1
|
van Asten JGM, Ristori T, Nolan DR, Lally C, Baaijens FPT, Sahlgren CM, Loerakker S. Computational analysis of the role of mechanosensitive Notch signaling in arterial adaptation to hypertension. J Mech Behav Biomed Mater 2022; 133:105325. [PMID: 35839633 PMCID: PMC7613661 DOI: 10.1016/j.jmbbm.2022.105325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/03/2022] [Accepted: 06/18/2022] [Indexed: 11/29/2022]
Abstract
Arteries grow and remodel in response to mechanical stimuli. Hypertension, for example, results in arterial wall thickening. Cell-cell Notch signaling between vascular smooth muscle cells (VSMCs) is known to be involved in this process, but the underlying mechanisms are still unclear. Here, we investigated whether Notch mechanosensitivity to strain may regulate arterial thickening in hypertension. We developed a multiscale computational framework by coupling a finite element model of arterial mechanics, including residual stress, to an agent-based model of mechanosensitive Notch signaling, to predict VSMC phenotypes as an indicator of growth and remodeling. Our simulations revealed that the sensitivity of Notch to strain at mean blood pressure may be a key mediator of arterial thickening in hypertensive arteries. Further simulations showed that loss of residual stress can have synergistic effects with hypertension, and that changes in the expression of Notch receptors, but not Jagged ligands, may be used to control arterial growth and remodeling and to intensify or counteract hypertensive thickening. Overall, we identify Notch mechanosensitivity as a potential mediator of vascular adaptation, and we present a computational framework that can facilitate the testing of new therapeutic and regenerative strategies.
Collapse
Affiliation(s)
- Jordy G M van Asten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Tommaso Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - David R Nolan
- School of Engineering and Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Caitríona Lally
- School of Engineering and Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Frank P T Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Cecilia M Sahlgren
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands; Faculty of Science and Engineering, Biosciences, Åbo Akademi, Turku, Finland
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
2
|
Mahutga RR, Barocas VH. Investigation of Pathophysiological Aspects of Aortic Growth, Remodeling, and Failure Using a Discrete-Fiber Microstructural Model. J Biomech Eng 2020; 142:111007. [PMID: 32766738 PMCID: PMC7580844 DOI: 10.1115/1.4048031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/27/2020] [Indexed: 01/03/2023]
Abstract
Aortic aneurysms are inherently unpredictable. One can never be sure whether any given aneurysm may rupture or dissect. Clinically, the criteria for surgical intervention are based on size and growth rate, but it remains difficult to identify a high-risk aneurysm, which may require intervention before the cutoff criteria, versus an aneurysm than can be treated safely by more conservative measures. In this work, we created a computational microstructural model of a medial lamellar unit (MLU) incorporating (1) growth and remodeling laws applied directly to discrete, individual fibers, (2) separate but interacting fiber networks for collagen, elastin, and smooth muscle, (3) active and passive smooth-muscle cell mechanics, and (4) failure mechanics for all three fiber types. The MLU model was then used to study different pathologies and microstructural anomalies that may play a role in vascular growth and failure. Our model recapitulated many aspects of arterial remodeling under hypertension with no underlying genetic syndrome including remodeling dynamics, tissue mechanics, and failure. Syndromic effects (smooth muscle cell (SMC) dysfunction or elastin fragmentation) drastically changed the simulated remodeling process, tissue behavior, and tissue strength. Different underlying pathologies were able to produce similarly dilatated vessels with different failure properties, providing a partial explanation for the imperfect nature of aneurysm size as a predictor of outcome.
