1
|
Zhao Y, Cui H, Guo X, Lang J. Biomechanical analysis of nickel-titanium (NiTi)-cobalt-chromium (CoCr) hybrid-braided dense-mesh stents for carotid artery stenosis. Comput Methods Biomech Biomed Engin 2024:1-12. [PMID: 39543441 DOI: 10.1080/10255842.2024.2428720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/12/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
This study investigates NiTi-CoCr hybrid carotid artery stents to enhance mechanical properties over NiTi-only designs. Different configurations (24NiTi, 20NiTi-4CoCr, 16NiTi-8CoCr, and 12NiTi-12CoCr) were evaluated through radial compression and bending simulations. The 12NiTi-12CoCr stent showed the highest radial support (39.37 N) and increased bending strength by 77.96%. When modeled in a stenotic artery, this stent reduced stenosis from 81.52% to 29.33% and improved blood flow dynamics, alleviating high-pressure zones and balancing wall shear stress. These results suggest that CoCr wires improve stent performance, with the 12NiTi-12CoCr stent offering significant biomechanical and hemodynamic benefits.
Collapse
Affiliation(s)
- Yunchuan Zhao
- Shanghai Institute for Minimally Invasive Therapy, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Haipo Cui
- Shanghai Institute for Minimally Invasive Therapy, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Xudong Guo
- Shanghai Institute for Minimally Invasive Therapy, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Jingcheng Lang
- Shanghai Institute for Minimally Invasive Therapy, University of Shanghai for Science and Technology, Shanghai, PR China
| |
Collapse
|
2
|
Zhao Y, Cui H. Finite element analysis of braided dense-mesh stents for carotid artery stenosis. Comput Methods Biomech Biomed Engin 2024; 27:609-619. [PMID: 37018022 DOI: 10.1080/10255842.2023.2196597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/23/2023] [Indexed: 04/06/2023]
Abstract
When braided dense-mesh stents are used to treat carotid stenosis, the structural mechanics of vascular stents, the contact mechanics with blood vessels, and the fluid mechanics in the blood environment need to be studied in depth to reduce the damage of stents to blood vessels and the incidence of in-stent restenosis. Three types of braided stents with 8, 16, and 24 strands and laser-cut stents with the corresponding size parameters were designed, and the bending behavior of each of these types of stent, deployment, and fluid dynamic analysis of the 24-strand braided stent were simulated. The results show that the bending stress of the 8-, 16-, and 24-strand braided stents is 46.33%, 50.24%, and 31.86% of that of their laser-cut counterparts. In addition, higher strand density of the braided stents was associated with greater bending stress; after the 24-strand braided stent was expanded within the stented carotid artery, the carotid stenosis rate was reduced from 81.52% to 46.33%. After stent implantation, the maximum stress on the vessel wall in a zero-pressure diastolic environment decreased from 0.34 to 0.20 MPa, the maximum pressure on the intravascular wall surface decreased from 4.89 to 3.98 kPa, the area of high-pressure region decreased, the wall shear force of the stenotic segment throat decreased, and blood flow increased in the stenosis segments. The braided stent had less bending stress and better flexibility than the laser-cut stent under the same stent size parameters; after the 24-strand braided stent was implanted into the stented vessel, it could effectively dilate the vessel, and the blood flow status was improved.
