1
|
Marcelino P, Silva JC, Moura CS, Meneses J, Cordeiro R, Alves N, Pascoal-Faria P, Ferreira FC. A Novel Approach for Design and Manufacturing of Curvature-Featuring Scaffolds for Osteochondral Repair. Polymers (Basel) 2023; 15:polym15092129. [PMID: 37177275 PMCID: PMC10181173 DOI: 10.3390/polym15092129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Osteochondral (OC) defects affect both articular cartilage and the underlying subchondral bone. Due to limitations in the cartilage tissue's self-healing capabilities, OC defects exhibit a degenerative progression to which current therapies have not yet found a suitable long-term solution. Tissue engineering (TE) strategies aim to fabricate tissue substitutes that recreate natural tissue features to offer better alternatives to the existing inefficient treatments. Scaffold design is a key element in providing appropriate structures for tissue growth and maturation. This study presents a novel method for designing scaffolds with a mathematically defined curvature, based on the geometry of a sphere, to obtain TE constructs mimicking native OC tissue shape. The lower the designed radius, the more curved the scaffold obtained. The printability of the scaffolds using fused filament fabrication (FFF) was evaluated. For the case-study scaffold size (20.1 mm × 20.1 mm projected dimensions), a limit sphere radius of 17.064 mm was determined to ensure printability feasibility, as confirmed by scanning electron microscopy (SEM) and micro-computed tomography (μ-CT) analysis. The FFF method proved suitable to reproduce the curved designs, showing good shape fidelity and replicating the expected variation in porosity. Additionally, the mechanical behavior was evaluated experimentally and by numerical modelling. Experimentally, curved scaffolds showed strength comparable to conventional orthogonal scaffolds, and finite element analysis was used to identify the scaffold regions more susceptible to higher loads.
Collapse
Affiliation(s)
- Pedro Marcelino
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- CDRSP-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Rua de Portugal-Zona Industrial, 2430-028 Marinha Grande, Portugal
| | - João Carlos Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- CDRSP-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Rua de Portugal-Zona Industrial, 2430-028 Marinha Grande, Portugal
| | - Carla S Moura
- CDRSP-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Rua de Portugal-Zona Industrial, 2430-028 Marinha Grande, Portugal
- Associate Laboratory for Advanced Production and Intelligent Systems (ARISE), 4050-313 Porto, Portugal
- Polytechnic Institute of Coimbra, Applied Research Institute, Rua da Misericórdia, Lagar dos Cortiços-S. Martinho do Bispo, 3045-093 Coimbra, Portugal
| | - João Meneses
- CDRSP-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Rua de Portugal-Zona Industrial, 2430-028 Marinha Grande, Portugal
| | - Rachel Cordeiro
- CDRSP-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Rua de Portugal-Zona Industrial, 2430-028 Marinha Grande, Portugal
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Nuno Alves
- CDRSP-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Rua de Portugal-Zona Industrial, 2430-028 Marinha Grande, Portugal
- Associate Laboratory for Advanced Production and Intelligent Systems (ARISE), 4050-313 Porto, Portugal
- Department of Mechanical Engineering, School of Technology and Management, Polytechnic of Leiria, Morro do Lena-Alto do Vieiro, Apartado 4163, 2411-901 Leiria, Portugal
| | - Paula Pascoal-Faria
- CDRSP-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Rua de Portugal-Zona Industrial, 2430-028 Marinha Grande, Portugal
- Associate Laboratory for Advanced Production and Intelligent Systems (ARISE), 4050-313 Porto, Portugal
- Department of Mathematics, School of Technology and Management, Polytechnic of Leiria, Morro do Lena-Alto do Vieiro, Apartado 4163, 2411-901 Leiria, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
2
|
Puricelli E. Puricelli biconvex arthroplasty as an alternative for temporomandibular joint reconstruction: description of the technique and long-term case report. Head Face Med 2022; 18:27. [PMID: 35906643 PMCID: PMC9335964 DOI: 10.1186/s13005-022-00331-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
Background There are several indications for partial or total replacement of the temporomandibular joint (TMJ), including neoplasms and severe bone resorptions. In this regard, several techniques have been suggested to increase the functionality and longevity of these prosthetic devices. This case report describes the treatment of a TMJ ankylosis patient with the Puricelli biconvex arthroplasty (ABiP) technique, with a long-term follow-up. Case presentation In 1978, a 33-year-old male polytraumatised patient developed painful symptoms in the right preauricular region, associated with restricted movement of the ipsilateral TMJ. Due to subcondylar fracture, an elastic maxillomandibular immobilisation (EMMI) was applied. Subsequently, the patient was referred for treatment when limitations of the interincisal opening (10 mm) and the presence of spontaneous pain that increased on palpation were confirmed. Imaging exams confirmed the fracture, with anteromedial displacement and bony ankylosis of the joint. Exeresis of the compromised tissues and their replacement through ABiP was indicated. The method uses conservative access (i.e., preauricular incision), partial resection of the ankylosed mass, and tissue replacement using two poly(methyl methacrylate) components, with minimal and stable contact between the convex surfaces. At the end of the procedure, joint stability and dental occlusion were tested. The patient showed significant improvement at the postoperative 6-month follow-up, with no pain and increased mouth opening range (30 mm). At the 43-year follow-up, no joint noises, pain or movement restrictions were reported (mouth opening of 36 mm). Imaging exams did not indicate tissue degeneration and showed the integrity of prosthetic components. Conclusions The present case report indicates that ABiP enables joint movements of the TMJ, allowing the remission of signs and symptoms over more than 40 years of follow-up. These data suggest that this technique is a simple and effective alternative when there is an indication for TMJ reconstruction in adult patients with ankylosis.
