1
|
Baylous K, Kovarovic B, Paz RR, Anam S, Helbock R, Horner M, Slepian M, Bluestein D. Thrombogenic Risk Assessment of Transcatheter Prosthetic Heart Valves Using a Fluid-Structure Interaction Approach. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108469. [PMID: 39461118 DOI: 10.1016/j.cmpb.2024.108469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND AND OBJECTIVE Prosthetic heart valve interventions such as TAVR have surged over the past decade, but the associated complication of long-term, life-threatening thrombotic events continues to undermine patient outcomes. Thus, improving thrombogenic risk analysis of TAVR devices is crucial. In vitro studies for thrombogenicity are typically difficult to perform. However, revised ISO testing standards include computational testing for thrombogenic risk assessment of cardiovascular implants. We present a fluid-structure interaction (FSI) approach for assessing thrombogenic risk of transcatheter aortic valves. METHODS An FSI framework was implemented via the incompressible computational fluid dynamics multi-physics solver of the ANSYS LS-DYNA software. The numerical modeling approach for flow analysis was validated by comparing the derived flow rate of the 29 mm CoreValve device from benchtop testing and orifice areas of commercial TAVR valves in the literature to in silico results. Thrombogenic risk was analyzed by computing stress accumulation (SA) on virtual platelets seeded in the flow fields via ANSYS EnSight. The integrated FSI-thrombogenicity methodology was subsequently employed to examine hemodynamics and thrombogenic risk of TAVR devices with two approaches: 1) engineering optimization and 2) clinical assessment. RESULTS Simulated effective orifice areas for commercial valves were in reported ranges. In silico cardiac output and flow rate during the positive pressure differential period matched experimental results by approximately 93 %. The approach was used to analyze the effect of various TAVR leaflet designs on hemodynamics, where platelets experienced instantaneous stresses reaching around 10 Pa. Post-TAVR deployment hemodynamics in patient-specific bicuspid aortic valve anatomies revealed varying degrees of thrombogenic risk with the highest median SA around 70 dyn·s/cm2 - nearly double the activation threshold - despite those being clinically classified as "mild" paravalvular leaks. CONCLUSIONS Our methodology can be used to improve the thromboresistance of prosthetic valves from the initial design stage to the clinic. It allows for unparalleled optimization of devices, uncovering key TAVR leaflet design parameters that can be used to mitigate thrombogenic risk, in addition to patient-specific modeling to evaluate device performance. This work demonstrates the utility of advanced in silico analysis of TAVR devices that can be utilized for thrombogenic risk assessment of other blood recirculating devices.
Collapse
Affiliation(s)
- Kyle Baylous
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Brandon Kovarovic
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Rodrigo R Paz
- ANSYS Inc., 7374 Las Positas Rd., Livermore, CA 94551, USA; CONICET (IMIT), Argentina
| | - Salwa Anam
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ryan Helbock
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Marvin Slepian
- Department of Medicine and Biomedical Engineering Sarver Heart Center, University of Arizona, Tucson, AZ, 85721, USA
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
2
|
Meng K, Chen H, Pan Y, Li Y. The dynamics of red blood cells traversing slits of mechanical heart valves under high shear. Biophys J 2024:S0006-3495(24)00654-4. [PMID: 39340153 DOI: 10.1016/j.bpj.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/04/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024] Open
Abstract
Hemolysis, including subclinical hemolysis, is a potentially severe complications of mechanical heart valves (MHVs), which leads to shortened red blood cell (RBC) lifespan and hemolytic anemia. Serious hemolysis is usually associated with structural deterioration and regurgitation. However, the shear stress in MHVs' narrow leakage slits is much lower than the shear stress threshold causing hemolysis and the mechanisms in this context remain largely unclear. This study investigated the hemolysis mechanism of RBCs in cell-size slits under high shear rates by establishing in vitro microfluidic devices and a coarse-grained molecular dynamics (CGMD) model, considering both fluid and structural effects simultaneously. Microfluidic experiments and computational simulation revealed six distinct dynamic states of RBC traversal through MHVs' microscale slits under various shear rates and slit sizes. It elucidated that RBC dynamic states were influenced by not only by fluid forces but significantly by the compressive force of slit walls. The variation of the potential energy of the cell membrane indicated its stretching, deformation, and rupture during traversal, corresponding to the six dynamic states. The maximum forces exerted on membrane by water particles and slit walls directly determined membrane rupture, serving as a critical determinant. This analysis helps in understanding the contribution of the slit walls to membrane rupture and identifying the threshold force that leads to membrane rupture. The hemolysis mechanism of traversing microscale slits is revealed to effectively explain the occurrences of hemolysis and subclinical hemolysis.