Collapse
Affiliation(s)
- Yunchuan Zhao
- Shanghai Institute for Minimally Invasive Therapy, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Haipo Cui
- Shanghai Institute for Minimally Invasive Therapy, University of Shanghai for Science and Technology, Shanghai, P.R. China
| |
Collapse
|
3
|
Renaldo AC, Lane MR, Shapiro SR, Mobin F, Jordan JE, Williams TK, Neff LP, Gayzik FS, Rahbar E. Development of a computational fluid dynamic model to investigate the hemodynamic impact of REBOA. Front Physiol 2022; 13:1005073. [PMID: 36311232 PMCID: PMC9606623 DOI: 10.3389/fphys.2022.1005073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Resuscitative endovascular balloon occlusion of the aorta (REBOA) is a lifesaving intervention for major truncal hemorrhage. Balloon-tipped arterial catheters are inserted via the femoral artery to create a temporary occlusion of the aorta, which minimizes the rate of internal bleeding until definitive surgery can be conducted. There is growing concern over the resultant hypoperfusion and potential damage to tissues and organs downstream of REBOA. To better understand the acute hemodynamic changes imposed by REBOA, we developed a three-dimensional computational fluid dynamic (CFD) model under normal, hemorrhage, and aortic occlusion conditions. The goal was to characterize the acute hemodynamic changes and identify regions within the aortic vascular tree susceptible to abnormal flow and shear stress. Methods: Hemodynamic data from established porcine hemorrhage models were used to build a CFD model. Swine underwent 20% controlled hemorrhage and were randomized to receive a full or partial aortic occlusion. Using CT scans, we generated a pig-specific aortic geometry and imposed physiologically relevant inlet flow and outlet pressure boundary conditions to match in vivo data. By assuming non-Newtonian fluid properties, pressure, velocity, and shear stresses were quantified over a cardiac cycle. Results: We observed a significant rise in blood pressure (∼147 mmHg) proximal to REBOA, which resulted in increased flow and shear stress within the ascending aorta. Specifically, we observed high levels of shear stress within the subclavian arteries (22.75 Pa). Alternatively, at the site of full REBOA, wall shear stress was low (0.04 ± 9.07E-4 Pa), but flow oscillations were high (oscillatory shear index of 0.31). Comparatively, partial REBOA elevated shear levels to 84.14 ± 19.50 Pa and reduced flow oscillations. Our numerical simulations were congruent within 5% of averaged porcine experimental data over a cardiac cycle. Conclusion: This CFD model is the first to our knowledge to quantify the acute hemodynamic changes imposed by REBOA. We identified areas of low shear stress near the site of occlusion and high shear stress in the subclavian arteries. Future studies are needed to determine the optimal design parameters of endovascular hemorrhage control devices that can minimize flow perturbations and areas of high shear.
Collapse
Affiliation(s)
- Antonio C. Renaldo
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston Salem, NC, United States
- Virginia Tech—Wake Forest University School of Biomedical Engineering and Sciences, Blacksburg, VA, United States
| | - Magan R. Lane
- Department of Vascular and Endovascular Surgery, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Sophie R. Shapiro
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Fahim Mobin
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston Salem, NC, United States
- Virginia Tech—Wake Forest University School of Biomedical Engineering and Sciences, Blacksburg, VA, United States
| | - James E. Jordan
- Department of Cardiothoracic Surgery, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Timothy K. Williams
- Department of Vascular and Endovascular Surgery, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Lucas P. Neff
- Department of General Surgery, Section of Pediatric Surgery, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - F. Scott Gayzik
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston Salem, NC, United States
- Virginia Tech—Wake Forest University School of Biomedical Engineering and Sciences, Blacksburg, VA, United States
- Center for Injury Biomechanics, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Elaheh Rahbar
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston Salem, NC, United States
- Virginia Tech—Wake Forest University School of Biomedical Engineering and Sciences, Blacksburg, VA, United States
- Center for Injury Biomechanics, Wake Forest School of Medicine, Winston Salem, NC, United States
| |
Collapse
|
4
|
A comprehensive study of thermal conductivity models with metallic and non-metallic nanoparticles in the blood flow through a regular catheter in multi-stenosed artery. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02622-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
5
|
Taebi A, Berk S, Roncali E. Realistic boundary conditions in SimVascular through inlet catheter modeling. BMC Res Notes 2021; 14:215. [PMID: 34103097 PMCID: PMC8186195 DOI: 10.1186/s13104-021-05631-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/22/2021] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE This study aims at developing a pipeline that provides the capability to include the catheter effect in the computational fluid dynamics (CFD) simulations of the cardiovascular system and other human vascular flows carried out with the open-source software SimVascular. This tool is particularly useful for CFD simulation of interventional radiology procedures such as tumor embolization where estimation of a therapeutic agent distribution is of interest. RESULTS A pipeline is developed that generates boundary condition files which can be used in SimVascular CFD simulations. The boundary condition files are modified such that they simulate the effect of catheter presence on the flow field downstream of the inlet. Using this pipeline, the catheter flow, velocity profile, radius, wall thickness, and deviation from the vessel center can be defined. Since our method relies on the manipulation of the boundary condition that is imposed on the inlet, it is sensitive to the mesh density. The finer the mesh is (especially around the catheter wall), the more accurate the velocity estimations are. In this study, we also utilized this pipeline to qualitatively investigate the effect of catheter presence on the flow field in a truncated right hepatic arterial tree of a liver cancer patient.