Collapse
Affiliation(s)
- Edela Puricelli
- Oral and Maxillofacial Surgery Unit/ Clinical Hospital of Porto Alegre (HCPA), School of Dentistry/Federal University of Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2492, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
3
|
Xu L, Urita A, Onodera T, Hishimura R, Nonoyama T, Hamasaki M, Liang D, Homan K, Gong JP, Iwasaki N. Ultrapurified Alginate Gel Containing Bone Marrow Aspirate Concentrate Enhances Cartilage and Bone Regeneration on Osteochondral Defects in a Rabbit Model. Am J Sports Med 2021; 49:2199-2210. [PMID: 34061689 DOI: 10.1177/03635465211014186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Ultrapurified alginate (UPAL) gel implantation has been demonstrated as effective in cartilage repair for osteochondral defects; however, cell transplantation within UPAL gels would be required to treat larger defects. HYPOTHESIS The combination of UPAL gel and bone marrow aspirate concentrate (BMAC) would enhance cartilage repair and subchondral bone repair for large osteochondral defects. STUDY DESIGN Controlled laboratory study. METHODS A total of 104 osteochondral defects (1 defect per knee) of 52 rabbits were randomly divided into 4 groups (26 defects per group): defects without any treatment (Defect group), defects treated using UPAL gel alone (UPAL group), defects treated using UPAL gel containing allogenic bone marrow mesenchymal stromal cells (UPAL-MSC group), and defects treated using UPAL gel containing BMAC (UPAL-BMAC group). At 4 and 16 weeks postoperatively, macroscopic and histologic evaluations and measurements of repaired subchondral bone volumes of reparative tissues were performed. Collagen orientation and mechanical properties of the reparative tissue were assessed at 16 weeks. RESULTS The defects in the UPAL-BMAC group were repaired with hyaline-like cartilage with well-organized collagen structures. The histologic scores at 4 weeks were significantly higher in the UPAL-BMAC group (16.9 ± 2.0) than in the Defect group (4.7 ± 1.9; P < .05), the UPAL group (10.0 ± 3.3; P < .05), and the UPAL-MSC group (12.2 ± 2.9; P < .05). At 16 weeks, the score in the UPAL-BMAC group (24.4 ± 1.7) was significantly higher than those in the Defect group (9.0 ± 3.7; P < .05), the UPAL group (14.2 ± 3.9; P < .05), and the UPAL-MSC group (16.3 ± 3.6; P < .05). At 4 and 16 weeks, the macroscopic evaluations were significantly superior in the UPAL-BMAC group compared with the other groups, and the values of repaired subchondral bone volumes in the UPAL-BMAC group were significantly higher than those in the Defect and UPAL groups. The mechanical properties of the reparative tissues were significantly better in the UPAL-BMAC group than in the other groups. CONCLUSION The implantation of UPAL gel containing BMAC-enhanced hyaline-like cartilage repair and subchondral bone repair of osteochondral defects in a rabbit knee model. CLINICAL RELEVANCE These data support the potential clinical application of 1-step treatment for large osteochondral defects using biomaterial implantation with cell transplantation.
Collapse
Affiliation(s)
- Liang Xu
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Atsushi Urita
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tomohiro Onodera
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Global Station of Soft Matter, Global Institution for Collaborative Research and Education (GSS, GI-CoRE), Sapporo, Japan
| | - Ryosuke Hishimura
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takayuki Nonoyama
- Global Station of Soft Matter, Global Institution for Collaborative Research and Education (GSS, GI-CoRE), Sapporo, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Masanari Hamasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Dawei Liang
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kentaro Homan
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Jian Ping Gong
- Global Station of Soft Matter, Global Institution for Collaborative Research and Education (GSS, GI-CoRE), Sapporo, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Global Station of Soft Matter, Global Institution for Collaborative Research and Education (GSS, GI-CoRE), Sapporo, Japan
| |
Collapse
|
4
|
Zhang B, Huang J, Narayan RJ. Gradient scaffolds for osteochondral tissue engineering and regeneration. J Mater Chem B 2021; 8:8149-8170. [PMID: 32776030 DOI: 10.1039/d0tb00688b] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The tissue engineering approach for repairing osteochondral (OC) defects involves the fabrication of a biological tissue scaffold that mimics the physiological properties of natural OC tissue (e.g., the gradient transition between the cartilage surface and the subchondral bone). The OC tissue scaffolds described in many research studies exhibit a discrete gradient (e.g., a biphasic or tri/multiphasic structure) or a continuous gradient to mimic OC tissue attributes such as biochemical composition, structure, and mechanical properties. One advantage of a continuous gradient scaffold over biphasic or tri/multiphasic tissue scaffolds is that it more closely mimics natural OC tissue since there is no distinct interface between each layer. Although research studies to this point have yielded good results related to OC regeneration with tissue scaffolds, differences between engineered scaffolds and natural OC tissue remain; due to these differences, current clinical therapies to repair OC defects with engineered scaffolds have not been successful. This paper provides an overview of both discrete and continuous gradient OC tissue scaffolds in terms of cell type, scaffold material, microscale structure, mechanical properties, fabrication methods, and scaffold stimuli. Fabrication of gradient scaffolds with three-dimensional (3D) printing is given special emphasis due to its ability to accurately control scaffold pore geometry. Moreover, the application of computational modeling in OC tissue engineering is considered; for example, efforts to optimize the scaffold structure, mechanical properties, and physical stimuli generated within the scaffold-bioreactor system to predict tissue regeneration are considered. Finally, challenges associated with the repair of OC defects and recommendations for future directions in OC tissue regeneration are proposed.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Mechanical Engineering, University College London, London, UK.
| | - Jie Huang
- Department of Mechanical Engineering, University College London, London, UK.
| | - Roger J Narayan
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, North Carolina, USA.
| |
Collapse
|
5
|
Monaco G, El Haj AJ, Alini M, Stoddart MJ. Ex Vivo Systems to Study Chondrogenic Differentiation and Cartilage Integration. J Funct Morphol Kinesiol 2021; 6:E6. [PMID: 33466400 PMCID: PMC7838775 DOI: 10.3390/jfmk6010006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022] Open
Abstract
Articular cartilage injury and repair is an issue of growing importance. Although common, defects of articular cartilage present a unique clinical challenge due to its poor self-healing capacity, which is largely due to its avascular nature. There is a critical need to better study and understand cellular healing mechanisms to achieve more effective therapies for cartilage regeneration. This article aims to describe the key features of cartilage which is being modelled using tissue engineered cartilage constructs and ex vivo systems. These models have been used to investigate chondrogenic differentiation and to study the mechanisms of cartilage integration into the surrounding tissue. The review highlights the key regeneration principles of articular cartilage repair in healthy and diseased joints. Using co-culture models and novel bioreactor designs, the basis of regeneration is aligned with recent efforts for optimal therapeutic interventions.