Collapse
Affiliation(s)
- Kuilin Meng
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Haosheng Chen
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Yunfan Pan
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Yongjian Li
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Gabso Y, Rosenfeld M, Avrahami I. The impact of the Impeller's hub design on the performance and blood damage in a microaxial mechanical circulatory support device - A numerical study. Comput Biol Med 2024; 179:108695. [PMID: 38968763 DOI: 10.1016/j.compbiomed.2024.108695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/12/2024] [Accepted: 06/01/2024] [Indexed: 07/07/2024]
Abstract
This study uses CFD methods to investigate the effects of the impeller's geometry on the hemodynamic characteristics, pump performance, and blood damage parameters, in a percutaneous microaxial Mechanical Circulatory Support (MCS) device. The numerical simulations employ the steady state Reynolds-Averaged Navier-Stokes approximation using the SST k-ω turbulent model. Three different impeller models are examined with different hub conversion angles (α = 0○, 3○ and 5○). The analysis includes 23 cases for different pressure heads (Δp = 60-80 mmHg) and angular velocities (ω = 30-52 kRPM). The obtained flow rate is compared between the cases to assess the effect of the impeller's design and working conditions on the pump performance. The comparative risk of shear-induced platelet activation is estimated using the statistical median of the stress-accumulation values calculated along streamlines. The risk of hemolysis is estimated using the average exposure time to shear stress above a threshold (τ > 425 Pa). The results reveal that the shape of the impeller's hub has a great impact on the flow patterns, performance, and risk of blood damage, as well as the angular velocity. The highest flow rate (Q = 3.7 L/min) and efficiency (η = 11.3 %) were achieved using a straight hub (α = 0○). Similarly, for the same condition of flow and pressure, the straight hub impeller has the lowest blood damage risk parameters. This study shed light on the effect of pump design on the performance and risk of blood damage, indicating the roles of the hub shape and angular velocity as dominant parameters.
Collapse
Affiliation(s)
- Yuval Gabso
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv, 69978, Israel; Department of Mechanical Engineering and Mechatronics, Ariel University, Israel
| | - Moshe Rosenfeld
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Idit Avrahami
- Department of Mechanical Engineering and Mechatronics, Ariel University, Israel.
| |
Collapse
|
4
|
Baylous K, Kovarovic B, Anam S, Helbock R, Slepian M, Bluestein D. Thrombogenic Risk Assessment of Transcatheter Prosthetic Heart Valves Using a Fluid-Structure Interaction Approach. ARXIV 2024:arXiv:2406.12156v1. [PMID: 38947915 PMCID: PMC11213151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background and Objective Prosthetic heart valve interventions such as TAVR have surged over the past decade, but the associated complication of long-term, life-threatening thrombotic events continues to undermine patient outcomes. Thus, improving thrombogenic risk analysis of TAVR devices is crucial. In vitro studies for thrombogenicity are typically difficult to perform. However, revised ISO testing standards include computational testing for thrombogenic risk assessment of cardiovascular implants. We present a fluid-structure interaction (FSI) approach for assessing thrombogenic risk of prosthetic heart valves. Methods An FSI framework was implemented via the incompressible computational fluid dynamics multi-physics solver of the Ansys LS-DYNA software. The numerical modeling approach for flow analysis was validated by comparing the derived flow rate of the 29-mm CoreValve device from benchtop testing and orifice areas of commercial TAVR valves in the literature to in silico results. Thrombogenic risk was analyzed by computing stress accumulation (SA) on virtual platelets seeded in the flow fields via Ansys EnSight. The integrated FSI-thrombogenicity methodology was subsequently employed to examine hemodynamics and thrombogenic risk of TAVR devices with two approaches: 1) engineering optimization and 2) clinical assessment. Results The simulated effective orifice areas of the commercial devices were in the range reported in the literature. The flow rates from the in vitro flow testing matched well with the in silico results. The approach was used to analyze the effect of various TAVR leaflet designs on hemodynamics. Platelets experienced different magnitudes of SA along their trajectories as they flowed past each design. Post-TAVR deployment hemodynamics in patient-specific bicuspid aortic valve anatomies revealed varying degrees of thrombogenic risk for these patients, despite being clinically defined as "mild" paravalvular leak. Conclusions Our methodology can be used to improve the thromboresistance of prosthetic valves from the initial design stage to the clinic. It allows for unparalleled optimization of devices, uncovering key TAVR leaflet design parameters that can be used to mitigate thrombogenic risk, in addition to patient-specific modeling to evaluate device performance. This work demonstrates the utility of advanced in silico analysis of TAVR devices that can be utilized for thrombogenic risk assessment of other blood recirculating devices.