Collapse
Affiliation(s)
- Amirtahà Taebi
- Department of Biomedical Engineering, University of California, Davis, One Shields Ave, Davis, CA, 95616-5270, USA.
| | - Selin Berk
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA, 90095-1597, USA
| | - Emilie Roncali
- Department of Biomedical Engineering, University of California, Davis, One Shields Ave, Davis, CA, 95616-5270, USA.,Department of Radiology, University of California, Davis, 4860 Y Street, Suite 3100, Sacramento, CA, 95817, USA
| |
Collapse
|
6
|
JIN CHUNBO, MAO BOYAN, LI BAO, FENG YUE, WU DANDAN, XIE JINSHENG, LIU YOUJUN. HEMODYNAMIC STUDY OF CORONARY ARTERY ANEURYSMS. J MECH MED BIOL 2020. [DOI: 10.1142/s0219519420500128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background: When the coronary artery expands more than two times its diameter, it will form a coronary artery aneurysm (CAA). CAA can lead to myocardial ischemia. In this paper, the mechanism of myocardial ischemia induced by CAA was studied by geometric multiscale method. Methods: Four kinds of three-dimensional models of CAA with different dilation diameters were established on the basis of normal three-dimensional models. The dilation diameters were 2, 3, 5 and 7 times, capacitance was added after the CAA to simulate the elasticity of the vascular wall. Results:A large number of eddies exist in CAA. 2–7 times model: 1.1–14.4% reduction of blood flow downstream of CAA and 5, 7 times model showed upstream diastolic backward flow, the backward flow rate was 1.1% and 5.6%, respectively. The aveWSS at the CAA was 1.76–0.35[Formula: see text]Pa; the relative retention time was 1.1–14.6[Formula: see text]Pa[Formula: see text]; the average vorticity was 0.0085–231.7[Formula: see text]s[Formula: see text]. Conclusion:CAA can store blood, and the elasticity of the wall of CAA results in the flow of blood upstream. These two reasons make the downstream flow of CAA decrease and easily form intratumoral thrombosis, which may lead to myocardial ischemia.
Collapse
Affiliation(s)
- CHUNBO JIN
- College of Life Science and Bio-engineering, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing, P. R. China
| | - BOYAN MAO
- College of Life Science and Bio-engineering, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing, P. R. China
| | - BAO LI
- College of Life Science and Bio-engineering, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing, P. R. China
| | - YUE FENG
- College of Life Science and Bio-engineering, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing, P. R. China
| | - DANDAN WU
- College of Life Science and Bio-engineering, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing, P. R. China
| | - JINSHENG XIE
- Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Rd, Chaoyang District, Beijing, P. R. China
| | - YOUJUN LIU
- College of Life Science and Bio-engineering, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing, P. R. China
| |
Collapse
|
7
|
Long-term hemodynamic mechanism of enhanced external counterpulsation in the treatment of coronary heart disease: a geometric multiscale simulation. Med Biol Eng Comput 2019; 57:2417-2433. [PMID: 31522354 DOI: 10.1007/s11517-019-02028-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 08/09/2019] [Indexed: 12/12/2022]
Abstract
Enhanced external counterpulsation (EECP) is a noninvasive treatment method for coronary artery atherosclerosis that acts on the vascular endothelial cells. The intracoronary hemodynamic parameters that influence long-term treatment effect are the fundamental factors for the inhibition of intimal hyperplasia, which cannot be measured in real time. In order to optimize the long-term treatment effect of coronary heart disease, it is necessary to establish a method for quantified calculation of intracoronary hemodynamic parameters during counterpulsation to research the long-term hemodynamic mechanism of EECP. A geometric multiscale model coupled by the zero-dimensional (0D) lumped parameter model and the three-dimensional (3D) model of narrow coronary artery was established for the simulation of intracoronary hemodynamic environment. The 3D model was used to calculate the hemodynamic parameters such as wall shear stress (WSS) and oscillatory shear index (OSI), while the 0D model was used to simulate the blood circulatory system. Sequential pressure was applied to calves, thighs, and buttocks module in 0D model with the consideration of vessel collapse. Hemodynamic performance was compared with clinical reports to verify the effectiveness of the method. There were significant increases of the diastolic blood pressure (DBP), coronary flow, and the area-averaged WSS during application of EECP, while OSI behind stenosis has some decrease. The waveforms of coronary flow has good similarity with the clinical measured waveforms, and the differences between calculated mean arterial pressures (MAPs) and clinical measurements were within 1%. The fundamental factor in the cure of coronary heart disease by EECP is the improvement of WSS and the decrease of OSI. Comparing with the clinical reports, the immediate hemodynamic changes demonstrate the effectiveness of model. Intracoronary hemodynamic parameters during EECP could be acquired and the method could be used to simulate the long-term treatment effect of EECP. Graphical abstract.