Collapse
Affiliation(s)
- Ryan R. Mahutga
- Department of Biomedical Engineering, University of Minnesota—Twin Cities, Minneapolis, MN 55455
| | - Victor H. Barocas
- Department of Biomedical Engineering, University of Minnesota—Twin Cities, 7-105 Nils Hasselmo Hall, 312 Church St SE, Minneapolis, MN 55455
| |
Collapse
|
3
|
Korneva A, Zilberberg L, Rifkin DB, Humphrey JD, Bellini C. Absence of LTBP-3 attenuates the aneurysmal phenotype but not spinal effects on the aorta in Marfan syndrome. Biomech Model Mechanobiol 2018; 18:261-273. [PMID: 30306291 DOI: 10.1007/s10237-018-1080-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023]
Abstract
Fibrillin-1 is an elastin-associated glycoprotein that contributes to the long-term fatigue resistance of elastic fibers as well as to the bioavailability of transforming growth factor-beta (TGFβ) in arteries. Altered TGFβ bioavailability and/or signaling have been implicated in aneurysm development in Marfan syndrome (MFS), a multi-system condition resulting from mutations to the gene that encodes fibrillin-1. We recently showed that the absence of the latent transforming growth factor-beta binding protein-3 (LTBP-3) in fibrillin-1-deficient mice attenuates the fragmentation of elastic fibers and focal dilatations that are characteristic of aortic root aneurysms in MFS mice, at least to 12 weeks of age. Here, we show further that the absence of LTBP-3 in this MFS mouse model improves the circumferential mechanical properties of the thoracic aorta, which appears to be fundamental in preventing or significantly delaying aneurysm development. Yet, a spinal deformity either remains or is exacerbated in the absence of LTBP-3 and seems to adversely affect the axial mechanical properties of the thoracic aorta, thus decreasing overall vascular function despite the absence of aneurysmal dilatation. Importantly, because of the smaller size of mice lacking LTBP-3, allometric scaling facilitates proper interpretation of aortic dimensions and thus the clinical phenotype. While this study demonstrates that LTBP-3/TGFβ directly affects the biomechanical function of the thoracic aorta, it highlights that spinal deformities in MFS might indirectly and adversely affect the overall aortic phenotype. There is a need, therefore, to consider together the vascular and skeletal effects in this syndromic disease.
Collapse
Affiliation(s)
- A Korneva
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - L Zilberberg
- Departments of Cell Biology and Medicine, New York University, New York, NY, USA
| | - D B Rifkin
- Departments of Cell Biology and Medicine, New York University, New York, NY, USA
| | - J D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - C Bellini
- Department of Bioengineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
4
|
Hayashi K, Kurimoto M. Biomechanical properties of veins cultured in vitro under elevated internal pressure. Biorheology 2018; 1:25-40. [PMID: 30010096 DOI: 10.3233/bir-180168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The venous response to elevated blood pressure (BP) is of major importance because it is closely related to the etiology of venous diseases and the competency of vein grafts. In vitro culture experiments may provide useful information on the function of vein grafts because it is easier to separate mechanical and hemodynamic effects from other systemic influences compared to in vivo experiments. OBJECTIVE To study the effects of BP elevation on wall dimensions and mechanical properties of in vitro cultured veins. METHODS Rabbit femoral veins were cultured in vitro under internal pressures of 1 to 50 mmHg for 1 week, and their wall dimensions, biomechanical properties, and histology were determined. RESULTS No significant differences were observed in internal vein diameter and wall thickness among vessels cultured at 10-50 mmHg compared to non-cultured control vessels. For an internal pressure of 10 mmHg applied to vessels during culture (equivalent to in vivo working BP), wall circumferential stress was maintained within control levels. There were no significant effects of pressure on basal tone and contractility of vascular smooth muscle and vascular compliance. CONCLUSIONS The in vitro results were essentially similar to those obtained from previous in vivo animal experiments, indicating that in vitro tissue culture techniques are applicable to studies of venous remodeling.