Collapse
Affiliation(s)
- Kyle Baylous
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA 11794
| | - Brandon Kovarovic
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA 11794
| | - Salwa Anam
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA 11794
| | - Ryan Helbock
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA 11794
| | - Marvin Slepian
- Department of Medicine and Biomedical Engineering Sarver Heart Center, University of Arizona, Tucson, AZ 85721
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA 11794
| |
Collapse
|
5
|
Keshav Chivukula V, Beckman J, Li S, Akoum N, Aliseda A, Mahr C. Atrial fibrillation increases thrombogenicity of LVAD therapy. Int J Artif Organs 2024; 47:329-337. [PMID: 38742880 DOI: 10.1177/03913988241251706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
BACKGROUND This study investigates the hypothesis that presence of atrial fibrillation (AF) in LVAD patients increases thrombogenicity in the left ventricle (LV) and exacerbates stroke risk. METHODS Using an anatomical LV model implanted with an LVAD inflow cannula, we analyze thrombogenic risk and blood flow patterns in either AF or sinus rhythm (SR) using unsteady computational fluid dynamics (CFD). To analyze platelet activation and thrombogenesis in the LV, hundreds of thousands of platelets are individually tracked to quantify platelet residence time (RT) and shear stress accumulation history (SH). RESULTS The irregular and chaotic mitral inflow associated with AF results in markedly different intraventricular flow patterns, with profoundly negative impact on blood flow-induced stimuli experienced by platelets as they traverse the LV. Twice as many platelets accumulated very high SH in the LVAD + AF case, resulting in a 36% increase in thrombogenic potential score, relative to the LVAD + SR case. CONCLUSIONS This supports the hypothesis that AF results in unfavorable blood flow patterns in the LV adding to an increased stroke risk for LVAD + AF patients. Quantification of thrombogenic risk associated with AF for LVAD patients may help guide clinical decision-making on interventions to mitigate the increased risk of thromboembolic events.
Collapse
Affiliation(s)
- Venkat Keshav Chivukula
- Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL, USA
| | - Jennifer Beckman
- Division of Cardiology, University of Washington, Seattle, WA, USA
| | - Song Li
- Division of Cardiology, University of Washington, Seattle, WA, USA
| | - Nazem Akoum
- Division of Cardiology, University of Washington, Seattle, WA, USA
| | - Alberto Aliseda
- Department of Mechanical Engineering, University of Washington, WA, USA
| | - Claudius Mahr
- Division of Cardiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
6
|
Oks D, Reza S, Vázquez M, Houzeaux G, Kovarovic B, Samaniego C, Bluestein D. Effect of Sinotubular Junction Size on TAVR Leaflet Thrombosis: A Fluid-Structure Interaction Analysis. Ann Biomed Eng 2024; 52:719-733. [PMID: 38097896 DOI: 10.1007/s10439-023-03419-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/03/2023] [Indexed: 12/26/2023]
Abstract
TAVR has emerged as a standard approach for treating severe aortic stenosis patients. However, it is associated with several clinical complications, including subclinical leaflet thrombosis characterized by Hypoattenuated Leaflet Thickening (HALT). A rigorous analysis of TAVR device thrombogenicity considering anatomical variations is essential for estimating this risk. Clinicians use the Sinotubular Junction (STJ) diameter for TAVR sizing, but there is a paucity of research on its influence on TAVR devices thrombogenicity. A Medtronic Evolut® TAVR device was deployed in three patient models with varying STJ diameters (26, 30, and 34 mm) to evaluate its impact on post-deployment hemodynamics and thrombogenicity, employing a novel computational framework combining prosthesis deployment and fluid-structure interaction analysis. The 30 mm STJ patient case exhibited the best hemodynamic performance: 5.94 mmHg mean transvalvular pressure gradient (TPG), 2.64 cm2 mean geometric orifice area (GOA), and the lowest mean residence time (TR)-indicating a reduced thrombogenic risk; 26 mm STJ exhibited a 10 % reduction in GOA and a 35% increase in mean TPG compared to the 30 mm STJ; 34 mm STJ depicted hemodynamics comparable to the 30 mm STJ, but with a 6% increase in TR and elevated platelet stress accumulation. A smaller STJ size impairs adequate expansion of the TAVR stent, which may lead to suboptimal hemodynamic performance. Conversely, a larger STJ size marginally enhances the hemodynamic performance but increases the risk of TAVR leaflet thrombosis. Such analysis can aid pre-procedural planning and minimize the risk of TAVR leaflet thrombosis.