Collapse
|
8
|
Chodzyński KJ, Gremmo S, Eker OF, Lalmand J, Aminian A, de Sousa DR, Boudjeltia KZ, Coussement G. Hemodynamic numerical simulations of the disturbance due to intracoronary flow measurements by a Doppler guide wire. Biomed Eng Online 2016; 15:113. [PMID: 27724910 PMCID: PMC5490210 DOI: 10.1186/s12938-016-0234-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/30/2016] [Indexed: 12/02/2022] Open
Abstract
Background Since hemodynamics plays a key role in the development and evolution of cardiovascular pathologies, physician’s decision must be based on proper monitoring of relevant physiological flow quantities. Methods A numerical analysis of the error introduced by an intravascular Doppler guide wire on the peak velocity measurements has been carried out. The effect of probe misalignment (±10°) with respect to the vessel axis was investigated. Numerical simulations were performed on a realistic 3D geometry, reconstructed from coronary angiography images. Furthermore, instead of using Poiseuille or Womersley approximations, the unsteady pulsatile inlet boundary condition has been calculated from experimental peak-velocity measurements inside the vessel through a new approach based on an iterative Newton’s algorithm. Results The results show that the presence of the guide modifies significantly both the maximum velocity and the peak position in the section plane; the difference is between 6 and 17% of the maximum measured velocity depending on the distance from the probe tip and the instantaneous vessel flow rate. Furthermore, a misalignment of the probe may lead to a wrong estimation of the peak velocity with an error up to 10% depending on the probe orientation angle. Conclusions The Doppler probe does affect the maximum velocity and its position during intravascular Doppler measurements. Moreover, the Doppler-probe-wire sampling volume at 5.2 and 10 mm far from the probe tip is not sufficient to prevent its influence on the measurement. This should be taken into account in clinical practice by physicians during intravascular Doppler quantification. The new numerical approach used in this work could potentially be helpful in future numerical simulations to set plausible inlet boundary conditions. Electronic supplementary material The online version of this article (doi:10.1186/s12938-016-0234-6) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Levitt MR, McGah PM, Moon K, Albuquerque FC, McDougall CG, Kalani MYS, Kim LJ, Aliseda A. Computational Modeling of Venous Sinus Stenosis in Idiopathic Intracranial Hypertension. AJNR Am J Neuroradiol 2016; 37:1876-1882. [PMID: 27197986 DOI: 10.3174/ajnr.a4826] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 03/31/2016] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND PURPOSE Idiopathic intracranial hypertension has been associated with dural venous sinus stenosis in some patients, but the hemodynamic environment of the dural venous sinuses has not been quantitatively described. Here, we present the first such computational fluid dynamics model by using patient-specific blood pressure measurements. MATERIALS AND METHODS Six patients with idiopathic intracranial hypertension and at least 1 stenosis or atresia at the transverse/sigmoid sinus junction underwent MR venography followed by cerebral venography and manometry throughout the dural venous sinuses. Patient-specific computational fluid dynamics models were created by using MR venography anatomy, with venous pressure measurements as boundary conditions. Blood flow and wall shear stress were calculated for each patient. RESULTS Computational models of the dural venous sinuses were successfully reconstructed in all 6 patients with patient-specific boundary conditions. Three patients demonstrated a pathologic pressure gradient (≥8 mm Hg) across 4 dural venous sinus stenoses. Small sample size precludes statistical comparisons, but average overall flow throughout the dural venous sinuses of patients with pathologic pressure gradients was higher than in those without them (1041.00 ± 506.52 mL/min versus 358.00 ± 190.95 mL/min). Wall shear stress was also higher across stenoses in patients with pathologic pressure gradients (37.66 ± 48.39 Pa versus 7.02 ± 13.60 Pa). CONCLUSIONS The hemodynamic environment of the dural venous sinuses can be computationally modeled by using patient-specific anatomy and physiologic measurements in patients with idiopathic intracranial hypertension. There was substantially higher blood flow and wall shear stress in patients with pathologic pressure gradients.