Collapse
Affiliation(s)
- Kozaburo Hayashi
- Osaka University, Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Toyonaka, OsakaJapan
| | - Masuya Kurimoto
- Osaka University, Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Toyonaka, OsakaJapan
| |
Collapse
|
5
|
Hayashi K, Kakoi D, Makino A. Remodeling of the arterial wall: Response to restoration of normal blood flow after flow reduction. Biorheology 2018; 54:95-108. [PMID: 29376846 DOI: 10.3233/bir-17146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Although many studies have shown that arteries change diameter in response to chronic change in blood flow (BF), keeping wall shear stress (WSS) at physiologically normal levels, relatively little is known about the effects of flow restoration after flow reduction and also the role of vascular smooth muscle (VSM) during such a remodeling process. OBJECTIVE To elucidate the biomechanical responses of the arterial wall to the restoration of normal BF after flow reduction and compare the results with our previous results observed in response to decreased BF alone. METHODS Carotid artery BF in the Wistar rat was decreased by ligation and then restored to normal levels by release of the ligation. The effects of BF changes on the biomechanical properties of the carotid arterial wall were determined from measurements of diameters and pressures of excised artery segments. RESULTS During BF reduction and restoration, WSS was maintained at physiological levels by changes in the internal diameter. No significant changes in the incremental elastic modulus were found in response to changes in BF. VSM tone was significantly enhanced during the changes in BF. CONCLUSIONS Arteries change diameters in response to BF reduction and also flow restoration to normal after flow reduction, keeping WSS at physiologically normal levels. The lack of changes in vascular elasticity suggests that there were no significant changes in major wall constituents, such as elastin and collagen. VSM may play the dominant role in observed arterial remodeling and adaptation.
Collapse
Affiliation(s)
- Kozaburo Hayashi
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Daichi Kakoi
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Akihisa Makino
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|
6
|
Remodeling of arterial wall: Response to changes in both blood flow and blood pressure. J Mech Behav Biomed Mater 2018; 77:475-484. [DOI: 10.1016/j.jmbbm.2017.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/24/2017] [Accepted: 10/02/2017] [Indexed: 01/01/2023]
|
7
|
Hayashi K, Kurose Y. Effects of hypothermia on the mechanical behavior of rabbit femoral arteries. J Mech Behav Biomed Mater 2017; 71:148-155. [PMID: 28297683 DOI: 10.1016/j.jmbbm.2017.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/23/2017] [Accepted: 03/05/2017] [Indexed: 10/20/2022]
Abstract
The need to better understand the effects of non-physiological temperatures on arterial wall behavior is becoming more important because of the increased clinical use of hypothermal and hyperthermal treatments. The present study was performed to examine the effects of temperature on the mechanical behavior of femoral arteries excised from rabbits. Among 17, 27, 37, and 42°C, there were no significant differences in their diameter, stiffness, and P-D relations under the physiologically normal, control condition, although the arterial diameter was slightly smaller at 42°C than at the other three temperatures. Under the SMC-activated condition, on the other hand, we observed significant effects of temperature. For example, arterial diameter at 100mmHg was significantly larger at 17 and 27°C and smaller at 42°C compared with 37°C. Arterial stiffness at 40mmHg were significantly smaller at 17 and larger at 42°C than at 37°C, while the stiffness at 160mmHg were significantly larger at 17°C than at 37°C; however, there were no significant differences in the stiffness at 100mmHg among the four temperatures. Arterial contraction induced by SMC-activation was significantly different between 37°C and the other three temperatures; both of the maximum diameter response and diameter response at 100mmHg were significantly smaller at 17 and 27°C and larger at 42°C compared with 37°C. These results indicate that in the hypothermic range under the control condition, arteries are dilated when cooled, while they are constricted when heated. On the other hand, arterial response to SMC activation is significantly affected by the alterations of temperature. These results indicate that in the hypothermic range under the control condition, arteries are dilated when cooled, while they are constricted when heated. On the other hand, arterial response to the activation of vascular smooth muscle cells is significantly affected by the alteration of temperature. As the mechanical behavior of arterial wall is significantly influenced by temperature, this should be considered in the development of therapeutic methods and techniques for cardiovascular diseases.