Collapse
Affiliation(s)
- David Oks
- Barcelona Supercomputing Center, Computer Applications in Science and Engineering, Barcelona, Spain
| | - Symon Reza
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794-8084, USA
| | - Mariano Vázquez
- Barcelona Supercomputing Center, Computer Applications in Science and Engineering, Barcelona, Spain
- ELEM Biotech SL, Barcelona, Spain
| | - Guillaume Houzeaux
- Barcelona Supercomputing Center, Computer Applications in Science and Engineering, Barcelona, Spain
| | - Brandon Kovarovic
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794-8084, USA
| | - Cristóbal Samaniego
- Barcelona Supercomputing Center, Computer Applications in Science and Engineering, Barcelona, Spain
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794-8084, USA.
| |
Collapse
|
7
|
Morany A, Bardon RG, Lavon K, Hamdan A, Bluestein D, Haj-Ali R. Analysis of fibrocalcific aortic valve stenosis: computational pre-and-post TAVR haemodynamics behaviours. ROYAL SOCIETY OPEN SCIENCE 2024; 11:230905. [PMID: 38384780 PMCID: PMC10878817 DOI: 10.1098/rsos.230905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024]
Abstract
Fibro-calcific aortic valve (AV) diseases are characterized by calcium growth or accumulation of fibrosis in the AV tissues. Fibrocalcific aortic stenosis (FAS) rises specifically in females, like calcification-induced aortic stenosis (CAS), may eventually necessitate valve replacement. Fluid-structure-interaction (FSI) computational models for severe CAS and FAS patients were developed using lattice Boltzmann method and multi-scale finite elements (FE). Three parametric AV models were introduced: pathology-free of non-calcified tri-and-bicuspid AVs with healthy collagen fibre network (CFN), a FAS model incorporated a thickened CFN with embedded small calcification volumes, and a CAS model employs healthy CFN with embedded high calcification volumes. The results indicate that the interaction between calcium deposits, adjacent tissue and fibres crucially influences haemodynamics and structural reactions. A fourth model of transcatheter aortic valve replacement (TAVR) post-procedure outcomes was created to study both CAS and FAS. TAVR-CAS had a higher maximum contact pressure and lower anchoring area than TAVR-FAS, making it prone to aortic tissue damage and migration. Finally, although the TAVR-CAS offered a larger opening area, its paravalvular leakage was higher. This may be attributed to a similar thrombogenicity potential characterizing both models. The computational framework emphasizes the significance of mechanobiology in FAS and underscores the requirement for tissue modelling at multiple scales.