Collapse
Affiliation(s)
- Graziana Monaco
- AO Research Institute Davos, Clavadelerstrasse 8, CH-7270 Davos Platz, Switzerland; (G.M.); (M.A.)
- School of Pharmacy & Bioengineering Research, University of Keele, Keele ST5 5BG, UK;
| | - Alicia J. El Haj
- School of Pharmacy & Bioengineering Research, University of Keele, Keele ST5 5BG, UK;
- Healthcare Technology Institute, Translational Medicine, School of Chemical Engineering, University of Birmingham, Birmingham B15 2TH, UK
| | - Mauro Alini
- AO Research Institute Davos, Clavadelerstrasse 8, CH-7270 Davos Platz, Switzerland; (G.M.); (M.A.)
| | - Martin J. Stoddart
- AO Research Institute Davos, Clavadelerstrasse 8, CH-7270 Davos Platz, Switzerland; (G.M.); (M.A.)
- School of Pharmacy & Bioengineering Research, University of Keele, Keele ST5 5BG, UK;
| |
Collapse
|
6
|
Mansour JM, Motavalli M, Dennis JE, Kean TJ, Caplan AI, Berilla JA, Welter JF. Rapid Detection of Shear-Induced Damage in Tissue-Engineered Cartilage Using Ultrasound. Tissue Eng Part C Methods 2019; 24:443-456. [PMID: 29999475 DOI: 10.1089/ten.tec.2017.0513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Previous investigations have shown that tissue-engineered articular cartilage can be damaged under a combination of compression and sliding shear. In these cases, damage was identified in histological sections after a test was completed. This approach is limited, in that it does not identify when damage occurred. This especially limits the utility of an assay for evaluating damage when comparing modifications to a tissue-engineering protocol. In this investigation, the feasibility of using ultrasound (US) to detect damage as it occurs was investigated. US signals were acquired before, during, and after sliding shear, as were stereomicroscope images of the cartilage surface. Histology was used as the standard for showing if a sample was damaged. We showed that US reflections from the surface of the cartilage were attenuated due to roughening following sliding shear. Furthermore, it was shown that by scanning the transducer across a sample, surface roughness and erosion following sliding shear could be identified. Internal delamination could be identified by the appearance of new echoes between those from the front and back of the sample. Thus, it is feasible to detect damage in engineered cartilage using US.
Collapse
Affiliation(s)
- Joseph M Mansour
- 1 Department of Mechanical and Aerospace Engineering, Case Western Reserve University , Cleveland, Ohio.,Department of Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University , Cleveland, Ohio
| | - Mostafa Motavalli
- Department of Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University , Cleveland, Ohio.,3 Department of Biology, Case Western Reserve University , Cleveland, Ohio
| | - James E Dennis
- 4 Department of Orthopedic Surgery, Baylor College of Medicine , Houston, Texas
| | - Thomas J Kean
- 4 Department of Orthopedic Surgery, Baylor College of Medicine , Houston, Texas
| | - Arnold I Caplan
- Department of Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University , Cleveland, Ohio.,3 Department of Biology, Case Western Reserve University , Cleveland, Ohio
| | - Jim A Berilla
- Department of Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University , Cleveland, Ohio.,5 Department of Civil Engineering, Case Western Reserve University , Cleveland, Ohio
| | - Jean F Welter
- Department of Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University , Cleveland, Ohio.,3 Department of Biology, Case Western Reserve University , Cleveland, Ohio
| |
Collapse
|
7
|
Tahoun MF, Tey M, Mas J, Abd-Elsattar Eid T, Monllau JC. Arthroscopic Repair of Acetabular Cartilage Lesions by Chitosan-Based Scaffold: Clinical Evaluation at Minimum 2 Years Follow-up. Arthroscopy 2018; 34:2821-2828. [PMID: 30195954 DOI: 10.1016/j.arthro.2018.06.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 06/06/2018] [Accepted: 06/10/2018] [Indexed: 02/02/2023]
Abstract
PURPOSE To evaluate the functional outcome of using chitosan-based material in our patients after 2 years of follow-up. METHODS Nonarthritic nondysplastic femoroacetabular impingement patients with an acetabular chondral lesion, 18 to 55 years of age, were included for arthroscopic repair between May 2013 and July 2015. Full-thickness chondral defects ≥2 cm2 were filled with chitosan-based implant after microfractures. Follow-up consisted of alpha angle assessment and clinical outcome in the form of the Non Arthritic Hip Score (NAHS), International Hip Outcome Tool 33 (iHOT33), Hip Outcome Score of Activities of Daily Living (HOS-ADL), and Hip Outcome Score of Sports Specific Scale (HOS-SSS). RESULTS Twenty-three patients were included. The mean follow-up was 38.4 ± 7.0 months (range, 24-50 months). The mean defect size was 3.5 ± 1.0 cm2, principally involving zone 2 and to a lesser extent in zones 1 and 3. Using femoroplasty, the alpha angle was corrected from a mean 70.5 ± 6.3° to 44.3 ± 4.9° (P = .00001). Significant improvement occurred comparing the preoperative to the first-year postoperative patient-reported outcomes: P = .00001 for the NAHS, P = .00004 for the iHOT33, P = .00005 for the HOS-ADL, and P = .0002 for the HOS-SSS. No statistically significant change has been observed in the patient-reported outcomes obtained at the endpoint when compared with the first-year values (P = .13 for the NAHS, P = .21 for the HOS-ADL, and P = .29 for the HOS-SSS), except for the iHOT33, which showed further significant improvement (P = .02). Up to 91% of the patients met or exceeded the minimal clinically important difference. One patient needed total hip arthroplasty. Perineal hypoesthesia occurred in 3 patients, who recovered within 2 to 6 weeks, and 1 patient needed a prolonged physiotherapy program for postoperative muscular stiffness. CONCLUSIONS The arthroscopic combined treatment of microfractures and chitosan-based scaffold has maintained satisfactory clinical outcomes in 91% of the patients with s large (≥2 cm2) full-thickness acetabular chondral defect associated with femoroacetabular impingement at a mean follow-up of 38.4 months. The study could not definitely draw any conclusion regarding the safety of chitosan-based material for use in the hip joint. LEVEL OF EVIDENCE Level IV, case series.