Collapse
Affiliation(s)
- M R Levitt
- From the Departments of Neurological Surgery (M.R.L., L.J.K.) .,Radiology (M.R.L., L.J.K.).,Mechanical Engineering (M.R.L., P.M.M., A.A.), University of Washington, Seattle, Washington
| | - P M McGah
- Mechanical Engineering (M.R.L., P.M.M., A.A.), University of Washington, Seattle, Washington
| | - K Moon
- Department of Neurosurgery (K.M., F.C.A., C.G.M., M.Y.S.K.), Barrow Neurological Institute, Phoenix, Arizona
| | - F C Albuquerque
- Department of Neurosurgery (K.M., F.C.A., C.G.M., M.Y.S.K.), Barrow Neurological Institute, Phoenix, Arizona
| | - C G McDougall
- Department of Neurosurgery (K.M., F.C.A., C.G.M., M.Y.S.K.), Barrow Neurological Institute, Phoenix, Arizona
| | - M Y S Kalani
- Department of Neurosurgery (K.M., F.C.A., C.G.M., M.Y.S.K.), Barrow Neurological Institute, Phoenix, Arizona
| | - L J Kim
- From the Departments of Neurological Surgery (M.R.L., L.J.K.).,Radiology (M.R.L., L.J.K.)
| | - A Aliseda
- Mechanical Engineering (M.R.L., P.M.M., A.A.), University of Washington, Seattle, Washington
| |
Collapse
|
10
|
Eker OF, Boudjeltia KZ, Jerez RAC, Le Bars E, Sanchez M, Bonafé A, Costalat V, Courbebaisse G. MR derived volumetric flow rate waveforms of internal carotid artery in patients treated for unruptured intracranial aneurysms by flow diversion technique. J Cereb Blood Flow Metab 2015; 35:2070-9. [PMID: 26264871 PMCID: PMC4671130 DOI: 10.1038/jcbfm.2015.176] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/27/2015] [Accepted: 06/22/2015] [Indexed: 11/09/2022]
Abstract
Little is known about the hemodynamic disturbances induced by the cerebral aneurysms in the parent artery and the effect of flow diverter stents (FDS) on these latter. A better understanding of the aneurysm-parent vessel complex relationship may aid our understanding of this disease and to optimize its treatment. The ability of volumetric flow rate (VFR) waveform to reflect the arterial compliance modifications is well known. By analyzing the VFR waveform and the pulsatility in the parent vessel, this study aimed to test the hypotheses that (1) intracranial aneurysms might disrupt the blood flow of the parent vessel and (2) the treatment by FDS might have measurable corrective effect on these changes. Ten patients followed for unruptured intracranial aneurysms treated by FDS and ten healthy volunteers as control group were included in this study. Two-dimensional quantitative phase-contrast magnetic resonance imaging (MRI) was performed on each patient on the ICA artery upstream and downstream to the aneurysm, and on each volunteer at similar locations. The aneurysms altered significantly the parent vessel pulsatility and this effect was correlated to their volume. The aneurysms treatment by FDS allowed for the restoration of a normally modulated flow and pulsatility correction in the parent vessel.
Collapse
Affiliation(s)
- Omer F Eker
- Department of Interventional Neuroradiology, Gui de Chauliac Hospital, CHRU de Montpellier, Montpellier, France.,CREATIS Laboratory-INSA Lyon, Villeurbanne, France.,Laboratory of Experimental Medicine (ULB 222 Unit), CHU Charleroi, Hôpital Vésale, Montigny-le-Tilleul, Belgium
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU Charleroi, Hôpital Vésale, Montigny-le-Tilleul, Belgium
| | | | - Emmanuelle Le Bars
- Department of Interventional Neuroradiology, Gui de Chauliac Hospital, CHRU de Montpellier, Montpellier, France
| | - Mathieu Sanchez
- Department of Interventional Neuroradiology, Gui de Chauliac Hospital, CHRU de Montpellier, Montpellier, France
| | - Alain Bonafé
- Department of Interventional Neuroradiology, Gui de Chauliac Hospital, CHRU de Montpellier, Montpellier, France
| | - Vincent Costalat
- Department of Interventional Neuroradiology, Gui de Chauliac Hospital, CHRU de Montpellier, Montpellier, France
| | | |
Collapse
|
11
|
Alshareef M, Krishna V, Ferdous J, Alshareef A, Kindy M, Kolachalama VB, Shazly T. Effect of spinal cord compression on local vascular blood flow and perfusion capacity. PLoS One 2014; 9:e108820. [PMID: 25268384 PMCID: PMC4182502 DOI: 10.1371/journal.pone.0108820] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 09/05/2014] [Indexed: 11/18/2022] Open
Abstract