Collapse
Affiliation(s)
- Adi Morany
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel
| | | | - Karin Lavon
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Ashraf Hamdan
- Department of Cardiology, Rabin Medical Center, Petach Tikva, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Rami Haj-Ali
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
8
|
Oks D, Reza S, Vázquez M, Houzeaux G, Kovarovic B, Samaniego C, Bluestein D. Effect of Sinotubular Junction Size on TAVR Leaflet Thrombosis: A Fluid-structure Interaction Analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.13.23298476. [PMID: 38014278 PMCID: PMC10680880 DOI: 10.1101/2023.11.13.23298476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Purpose TAVR has emerged as a standard approach for treating severe aortic stenosis patients. However, it is associated with several clinical complications, including subclinical leaflet thrombosis characterized by Hypoattenuated Leaflet Thickening (HALT). A rigorous analysis of TAVR device thrombogenicity considering anatomical variations is essential for estimating this risk. Clinicians use the Sinotubular Junction (STJ) diameter for TAVR sizing, but there is a paucity of research on its influence on TAVR devices thrombogenicity. Methods A Medtronic Evolut® TAVR device was deployed in three patient models with varying STJ diameters (26, 30, and 34mm) to evaluate its impact on post-deployment hemodynamics and thrombogenicity, employing a novel computational framework combining prosthesis deployment and fluid- structure interaction analysis. Results The 30 mm STJ patient case exhibited the best hemodynamic performance: 5.94 mmHg mean transvalvular pressure gradient (TPG), 2.64 cm 2 mean geometric orifice area (GOA), and the lowest mean residence time (T R ) - indicating a reduced thrombogenic risk; 26 mm STJ exhibited a 10 % reduction in GOA and a 35% increase in mean TPG compared to the 30 mm STJ; 34 mm STJ depicted hemodynamics comparable to the 30 mm STJ, but with a 6% increase in T R and elevated platelet stress accumulation. Conclusion A smaller STJ size impairs adequate expansion of the TAVR stent, which may lead to suboptimal hemodynamic performance. Conversely, a larger STJ size marginally enhances the hemodynamic performance but increases the risk of TAVR leaflet thrombosis. Such analysis can aid pre- procedural planning and minimize the risk of TAVR leaflet thrombosis.
Collapse
|
9
|
Huang X, Zhang G, Zhou X, Yang X. A review of numerical simulation in transcatheter aortic valve replacement decision optimization. Clin Biomech (Bristol, Avon) 2023; 106:106003. [PMID: 37245279 DOI: 10.1016/j.clinbiomech.2023.106003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Recent trials indicated a further expansion of clinical indication of transcatheter aortic valve replacement to younger and low-risk patients. Factors related to longer-term complications are becoming more important for use in these patients. Accumulating evidence indicates that numerical simulation plays a significant role in improving the outcome of transcatheter aortic valve replacement. Understanding mechanical features' magnitude, pattern, and duration is a topic of ongoing relevance. METHODS We searched the PubMed database using keywords such as "transcatheter aortic valve replacement" and "numerical simulation" and reviewed and summarized relevant literature. FINDINGS This review integrated recently published evidence into three subtopics: 1) prediction of transcatheter aortic valve replacement outcomes through numerical simulation, 2) implications for surgeons, and 3) trends in transcatheter aortic valve replacement numerical simulation. INTERPRETATIONS Our study offers a comprehensive overview of the utilization of numerical simulation in the context of transcatheter aortic valve replacement, and highlights the advantages, potential challenges from a clinical standpoint. The convergence of medicine and engineering plays a pivotal role in enhancing the outcomes of transcatheter aortic valve replacement. Numerical simulation has provided evidence of potential utility for tailored treatments.
Collapse
Affiliation(s)
- Xuan Huang
- Department of Cardiovascular Surgery, West China Biomedical Big Data Center, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, China; Med-X Center for Informatics, Sichuan University, Chengdu, Sichuan, China
| | - Guangming Zhang
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaoyan Yang
- Department of Cardiovascular Surgery, West China Biomedical Big Data Center, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, China; Med-X Center for Informatics, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
10
|
Kovarovic BJ, Rotman OM, Parikh PB, Slepian MJ, Bluestein D. Mild Paravalvular Leak May Pose an Increased Thrombogenic Risk in Transcatheter Aortic Valve Replacement (TAVR) Patients-Insights from Patient Specific In Vitro and In Silico Studies. Bioengineering (Basel) 2023; 10:188. [PMID: 36829682 PMCID: PMC9952825 DOI: 10.3390/bioengineering10020188] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
In recent years, the treatment of aortic stenosis with TAVR has rapidly expanded to younger and lower-risk patients. However, persistent thrombotic events such as stroke and valve thrombosis expose recipients to severe clinical complications that hamper TAVR's rapid advance. We presented a novel methodology for establishing a link between commonly acceptable mild paravalvular leak (PVL) levels through the device and increased thrombogenic risk. It utilizes in vitro patient-specific TAVR 3D-printed replicas evaluated for hydrodynamic performance. High-resolution µCT scans are used to reconstruct in silico FSI models of these replicas, in which multiple platelet trajectories are studied through the PVL channels to quantify thrombogenicity, showing that those are highly dependent on patient-specific flow conditions within the PVL channels. It demonstrates that platelets have the potential to enter the PVL channels multiple times over successive cardiac cycles, increasing the thrombogenic risk. This cannot be reliably approximated by standard hemodynamic parameters. It highlights the shortcomings of subjectively ranked PVL commonly used in clinical practice by indicating an increased thrombogenic risk in patient cases otherwise classified as mild PVL. It reiterates the need for more rigorous clinical evaluation for properly diagnosing thrombogenic risk in TAVR patients.