Collapse
Affiliation(s)
- Mahmoud Fathy Tahoun
- Department of Orthopedics, Menoufia University, Egypt; Department of Orthopedics, Parc de Salut Mar, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Marc Tey
- Department of Orthopedics, Parc de Salut Mar, Universitat Autònoma de Barcelona, Barcelona, Spain; Hip Unit, iMove Traumatologia, Clínica Mitrestorres, Barcelona, Spain
| | - Jesús Mas
- Department of Orthopedics, Hospital Vistahermosa, Alicante, Spain
| | | | - Joan Carles Monllau
- Department of Orthopedics, Parc de Salut Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Lopes DS, Pires SM, Mascarenhas VV, Silva MT, Jorge JA. On a “Columbus’ Egg”: Modeling the shape of asymptomatic, dysplastic and impinged hip joints. Med Eng Phys 2018; 59:50-55. [DOI: 10.1016/j.medengphy.2018.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 06/12/2018] [Accepted: 07/09/2018] [Indexed: 01/25/2023]
|
9
|
Tangtrongsup S, Kisiday JD. Modulating the oxidative environment during mesenchymal stem cells chondrogenesis with serum increases collagen accumulation in agarose culture. J Orthop Res 2018; 36:506-514. [PMID: 28548680 DOI: 10.1002/jor.23618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/19/2017] [Indexed: 02/04/2023]
Abstract
Chondrogenesis of mesenchymal stem cells (MSCs) is induced in culture conditions that have been associated with oxidative stress, although the extent to which the oxidative environment affects differentiation and extracellular matrix (ECM) accumulation is not known. The objectives of this study were to evaluate the oxidative environment during MSCs chondrogenesis in conventional serum-free medium, and the effect of serum-supplementation on intracellular reactive oxygen species (ROS) and chondrogenesis. Young adult equine MSCs were seeded into agarose and cultured in chondrogenic medium, with or without 5% fetal bovine serum (FBS), for up to 15 days. Samples were evaluated for intracellular ROS, the antioxidant glutathione, ECM and gene expression measures of chondrogenesis, and carbonylation as an indicator of oxidative damage. Intracellular ROS increased with time in culture, and was lower in medium supplemented with FBS. Glutathione decreased ∼12-fold during early chondrogenesis (p < 0.0001), and was not affected by FBS (p = 0.25). After 15 days of culture, FBS supplementation increased hydroxyproline accumulation ∼80% (p = 0.0002); otherwise, measures of chondrogenesis were largely unaffected. Protein carbonylation in chondrogenic MSCs cultures was not significantly different between serum-free and FBS cultures (p = 0.72). Supplementation with adult equine serum increased hydroxyproline accumulation by 45% over serum-free culture (p = 0.0006). In conclusion, this study characterized changes in the oxidative environment during MSC chondrogenesis, and suggested that lowering ROS may be an effective approach to increase collagen accumulation. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:506-514, 2018.
Collapse
Affiliation(s)
- Suwimol Tangtrongsup
- Department of Clinical Sciences, Orthopaedic Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins 80523, Colorado
| | - John D Kisiday
- Department of Clinical Sciences, Orthopaedic Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins 80523, Colorado
| |
Collapse
|
10
|
Nowicki M, Castro NJ, Rao R, Plesniak M, Zhang LG. Integrating three-dimensional printing and nanotechnology for musculoskeletal regeneration. NANOTECHNOLOGY 2017; 28:382001. [PMID: 28762957 PMCID: PMC5612478 DOI: 10.1088/1361-6528/aa8351] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The field of tissue engineering is advancing steadily, partly due to advancements in rapid prototyping technology. Even with increasing focus, successful complex tissue regeneration of vascularized bone, cartilage and the osteochondral interface remains largely illusive. This review examines current three-dimensional printing techniques and their application towards bone, cartilage and osteochondral regeneration. The importance of, and benefit to, nanomaterial integration is also highlighted with recent published examples. Early-stage successes and challenges of recent studies are discussed, with an outlook to future research in the related areas.
