- 3620 Hamilton Walk, Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jolaine M. Wilson
- 3620 Hamilton Walk, Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric S. Diffenderfer
- 3620 Hamilton Walk, Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arturo A. Arce-Esquivel
- E102 Veterinary Medicine, Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
- 3900 University Blvd., Department of Health and Kinesiology, The University of Texas at Tyler, Tyler, TX 75799, USA
| | - Pamela K. Thorne
- E102 Veterinary Medicine, Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - M. H. Laughlin
- E102 Veterinary Medicine, Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Ann R. Kennedy
- 3620 Hamilton Walk, Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Mátrai M, Hetthéssy J, Nádasy GL, Monos E, Székács B, Várbíró S. Sex differences in the biomechanics and contractility of intramural coronary arteries in angiotensin II-induced hypertension. ACTA ACUST UNITED AC 2013; 9:548-56. [PMID: 23217570 DOI: 10.1016/j.genm.2012.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 10/12/2012] [Accepted: 10/15/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND It is well known that sex differences occur in both the pathogenesis and therapy of hypertension. A deeper understanding of the underlying processes may be helpful when planning a personalized therapeutic strategy. OBJECTIVE In laboratory animal experiments, we studied the early mechanisms of vascular adaptation of the intramural small coronary arteries that play a fundamental role in the blood supply of the heart. METHODS In our study, an osmotic minipump was implanted into 10 male and 10 female Sprague-Dawley rats. The pump remained in situ for 4 weeks, infusing a dose of 100 ng/kg/min angiotensin II acetate. Four weeks later, the animals were killed, and the intramural coronary arteries from the left coronary branch, which are fundamentally responsible for the blood supply of the heart, were prepared. The pharmacologic reactivity and biomechanical properties of the prepared segments were studied in a tissue bath. RESULTS The relative heart mass and vessel wall thickness were greater in females than males (0.387 [0.009] g/100 g vs 0.306 [0.006] g/100 g body weight; 41.9 [4.09] μm vs 33.45 [3.37] μm on 50 mm Hg). The vessel tone and vasoconstriction in response to thromboxane agonists were, however, significantly more pronounced in males. The extent of relaxation in response to bradykinin was also greater in females. Although we observed inward eutrophic remodeling in females, an increase in wall stress and elastic modulus dominated in males. CONCLUSION The early steps of angiotensin II-dependent hypertension evoked very different adaptation mechanisms in males and females.
Collapse
Affiliation(s)
- Máté Mátrai
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Faculty of Medicine, Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|