Collapse
Affiliation(s)
- Brandon J. Kovarovic
- Biofluids Research Group, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Oren M. Rotman
- Biofluids Research Group, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Puja B. Parikh
- Division of Cardiovascular Medicine, Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Marvin J. Slepian
- Department of Medicine, Sarver Heart Center, University of Arizona, Tucson, AZ 85724, USA
- Department of Biomedical Engineering, College of Engineering, University of Arizona, Tucson, AZ 85721, USA
| | - Danny Bluestein
- Biofluids Research Group, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
11
|
Wu P. Recent advances in the application of computational fluid dynamics in the development of rotary blood pumps. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
12
|
Li Y, Wang H, Xi Y, Sun A, Deng X, Chen Z, Fan Y. A New Mathematical Numerical Model to Evaluate the Risk of Thrombosis in Three Clinical Ventricular Assist Devices. Bioengineering (Basel) 2022; 9:bioengineering9060235. [PMID: 35735478 PMCID: PMC9219778 DOI: 10.3390/bioengineering9060235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
(1) Background: Thrombosis is the main complication in patients supported with ventricular assist devices (VAD). Models that accurately predict the risk of thrombus formation in VADs are still lacking. When VADs are clinically assisted, their complex geometric configuration and high rotating speed inevitably generate complex flow fields and high shear stress. These non-physiological factors can damage blood cells and proteins, release coagulant factors and trigger thrombosis. In this study, a more accurate model for thrombus assessment was constructed by integrating parameters such as shear stress, residence time and coagulant factors, so as to accurately assess the probability of thrombosis in three clinical VADs. (2) Methods: A mathematical model was constructed to assess platelet activation and thrombosis within VADs. By solving the transport equation, the influence of various factors such as shear stress, residence time and coagulation factors on platelet activation was considered. The diffusion equation was applied to determine the role of activated platelets and substance deposition on thrombus formation. The momentum equation was introduced to describe the obstruction to blood flow when thrombus is formed, and finally a more comprehensive and accurate model for thrombus assessment in patients with VAD was obtained. Numerical simulations of three clinically VADs (CH-VAD, HVAD and HMII) were performed using this model. The simulation results were compared with experimental data on platelet activation caused by the three VADs. The simulated thrombogenic potential in different regions of MHII was compared with the frequency of thrombosis occurring in the regions in clinic. The regions of high thrombotic risk for HVAD and HMII observed in experiments were compared with the regions predicted by simulation. (3) Results: It was found that the percentage of activated platelets within the VAD obtained by solving the thrombosis model developed in this study was in high agreement with the experimental data (r² = 0.984), the likelihood of thrombosis in the regions of the simulation showed excellent correlation with the clinical statistics (r² = 0.994), and the regions of high thrombotic risk predicted by the simulation were consistent with the experimental results. Further study revealed that the three clinical VADs (CH-VAD, HVAD and HMII) were prone to thrombus formation in the inner side of the secondary flow passage, the clearance between cone and impeller, and the corner region of the inlet pipe, respectively. The risk of platelet activation and thrombus formation for the three VADs was low to high for CH-VAD, HVAD, and HM II, respectively. (4) Conclusions: In this study, a more comprehensive and accurate thrombosis model was constructed by combining parameters such as shear stress, residence time, and coagulation factors. Simulation results of thrombotic risk received with this model showed excellent correlation with experimental and clinical data. It is important for determining the degree of platelet activation in VAD and identifying regions prone to thrombus formation, as well as guiding the optimal design of VAD and clinical treatment.