Collapse
Affiliation(s)
- Margaret Nowicki
- Department of Mechanical and Aerospace Engineering, The George Washington University, 800 22nd Street, NW, Washington DC 20052, United States of America
| | | | | | | | | |
Collapse
|
11
|
Raleigh A, McCarty W, Chen A, Meinert C, Klein T, Sah R. 6.7 Synovial Joints: Mechanobiology and Tissue Engineering of Articular Cartilage and Synovial Fluid ☆. COMPREHENSIVE BIOMATERIALS II 2017:107-134. [DOI: 10.1016/b978-0-12-803581-8.09304-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
Yousefi AM, James PF, Akbarzadeh R, Subramanian A, Flavin C, Oudadesse H. Prospect of Stem Cells in Bone Tissue Engineering: A Review. Stem Cells Int 2016; 2016:6180487. [PMID: 26880976 PMCID: PMC4736569 DOI: 10.1155/2016/6180487] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 11/25/2015] [Indexed: 01/01/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been the subject of many studies in recent years, ranging from basic science that looks into MSCs properties to studies that aim for developing bioengineered tissues and organs. Adult bone marrow-derived mesenchymal stem cells (BM-MSCs) have been the focus of most studies due to the inherent potential of these cells to differentiate into various cell types. Although, the discovery of induced pluripotent stem cells (iPSCs) represents a paradigm shift in our understanding of cellular differentiation. These cells are another attractive stem cell source because of their ability to be reprogramed, allowing the generation of multiple cell types from a single cell. This paper briefly covers various types of stem cell sources that have been used for tissue engineering applications, with a focus on bone regeneration. Then, an overview of some recent studies making use of MSC-seeded 3D scaffold systems for bone tissue engineering has been presented. The emphasis has been placed on the reported scaffold properties that tend to improve MSCs adhesion, proliferation, and osteogenic differentiation outcomes.
Collapse
Affiliation(s)
- Azizeh-Mitra Yousefi
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH 45056, USA
| | - Paul F. James
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Rosa Akbarzadeh
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH 45056, USA
| | - Aswati Subramanian
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH 45056, USA
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Conor Flavin
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH 45056, USA
| | - Hassane Oudadesse
- Sciences Chimiques, University of Rennes 1, UMR CNRS 6226, 35042 Rennes, France
| |
Collapse
|
13
|
Halilaj E, Laidlaw DH, Moore DC, Crisco JJ. Polar histograms of curvature for quantifying skeletal joint shape and congruence. J Biomech Eng 2015; 136:094503. [PMID: 24976300 DOI: 10.1115/1.4027938] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 07/02/2014] [Indexed: 11/08/2022]
Abstract
The effect of articular joint shape and congruence on kinematics, contact stress, and the natural progression of joint disease continue to be a topic of interest in the orthopedic biomechanics literature. Currently, the most widely used metrics of assessing skeletal joint shape and congruence are based on average principal curvatures across the articular surfaces. Here we propose a method for comparing articular joint shape and quantifying joint congruence based on three-dimensional (3D) histograms of curvature--shape descriptors that preserve spatial information. Illustrated by experimental results from the trapeziometacarpal joint, this method could help unveil the interrelations between joint shape and function and provide much needed insight for the high incidence of osteoarthritis (OA)--a mechanically mediated disease whose onset has been hypothesized to be precipitated by joint incongruity.
Collapse
|
14
|
Yousefi AM, Hoque ME, Prasad RGSV, Uth N. Current strategies in multiphasic scaffold design for osteochondral tissue engineering: A review. J Biomed Mater Res A 2014; 103:2460-81. [PMID: 25345589 DOI: 10.1002/jbm.a.35356] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 10/04/2014] [Accepted: 10/12/2014] [Indexed: 12/23/2022]
Abstract
The repair of osteochondral defects requires a tissue engineering approach that aims at mimicking the physiological properties and structure of two different tissues (cartilage and bone) using specifically designed scaffold-cell constructs. Biphasic and triphasic approaches utilize two or three different architectures, materials, or composites to produce a multilayered construct. This article gives an overview of some of the current strategies in multiphasic/gradient-based scaffold architectures and compositions for tissue engineering of osteochondral defects. In addition, the application of finite element analysis (FEA) in scaffold design and simulation of in vitro and in vivo cell growth outcomes has been briefly covered. FEA-based approaches can potentially be coupled with computer-assisted fabrication systems for controlled deposition and additive manufacturing of the simulated patterns. Finally, a summary of the existing challenges associated with the repair of osteochondral defects as well as some recommendations for future directions have been brought up in the concluding section of this article.
Collapse
Affiliation(s)
- Azizeh-Mitra Yousefi
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, Ohio, 45056
| | - Md Enamul Hoque
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Malaysia Campus, Malaysia
| | - Rangabhatala G S V Prasad
- Biomedical and Pharmaceutical Technology Research Group, Nano Research for Advanced Materials, Bangalore, Karnataka, India
| | - Nicholas Uth
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, Ohio, 45056
| |
Collapse
|
15
|
Chang NJ, Lam CF, Lin CC, Chen WL, Li CF, Lin YT, Yeh ML. Transplantation of autologous endothelial progenitor cells in porous PLGA scaffolds create a microenvironment for the regeneration of hyaline cartilage in rabbits. Osteoarthritis Cartilage 2013; 21:1613-22. [PMID: 23927932 DOI: 10.1016/j.joca.2013.07.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 06/14/2013] [Accepted: 07/27/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Repairing articular cartilage is clinically challenging. We investigated a simple, effective and clinically feasible cell-based therapeutic approach using a poly(lactide-co-glycolide) (PLGA) scaffold seeded with autologous endothelial progenitor cells (EPC) to repair a full-thickness osteochondral defect in rabbits using a one-step surgery. METHODS EPC obtained by purifying a small amount of peripheral blood from rabbits were seeded into a highly porous, biocompatible PLGA scaffold, namely, EPC-PLGA, and implanted into the osteochondral defect in the medial femoral condyle. Twenty two rabbits were randomized into one of three groups: the empty defect group (ED), the PLGA-only group or the EPC-PLGA group. The defect sites were evaluated 4 and 12 weeks after implantation. RESULTS At the end of testing, only the EPC-PLGA group showed the development of new cartilage tissue with a smooth, transparent and integrated articular surface. Moreover, histological analysis showed obvious differences in cartilage regeneration. At week 4, the EPC-PLGA group showed considerably higher TGF-β2 and TGF-β3 expression, a greater amount of synthesized glycosaminoglycan (GAG) content, and a higher degree of osteochondral angiogenesis in repaired tissues. At week 12, the EPC-PLGA group showed enhanced hyaline cartilage regeneration with a normal columnar chondrocyte arrangement, higher SOX9 expression, and greater GAG and collagen type II (COLII) content. Moreover, the EPC-PLGA group showed organized osteochondral integration, the formation of vessel-rich tubercular bone and significantly higher bone volume per tissue volume and trabecular thickness (Tb.Th). CONCLUSION The present EPC-PLGA cell delivery system generates a suitable in situ microenvironment for osteochondral regeneration without the supplement of exogenous growth factors.