Spinal cord injury (SCI) can induce prolonged spinal cord compression that may result in a reduction of local tissue perfusion, progressive ischemia, and potentially irreversible tissue necrosis. Due to the combination of risk factors and the varied presentation of symptoms, the appropriate method and time course for clinical intervention following SCI are not always evident. In this study, a three-dimensional finite element fluid-structure interaction model of the cervical spinal cord was developed to examine how traditionally sub-clinical compressive mechanical loads impact spinal arterial blood flow. The spinal cord and surrounding dura mater were modeled as linear elastic, isotropic, and incompressible solids, while blood was modeled as a single-phased, incompressible Newtonian fluid. Simulation results indicate that anterior, posterior, and anteroposterior compressions of the cervical spinal cord have significantly different ischemic potentials, with prediction that the posterior component of loading elevates patient risk due to the concomitant reduction of blood flow in the arterial branches. Conversely, anterior loading compromises flow through the anterior spinal artery but minimally impacts branch flow rates. The findings of this study provide novel insight into how sub-clinical spinal cord compression could give rise to certain disease states, and suggest a need to monitor spinal artery perfusion following even mild compressive loading.
Collapse
Affiliation(s)
- Mohammed Alshareef
- College of Medicine, Medical University of South Carolina, Charleston, SC, United States of America
| | - Vibhor Krishna
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, United States of America
| | - Jahid Ferdous
- Biomedical Engineering Program, University of South Carolina, Columbia, SC, United States of America
| | - Ahmed Alshareef
- Department of Biomedical Engineering, Duke University, Durham, NC, United States of America
| | - Mark Kindy
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, United States of America
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States of America
| | | | - Tarek Shazly
- Biomedical Engineering Program, University of South Carolina, Columbia, SC, United States of America
- Department of Mechanical Engineering, University of South Carolina, Columbia, SC, United States of America
| |
Collapse
|
12
|
Govindaraju K, Badruddin IA, Viswanathan GN, Ramesh SV, Badarudin A. Evaluation of functional severity of coronary artery disease and fluid dynamics' influence on hemodynamic parameters: A review. Phys Med 2012; 29:225-32. [PMID: 22704601 DOI: 10.1016/j.ejmp.2012.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 03/19/2012] [Accepted: 03/28/2012] [Indexed: 11/29/2022] Open
Abstract
Coronary Artery Disease (CAD) is responsible for most of the deaths in patients with cardiovascular diseases. Diagnostic coronary angiography analysis offers an anatomical knowledge of the severity of the stenosis. The functional or physiological significance is more valuable than the anatomical significance of CAD. Clinicians assess the functional severity of the stenosis by resorting to an invasive measurement of the pressure drop and flow. Hemodynamic parameters, such as pressure wire assessment fractional flow reserve (FFR) or Doppler wire assessment coronary flow reserve (CFR) are well-proven techniques to evaluate the physiological significance of the coronary artery stenosis in the cardiac catheterization laboratory. Between the two techniques mentioned above, the FFR is seen as a very useful index. The presence of guide wire reduces the coronary flow which causes the underestimation of pressure drop across the stenosis which leads to dilemma for the clinicians in the assessment of moderate stenosis. In such condition, the fundamental fluid mechanics is useful in the development of new functional severity parameters such as pressure drop coefficient and lesion flow coefficient. Since the flow takes place in a narrowed artery, the blood behaves as a non-Newtonian fluid. Computational fluid dynamics (CFD) allows a complete coronary flow simulation to study the relationship between the pressure and flow. This paper aims at explaining (i) diagnostic modalities for the evaluation of the CAD and valuable insights regarding FFR in the evaluation of the functional severity of the CAD (ii) the role of fluid dynamics in measuring the severity of CAD.