Collapse
Affiliation(s)
- Kozaburo Hayashi
- Department of Biomedical Engineering, Okayama University of Science, Okayama 700-0005, Japan.
| | - Yuki Kurose
- Department of Biomedical Engineering, Okayama University of Science, Okayama 700-0005, Japan
| |
Collapse
|
8
|
Hayashi K, Hirayama E. Age-related changes of wall composition and collagen cross-linking in the rat carotid artery – In relation with arterial mechanics. J Mech Behav Biomed Mater 2017; 65:881-889. [DOI: 10.1016/j.jmbbm.2016.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 01/20/2023]
|
9
|
Hayashi K, Shimizu E. Composition of connective tissues and morphometry of vascular smooth muscle in arterial wall of DOCA-salt hypertensive rats – In relation with arterial remodeling. J Biomech 2016; 49:1225-1229. [DOI: 10.1016/j.jbiomech.2016.02.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/18/2016] [Accepted: 02/21/2016] [Indexed: 11/16/2022]
|
10
|
Clinical assessment of arterial stiffness with cardio-ankle vascular index: theory and applications. J Hypertens 2016; 33:1742-57; discussion 1757. [PMID: 26114836 DOI: 10.1097/hjh.0000000000000651] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Arterial stiffness is often assessed in clinical medicine, because it is not only an important factor in the pathophysiology of blood circulation but also a marker for the diagnosis and the prognosis of cardiovascular diseases. Many parameters have so far been proposed to quantitatively represent arterial stiffness and distensibility, such as pressure-strain elastic modulus (Ep), stiffness parameter (β), pulse wave velocity (PWV), and vascular compliance (Cv). Among these, PWV has been most frequently applied to clinical medicine. However, this is dependent on blood pressure at the time of measurement, and therefore it is not appropriate as a parameter for the clinical evaluation of arterial stiffness, especially for the studies on hypertension. On the contrary, stiffness parameter β is an index reflecting arterial stiffness without the influence of blood pressure. Recently, this parameter has been applied to develop a new arterial stiffness index called cardio-ankle vascular index (CAVI). Although this index is obtained from the PWV between the heart and the ankle, it is essentially similar to the stiffness parameter β, and therefore it does not depend on blood pressure changes during the measurements. CAVI is being extensively used in clinical medicine as a measure for the evaluation of cardiovascular diseases and risk factors related to arteriosclerosis. In the present article, we will explain the theoretical background of stiffness parameter β and the process to obtain CAVI. And then, the clinical utility of CAVI will be overviewed by reference to recent studies.
Collapse
|
11
|
Rachev A, Gleason RL. Theoretical study on the effects of pressure-induced remodeling on geometry and mechanical non-homogeneity of conduit arteries. Biomech Model Mechanobiol 2010; 10:79-93. [PMID: 20473704 DOI: 10.1007/s10237-010-0219-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Accepted: 04/19/2010] [Indexed: 11/28/2022]
Abstract
A structure-based mathematical model for the remodeling of arteries in response to sustained hypertension is proposed. The model is based on the concepts of volumetric growth and constitutive modeling of the arterial tissue within the framework of the constrained mixture theory. The major novel result of this study is that remodeling is associated with a local change in the mass fractions of the wall constituents that ultimately leads to mechanical non-homogeneity of the arterial wall. In the new homeostatic state that develops after a sustained increase in arterial pressure, the mass fraction of elastin decreases from the intimal side to the adventitial side of arteries, while the collagen fraction manifests an opposite trend. The results obtained are supported by some experimental observations reported in the literature.