Collapse
Affiliation(s)
- N-J Chang
- Department of Biomedical Engineering, National Cheng Kung University, 1 University Rd., Tainan City 701, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
16
|
Colombo V, Cadová M, Gallo LM. Mechanical behavior of bovine nasal cartilage under static and dynamic loading. J Biomech 2013; 46:2137-44. [PMID: 23915577 DOI: 10.1016/j.jbiomech.2013.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 07/02/2013] [Accepted: 07/04/2013] [Indexed: 11/27/2022]
Abstract
Abnormal mechanical loading may trigger cartilage degeneration associated with osteoarthritis. Tissue response to load has been the subject of several in vitro studies. However, simple stimuli were often applied, not fully mimicking the complex in vivo conditions. Therefore, a rolling/plowing explant test system (RPETS) was developed to replicate the combined in vivo loading patterns. In this work we investigated the mechanical behavior of bovine nasal septum (BNS) cartilage, selected as tissue approximation for experiments with RPETS, under static and dynamic loading. Biphasic material properties were determined and compared with those of other cartilaginous tissues. Furthermore, dynamic loading in plowing modality was performed to determine dynamic response and experimental results were compared with analytical models and Finite Elements (FE) computations. Results showed that BNS cartilage can be modeled as a biphasic material with Young's modulus E=2.03 ± 0.7 MPa, aggregate modulus HA=2.35 ± 0.7 MPa, Poisson's ratio ν=0.24 ± 0.07, and constant hydraulic permeability k0=3.0 ± 1.3 × 10(-15)m(4)(Ns)(-1). Furthermore, dynamic analysis showed that plowing induces macroscopic reactions in the tissue, proportionally to the applied loading force. The comparison among analytical, FE analysis and experimental results showed that predicted tangential forces and sample deformation lay in the range of variation of experimental results for one specific experimental condition. In conclusion, mechanical properties of BNS cartilage under both static and dynamic compression were assessed, showing that this tissue behave as a biphasic material and has a viscoelastic response to dynamic forces.
Collapse
Affiliation(s)
- Vera Colombo
- Clinic of Masticatory Disorders, Removable Prosthodontics, Geriatric and Special Care Dentistry, Center of Dental Medicine, University of Zurich, Switzerland.
| | | | | |
Collapse
|
17
|
McLeod MA, Wilusz RE, Guilak F. Depth-dependent anisotropy of the micromechanical properties of the extracellular and pericellular matrices of articular cartilage evaluated via atomic force microscopy. J Biomech 2012; 46:586-92. [PMID: 23062866 DOI: 10.1016/j.jbiomech.2012.09.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 08/21/2012] [Accepted: 09/07/2012] [Indexed: 01/30/2023]
Abstract
The extracellular matrix (ECM) of articular cartilage is structurally and mechanically inhomogeneous and anisotropic, exhibiting variations in composition, collagen fiber architecture, and pericellular matrix (PCM) morphology among the different zones (superficial, middle, and deep). Joint loading exposes chondrocytes to a complex biomechanical environment, as the microscale mechanical environment of the chondrocyte depends on the relative properties of its PCM and local ECM. ECM anisotropy and chondrocyte deformation are influenced by the split-line direction, the preferred collagen fiber orientation parallel to the articular surface. While previous studies have demonstrated that cartilage macroscale properties vary with depth and the direction of loading relative to the split-line direction, the potential anisotropic behavior of the ECM and PCM at the microscale has yet to be examined. The goal of this study was to characterize the depth and directional dependence of the microscale biomechanical properties of porcine cartilage ECM and PCM in situ. Cartilage was cryosectioned to generate samples oriented parallel and perpendicular to the split-line direction and normal to the articular surface. Atomic force microscopy (AFM)-based stiffness mapping was utilized to measure ECM and PCM microscale elastic properties in all three directions within each zone. Distinct anisotropy in ECM elastic moduli was observed in the superficial and deep zones, while the middle zone exhibited subtle anisotropy. PCM elastic moduli exhibited zonal uniformity with depth and directional dependence when pooled across the zones. These findings provide new evidence for mechanical inhomogeneity and anisotropy at the microscale in articular cartilage.
Collapse
Affiliation(s)
- Morgan A McLeod
- Departments of Orthopaedic Surgery and Biomedical Engineering, Duke University, Durham, NC, USA
| | | | | |
Collapse
|
18
|
Wilusz RE, DeFrate LE, Guilak F. Immunofluorescence-guided atomic force microscopy to measure the micromechanical properties of the pericellular matrix of porcine articular cartilage. J R Soc Interface 2012; 9:2997-3007. [PMID: 22675162 DOI: 10.1098/rsif.2012.0314] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The pericellular matrix (PCM) is a narrow region that is rich in type VI collagen that surrounds each chondrocyte within the extracellular matrix (ECM) of articular cartilage. Previous studies have demonstrated that the chondrocyte micromechanical environment depends on the relative properties of the chondrocyte, its PCM and the ECM. The objective of this study was to measure the influence of type VI collagen on site-specific micromechanical properties of cartilage in situ by combining atomic force microscopy stiffness mapping with immunofluorescence imaging of PCM and ECM regions in cryo-sectioned tissue samples. This method was used to test the hypotheses that PCM biomechanical properties correlate with the presence of type VI collagen and are uniform with depth from the articular surface. Control experiments verified that immunolabelling did not affect the properties of the ECM or PCM. PCM biomechanical properties correlated with the presence of type VI collagen, and matrix regions lacking type VI collagen immediately adjacent to the PCM exhibited higher elastic moduli than regions positive for type VI collagen. PCM elastic moduli were similar in all three zones. Our findings provide further support for type VI collagen in defining the chondrocyte PCM and contributing to its biological and biomechanical properties.