Collapse
|
13
|
Dur O, Coskun ST, Coskun KO, Frakes D, Kara LB, Pekkan K. Computer-Aided Patient-Specific Coronary Artery Graft Design Improvements Using CFD Coupled Shape Optimizer. Cardiovasc Eng Technol 2011; 2:35-47. [PMID: 22448203 PMCID: PMC3291828 DOI: 10.1007/s13239-010-0029-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 11/01/2010] [Indexed: 11/30/2022]
Abstract
This study aims to (i) demonstrate the efficacy of a new surgical planning framework for complex cardiovascular reconstructions, (ii) develop a computational fluid dynamics (CFD) coupled multi-dimensional shape optimization method to aid patient-specific coronary artery by-pass graft (CABG) design and, (iii) compare the hemodynamic efficiency of the sequential CABG, i.e., raising a daughter parallel branch from the parent CABG in patient-specific 3D settings. Hemodynamic efficiency of patient-specific complete revascularization scenarios for right coronary artery (RCA), left anterior descending artery (LAD), and left circumflex artery (LCX) bypasses were investigated in comparison to the stenosis condition. Multivariate 2D constraint optimization was applied on the left internal mammary artery (LIMA) graft, which was parameterized based on actual surgical settings extracted from 2D CT slices. The objective function was set to minimize the local variation of wall shear stress (WSS) and other hemodynamic indices (energy dissipation, flow deviation angle, average WSS, and vorticity) that correlate with performance of the graft and risk of re-stenosis at the anastomosis zone. Once the optimized 2D graft shape was obtained, it was translated to 3D using an in-house "sketch-based" interactive anatomical editing tool. The final graft design was evaluated using an experimentally validated second-order non-Newtonian CFD solver incorporating resistance based outlet boundary conditions. 3D patient-specific simulations for the healthy coronary anatomy produced realistic coronary flows. All revascularization techniques restored coronary perfusions to the healthy baseline. Multi-scale evaluation of the optimized LIMA graft enabled significant wall shear stress gradient (WSSG) relief (~34%). In comparison to original LIMA graft, sequential graft also lowered the WSSG by 15% proximal to LAD and diagonal bifurcation. The proposed sketch-based surgical planning paradigm evaluated the selected coronary bypass surgery procedures based on acute hemodynamic readjustments of aorta-CA flow. This methodology may provide a rational to aid surgical decision making in time-critical, patient-specific CA bypass operations before in vivo execution.
Collapse
Affiliation(s)
- Onur Dur
- Department of Biomedical Engineering, Carnegie Mellon University, 700 Technology Dr., Pittsburgh, PA 15219 USA
| | - Sinan Tolga Coskun
- Department of Vascular Surgery, Horst Schmidt Kliniken, Wiesbaden, Germany
| | - Kasim Oguz Coskun
- Department of Thoracic Cardiovascular Surgery, University of Göttingen, Göttingen, Germany
| | - David Frakes
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ USA
| | - Levent Burak Kara
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA USA
| | - Kerem Pekkan
- Department of Biomedical Engineering, Carnegie Mellon University, 700 Technology Dr., Pittsburgh, PA 15219 USA
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA USA
| |
Collapse
|
14
|
Pekkan K, Dur O, Sundareswaran K, Kanter K, Fogel M, Yoganathan A, Ündar A. Neonatal Aortic Arch Hemodynamics and Perfusion During Cardiopulmonary Bypass. J Biomech Eng 2008; 130:061012. [DOI: 10.1115/1.2978988] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The objective of this study is to quantify the detailed three-dimensional (3D) pulsatile hemodynamics, mechanical loading, and perfusion characteristics of a patient-specific neonatal aortic arch during cardiopulmonary bypass (CPB). The 3D cardiac magnetic resonance imaging (MRI) reconstruction of a pediatric patient with a normal aortic arch is modified based on clinical literature to represent the neonatal morphology and flow conditions. The anatomical dimensions are verified from several literature sources. The CPB is created virtually in the computer by clamping the ascending aorta and inserting the computer-aided design model of the 10 Fr tapered generic cannula. Pulsatile (130 bpm) 3D blood flow velocities and pressures are computed using the commercial computational fluid dynamics (CFD) software. Second order accurate CFD settings are validated against particle image velocimetry experiments in an earlier study with a complex cardiovascular unsteady benchmark. CFD results in this manuscript are further compared with the in vivo physiological CPB pressure waveforms and demonstrated excellent agreement. Cannula inlet flow waveforms are measured from in vivo PC-MRI and 3 kg piglet neonatal animal model physiological experiments, distributed equally between the head-neck vessels and the descending aorta. Neonatal 3D aortic hemodynamics is also compared with that of the pediatric and fetal aortic stages. Detailed 3D flow fields, blood damage, wall shear stress (WSS), pressure drop, perfusion, and hemodynamic parameters describing the pulsatile energetics are calculated for both the physiological neonatal aorta and for the CPB aorta assembly. The primary flow structure is the high-speed canulla jet flow (∼3.0 m/s at peak flow), which eventually stagnates at the anterior aortic arch wall and low velocity flow in the cross-clamp pouch. These structures contributed to the reduced flow pulsatility (85%), increased WSS (50%), power loss (28%), and blood damage (288%), compared with normal neonatal aortic physiology. These drastic hemodynamic differences and associated intense biophysical loading of the pathological CPB configuration necessitate urgent bioengineering improvements—in hardware design, perfusion flow waveform, and configuration. This study serves to document the baseline condition, while the methodology presented can be utilized in preliminary CPB cannula design and in optimization studies reducing animal experiments. Coupled to a lumped-parameter model the 3D hemodynamic characteristics will aid the surgical decision making process of the perfusion strategies in complex congenital heart surgeries.