Collapse
Affiliation(s)
- Alexander Rachev
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332, USA.
| | | |
Collapse
|
12
|
Lawrence AR, Gooch KJ. Differences in transmural pressure and axial loading ex vivo affect arterial remodeling and material properties. J Biomech Eng 2010; 131:101009. [PMID: 19831479 DOI: 10.1115/1.3200910] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Arterial axial strains, present in the in vivo environment, often become reduced due to either bypass grafting or the normal aging process. Since the prevalence of hypertension increases with aging, arteries are often exposed to both decreased axial stretch and increased transmural pressure. The combined effects of these mechanical stimuli on the mechanical properties of vessels have not previously been determined. Porcine carotid arteries were cultured for 9 days at normal and reduced axial stretch ratios in the presence of normotensive and hypertensive transmural pressures using ex vivo perfusion techniques. Measurements of the amount of axial stress were obtained through longitudinal tension tests while inflation-deflation test results were used to determine circumferential stresses and incremental moduli. Macroscopic changes in artery geometry and zero-stress state opening angles were measured. Arteries cultured ex vivo remodeled in response to the mechanical environment, resulting in changes in arterial dimensions of up to approximately 25% and changes in zero-stress opening angles of up to approximately 55 degrees . While pressure primarily affected circumferential remodeling and axial stretch primarily affected axial remodeling, there were clear examples of interactions between these mechanical stimuli. Culture with hypertensive pressure, especially when coupled with reduced axial loading, resulted in a rightward shift in the pressure-diameter relationship relative to arteries cultured with normotensive pressure. The observed differences in the pressure-diameter curves for cultured arteries were due to changes in artery geometry and, in some cases, changes in the arteries' intrinsic mechanical properties. Relative to freshly isolated arteries, arteries cultured under mechanical conditions similar to in vivo conditions were stiffer, suggesting that aspects of the ex vivo culture other than the mechanical environment also influenced changes in the arteries' mechanical properties. These results confirm the well-known importance of transmural pressure with regard to arterial wall mechanics while highlighting additional roles for axial stretch in determining mechanical behavior.
Collapse
Affiliation(s)
- Amanda R Lawrence
- Department of Bioengineering and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, 19104, USA
| | | |
Collapse
|
13
|
Lawrence AR, Gooch KJ. Transmural pressure and axial loading interactively regulate arterial remodeling ex vivo. Am J Physiol Heart Circ Physiol 2009; 297:H475-84. [PMID: 19465545 DOI: 10.1152/ajpheart.00972.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Physiological axial strains range between 40 and 60% in arteries, resulting in stresses comparable to those due to normal blood pressure or flow. To investigate the contribution of axial strain to arterial remodeling and function, porcine carotid arteries were cultured for 9 days at physiological and reduced axial stretch ratios in the presence of normotensive and hypertensive transmural pressures by ex vivo perfusion techniques. Consistent with previous in vivo studies, vessels cultured with physiological levels of axial strain and exposed to hypertensive pressure had greater mass, wall area, and outer diameter relative to those cultured at the same axial stretch ratio and normotensive pressure. Reducing the amount of axial strain resulted in mass loss and decreased cell proliferation. Culture in a hypertensive pressure environment at reduced axial strain produced arteries with greater contractility in response to norepinephrine. Arteries cultured at reduced axial strain with the matrix metalloproteinase inhibitor GM6001 maintained their masses over culture, indicating a possible mechanism for this model of axial stretch-dependent remodeling. Although not historically considered one of the primary stimuli for remodeling, multiple linear regression analysis revealed that axial strain had an impact similar to or greater than transmural pressure on various remodeling indexes (i.e., outer diameter, wall area, and wet mass), suggesting that axial strain is a primary mediator of vascular remodeling.
Collapse
Affiliation(s)
- Amanda R Lawrence
- Department of Bioengineering and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
14
|
Hayashi K, Naiki T. Adaptation and remodeling of vascular wall; biomechanical response to hypertension. J Mech Behav Biomed Mater 2009; 2:3-19. [DOI: 10.1016/j.jmbbm.2008.05.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 05/12/2008] [Accepted: 05/13/2008] [Indexed: 11/28/2022]
|