Collapse
Affiliation(s)
- Rebecca E Wilusz
- Department of Orthopaedic Surgery, Duke University Medical Center, Box 3093, Durham, NC 27710, USA
| | | | | |
Collapse
|
19
|
Halloran JP, Sibole S, van Donkelaar CC, van Turnhout MC, Oomens CWJ, Weiss JA, Guilak F, Erdemir A. Multiscale mechanics of articular cartilage: potentials and challenges of coupling musculoskeletal, joint, and microscale computational models. Ann Biomed Eng 2012; 40:2456-74. [PMID: 22648577 DOI: 10.1007/s10439-012-0598-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 05/16/2012] [Indexed: 11/27/2022]
Abstract
Articular cartilage experiences significant mechanical loads during daily activities. Healthy cartilage provides the capacity for load bearing and regulates the mechanobiological processes for tissue development, maintenance, and repair. Experimental studies at multiple scales have provided a fundamental understanding of macroscopic mechanical function, evaluation of the micromechanical environment of chondrocytes, and the foundations for mechanobiological response. In addition, computational models of cartilage have offered a concise description of experimental data at many spatial levels under healthy and diseased conditions, and have served to generate hypotheses for the mechanical and biological function. Further, modeling and simulation provides a platform for predictive risk assessment, management of dysfunction, as well as a means to relate multiple spatial scales. Simulation-based investigation of cartilage comes with many challenges including both the computational burden and often insufficient availability of data for model development and validation. This review outlines recent modeling and simulation approaches to understand cartilage function from a mechanical systems perspective, and illustrates pathways to associate mechanics with biological function. Computational representations at single scales are provided from the body down to the microstructure, along with attempts to explore multiscale mechanisms of load sharing that dictate the mechanical environment of the cartilage and chondrocytes.
Collapse
Affiliation(s)
- J P Halloran
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Buckley CT, Meyer EG, Kelly DJ. The Influence of Construct Scale on the Composition and Functional Properties of Cartilaginous Tissues Engineered Using Bone Marrow-Derived Mesenchymal Stem Cells. Tissue Eng Part A 2012; 18:382-96. [DOI: 10.1089/ten.tea.2011.0145] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Conor T. Buckley
- Trinity Centre for Bioengineering, Department of Mechanical Engineering, School of Engineering, Trinity College, Dublin, Ireland
| | - Eric G. Meyer
- Trinity Centre for Bioengineering, Department of Mechanical Engineering, School of Engineering, Trinity College, Dublin, Ireland
- Biomedical Engineering, College of Engineering, Lawrence Technological University, Southfield, Michigan
| | - Daniel J. Kelly
- Trinity Centre for Bioengineering, Department of Mechanical Engineering, School of Engineering, Trinity College, Dublin, Ireland
| |
Collapse
|
21
|
Correro-Shahgaldian MR, Colombo V, Spencer ND, Weber FE, Imfeld T, Gallo LM. Coupling plowing of cartilage explants with gene expression in models for synovial joints. J Biomech 2011; 44:2472-6. [PMID: 21723557 DOI: 10.1016/j.jbiomech.2011.06.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 06/14/2011] [Accepted: 06/15/2011] [Indexed: 02/06/2023]
Abstract
Articular cartilage undergoes complex loading modalities generally including sliding, rolling and plowing (i.e. the compression by a condyle normally to the tissue surface under simultaneously tangential displacement, thus generating a tractional force due to tissue deformation). Although in in vivo studies it was shown that excessive plowing can lead to osteoarthritis, little quantitative experimental work on this loading modality and its mechanobiological effects is available in the literature. Therefore, a rolling/plowing explant test system has been developed to study the effect on pristine cartilage of plowing at different perpendicular forces. Cartilage strips harvested from bovine nasal septa of 12-months-old calves were subjected for 2h to a plowing-regime with indenter normal force of 50 or 100 N and a sliding speed of 10 mm s(-1). 50 N produced a tractional force of 1.2±0.3N, whereas 100 N generated a tractional force of 8.0±1.4N. Furthermore, quantitative-real-time polymerase chain reaction experiments showed that TIMP-1 was 2.5x up-regulated after 50 N plowing and 2x after 100 N plowing, indicating an ongoing remodeling process. The expression of collagen type-I was not affected after 50 N plowing but it was up-regulated (6.6x) after 100 N plowing, suggesting a possible progression to an injury stage of the cartilage, as previously reported in cartilage of osteoarthritic patients. We conclude that plowing as performed by our mimetic system at the chosen experimental parameters induces changes in gene expression depending on the tractional force, which, in turn, relates to the applied normal force.