Collapse
Affiliation(s)
- Kerem Pekkan
- Department of Biomedical Engineering, Carnegie Mellon University, 2100 Doherty Hall, Pittsburgh, PA 15213-3890
| | - Onur Dur
- Department of Biomedical Engineering, Carnegie Mellon University, 2100 Doherty Hall, Pittsburgh, PA 15213-3890
| | - Kartik Sundareswaran
- Cardiovascular Fluid Mechanics Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332-0535
| | - Kirk Kanter
- Pediatric Cardiothoracic Surgery, Emory University School of Medicine, 1440 Clifton Road, Atlanta, GA 30322
| | - Mark Fogel
- Children’s Hospital of Philadelphia, 34th Street, Civic Center Boulevard, Philadelphia, PA 19104
| | - Ajit Yoganathan
- Cardiovascular Fluid Mechanics Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332-0535A
| | - Akif Ündar
- Department of Pediatrics, Surgery and Bioengineering, Penn State College of Medicine, Hershey, PA 17033
| |
Collapse
|
15
|
Hadjiloizou N, Davies JE, Malik IS, Aguado-Sierra J, Willson K, Foale RA, Parker KH, Hughes AD, Francis DP, Mayet J. Differences in cardiac microcirculatory wave patterns between the proximal left mainstem and proximal right coronary artery. Am J Physiol Heart Circ Physiol 2008; 295:H1198-H1205. [PMID: 18641272 DOI: 10.1152/ajpheart.00510.2008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Despite having almost identical origins and similar perfusion pressures, the flow-velocity waveforms in the left and right coronary arteries are strikingly different. We hypothesized that pressure differences originating from the distal (microcirculatory) bed would account for the differences in the flow-velocity waveform. We used wave intensity analysis to separate and quantify proximal- and distal-originating pressures to study the differences in velocity waveforms. In 20 subjects with unobstructed coronary arteries, sensor-tipped intra-arterial wires were used to measure simultaneous pressure and Doppler velocity in the proximal left main stem (LMS) and proximal right coronary artery (RCA). Proximal- and distal-originating waves were separated using wave intensity analysis, and differences in waves were examined in relation to structural and anatomic differences between the two arteries. Diastolic flow velocity was lower in the RCA than in the LMS (35.1 +/- 21.4 vs. 56.4 +/- 32.5 cm/s, P < 0.002), and, consequently, the diastolic-to-systolic ratio of peak flow velocity in the RCA was significantly less than in the LMS (1.00 +/- 0.32 vs. 1.79 +/- 0.48, P < 0.001). This was due to a lower distal-originating suction wave (8.2 +/- 6.6 x 10(3) vs. 16.0 +/- 12.2 x 10(3) W.m(-2).s(-1), P < 0.01). The suction wave in the LMS correlated positively with left ventricular pressure (r = 0.6, P < 0.01) and in the RCA with estimated right ventricular systolic pressure (r = 0.7, P = 0.05) but not with the respective diameter in these arteries. In contrast to the LMS, where coronary flow velocity was predominantly diastolic, in the proximal RCA coronary flow velocity was similar in systole and diastole. This difference was due to a smaller distal-originating suction wave in the RCA, which can be explained by differences in elastance and pressure generated between right and left ventricles.
Collapse
Affiliation(s)
- Nearchos Hadjiloizou
- International Centre for Circulatory Health, Imperial College Healthcare National Health Service Trust, St. Mary's Hospital, 59-61 N. Wharf Rd., London W2 1LA, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|