Collapse
Affiliation(s)
- Maria Rita Correro-Shahgaldian
- Clinic of Masticatory Disorders, Removable Prosthodontics and Special Care, Center of Dental Medicine, University of Zurich Plattenstrasse 11 CH-8032 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
22
|
Williams GM, Sah RL. In vitro modulation of cartilage shape plasticity by biochemical regulation of matrix remodeling. Tissue Eng Part A 2010; 17:17-23. [PMID: 20649477 DOI: 10.1089/ten.tea.2010.0177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
With consideration of the need for cartilage grafts of specific sizes and shapes in orthopedics and other fields, immature cartilage explants and grafts have recently been molded in vitro and in vivo. Nonsurgical correction of cartilage deformities and malformations often uses mechanical stimuli and further demonstrates the plasticity of cartilage shape. Cartilage shape plasticity appears to diminish with maturation, coincident with changes in matrix composition. This study's objectives were to characterize shape plasticity of articular cartilage from immature and mature bovines and test whether altering proteoglycan and collagen (COL) remodeling modulates shape plasticity in vitro. Cartilage explants were analyzed fresh on day 0 or after 14 days of culture in the presence of β-D-xyloside to suppress glycosaminoglycan accumulation or β-aminopropionitrile (BAPN) to inhibit lysyl oxidase-mediated COL crosslinking. Culture with β-d-xyloside and BAPN differentially regulated cartilage size, composition, and shape plasticity, with an inverse association between shape plasticity and the ratio of tissue COL to glycosaminoglycan. Retention of a mechanically imposed contour was increased by culture with BAPN compared to day 0 calf cartilage (90% vs. 69%), and BAPN-treated samples had higher shape retention than β-D-xyloside-treated samples for both calf (90% vs. 74%) and adult cartilage (54% vs. 31%). The findings provide quantitative measures of cartilage shape plasticity at immature and mature stages and are consistent with the concept of diminishing shape plasticity with maturation. The ability to modulate cartilage shape plasticity by varying in vitro biochemical conditions may be a useful tool for the formation of contoured chondral grafts.
Collapse
Affiliation(s)
- Gregory M Williams
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
23
|
Williams GM, Dills KJ, Flores CR, Stender ME, Stewart KM, Nelson LM, Chen AC, Masuda K, Hazelwood SJ, Klisch SM, Sah RL. Differential regulation of immature articular cartilage compressive moduli and Poisson's ratios by in vitro stimulation with IGF-1 and TGF-beta1. J Biomech 2010; 43:2501-7. [PMID: 20570267 DOI: 10.1016/j.jbiomech.2010.05.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 05/18/2010] [Accepted: 05/19/2010] [Indexed: 11/18/2022]
Abstract
Mechanisms of articular cartilage growth and maturation have been elucidated by studying composition-function dynamics during in vivo development and in vitro culture with stimuli such as insulin-like growth factor-1 (IGF-1) and transforming growth factor-beta 1 (TGF-beta1). This study tested the hypothesis that IGF-1 and TGF-beta1 regulate immature cartilage compressive moduli and Poisson's ratios in a manner consistent with known effects on tensile properties. Bovine calf articular cartilage from superficial-articular (S) and middle-growth (M) regions were analyzed fresh or following culture in medium with IGF-1 or TGF-beta1. Mechanical properties in confined (CC) and unconfined (UCC) compression, cartilage matrix composition, and explant size were assessed. Culture with IGF-1 resulted in softening in CC and UCC, increased Poisson's ratios, substantially increased tissue volume, and accumulation of glycosaminoglycan (GAG) and collagen (COL). Culture with TGF-beta1 promoted maturational changes in the S layer, including stiffening in CC and UCC and increased concentrations of GAG, COL, and pyridinoline crosslinks (PYR), but little growth. Culture of M layer explants with TGF-beta1 was nearly homeostatic. Across treatment groups, compressive moduli in CC and UCC were positively related to GAG, COL, and PYR concentrations, while Poisson's ratios were negatively related to concentrations of these matrix components. Thus, IGF-1 and TGF-beta1 differentially regulate the compressive mechanical properties and size of immature articular cartilage in vitro. Prescribing tissue growth, maturation, or homeostasis by controlling the in vitro biochemical environment with such growth factors may have applications in cartilage repair and tissue engineering.
Collapse
Affiliation(s)
- Gregory M Williams
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093-0412, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
McCarty WJ, Pallante AL, Rone RJ, Bugbee WD, Sah RL. The proteoglycan metabolism of articular cartilage in joint-scale culture. Tissue Eng Part A 2010; 16:1717-27. [PMID: 20038199 PMCID: PMC2952130 DOI: 10.1089/ten.tea.2009.0663] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Accepted: 12/23/2009] [Indexed: 11/13/2022] Open
Abstract
Understanding and controlling chondrocyte and cartilage metabolism in osteochondral tissues may facilitate ex vivo maintenance and application, both for allografts and tissue-engineered grafts. The hypothesis of this study was that maintenance of chondrocyte viability and matrix content and release of sulfated glycosaminoglycan (sGAG) in the articular cartilage of joint-scale osteochondral fragments are temperature and metabolism dependent. The aims were to assess, for adult goat joints, the effects of incubation temperature (37 degrees C vs. 4 degrees C) on cartilage chondrocyte viability and tissue matrix content and mechanical function, and the effects of temperature and cellular biosynthesis on sGAG release. Chondrocyte viability was maintained with 37 degrees C incubation for 28 days, but decreased by approximately 30% with 4 degrees C incubation. Concomitantly, with 37 degrees C incubation, cartilage sGAG was depleted by approximately 52% with the lost sGAG predominantly unable to aggregate with hyaluronan, whereas collagen content, tissue thickness, and tissue stiffness were maintained. The depletion of sGAG was diminished by slowing metabolism, with 4 degrees C decreasing release by approximately 79% compared with 37 degrees C incubation, and cycloheximide inhibition of cell metabolism at 37 degrees C decreasing release by approximately 47%. These results indicate that the articular cartilage of joint-scale grafts have enhanced chondrocyte viability with incubation at 37 degrees C, but may need anabolic stimuli or catabolic inhibitors to maintain sGAG content.
Collapse
Affiliation(s)
- William J. McCarty
- Department of Bioengineering, University of California–San Diego, La Jolla, California
| | - Andrea L. Pallante
- Department of Bioengineering, University of California–San Diego, La Jolla, California
| | - Rebecca J. Rone
- Department of Bioengineering, University of California–San Diego, La Jolla, California
| | - William D. Bugbee
- Department of Orthopaedic Surgery, University of California–San Diego, La Jolla, California
- Division of Orthopaedic Surgery, Scripps Clinic, La Jolla, California
| | - Robert L. Sah
- Department of Bioengineering, University of California–San Diego, La Jolla, California
- Institute of Engineering in Medicine, University of California–San Diego, La Jolla, California
| |
Collapse
|