Collapse
|
13
|
Li Y, Yu J, Wang H, Xi Y, Deng X, Chen Z, Fan Y. Investigation of the influence of blade configuration on the hemodynamic performance and blood damage of the centrifugal blood pump. Artif Organs 2022; 46:1817-1832. [PMID: 35436361 DOI: 10.1111/aor.14265] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/01/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE The design and optimization of centrifugal blood pumps is crucial for improved extracorporeal membrane oxygenation system performances. Secondary flow passages are common in centrifugal blood pumps, allowing for a high volume of unstable flow. Traditional design theory offers minimal guidance on the design and optimization of centrifugal blood pumps, so it's critical to understand how design parameter variables affect hydraulic performances and hemocompatibility. METHODS Computational fluid dynamics (CFD) was employed to investigate the effects of blade number, blade wrap angle, blade thickness, and splitters on pressure head, hemolysis, and platelet activation state. Eulerian and Lagrangian features were used to analyze the flow fields and hemocompatibility metrics such as scalar shear stress, velocity distribution, and their correlation. RESULTS The equalization of frictional and flow losses allow impellers with more blades and smaller wrap angles to have higher pressure heads, whereas the trade-off between the volume of high scalar shear stress and exposure time allows impellers with fewer blades and larger blade wrap angles to have a lower HI; there are configurations that increase the possibility of platelet activation for both number of blades and wrap angles. The hydraulic performance and hemocompatibility of centrifugal blood pumps are not affected by blade thickness. Compared to the main blades, a splitters can improve the blood compatibility of a centrifugal blood pump with a small reduction in pressure head, but there is a trade-off between the length and location of the splitter that suppresses flow losses while reducing the velocity gradient. According to correlation analysis, pressure head, HI, and the volume of high shear stress were all substantially connected, and exposure time had a significant impact on HI. The platelet activation state was influenced by the average scalar shear stress and the volume of low velocity. CONCLUSION The findings reveal the impact of design variables on the performance of centrifugal blood pumps with secondary flow passages, as well as the relationship between hemocompatibility, hydraulic performance, and flow characteristics, and are useful for the design and optimization of this type of blood pump, as well as the prediction of clinical complications.
Collapse
Affiliation(s)
- Yuan Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Jiachen Yu
- School of Sino-french Engineer, Beihang University, Beijing, 100083, China
| | - Hongyu Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yifeng Xi
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xiaoyan Deng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Zengsheng Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| |
Collapse
|
14
|
A new way to evaluate thrombotic risk in failure heart and ventricular assist devices. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
15
|
Assessment of Paravalvular Leak Severity and Thrombogenic Potential in Transcatheter Bicuspid Aortic Valve Replacements Using Patient-Specific Computational Modeling. J Cardiovasc Transl Res 2021; 15:834-844. [PMID: 34859367 PMCID: PMC9160219 DOI: 10.1007/s12265-021-10191-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022]
Abstract
Bicuspid aortic valve (BAV), the most common congenital valvular abnormality, generates asymmetric flow patterns and increased stresses on the leaflets that expedite valvular calcification and structural degeneration. Recently adapted for use in BAV patients, TAVR demonstrates promising performance, but post-TAVR complications tend to get exacerbated due to BAV anatomical complexities. Utilizing patient-specific computational modeling, we address some of these complications. The degree and location of post-TAVR PVL was assessed, and the risk of flow-induced thrombogenicity was analyzed in 3 BAV patients - using older generation TAVR devices that were implanted in these patients, and compared them to the performance of the newest generation TAVR devices using in silico patient models. Significant decrease in PVL and thrombogenic potential was observed after implantation of the newest generation device. The current work demonstrates the potential of using simulations in pre-procedural planning to assess post-TAVR complications, and compare the performance of different devices to achieve better clinical outcomes. Patient-specific computational framework to assess post-transcatheter bicuspid aortic valve replacement paravalvular leakage and flow-induced thrombogenic complications and compare device performances.
Collapse
|
16
|
Shad R, Kaiser AD, Kong S, Fong R, Quach N, Bowles C, Kasinpila P, Shudo Y, Teuteberg J, Woo YJ, Marsden AL, Hiesinger W. Patient-Specific Computational Fluid Dynamics Reveal Localized Flow Patterns Predictive of Post-Left Ventricular Assist Device Aortic Incompetence. Circ Heart Fail 2021; 14:e008034. [PMID: 34139862 PMCID: PMC8292193 DOI: 10.1161/circheartfailure.120.008034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Progressive aortic valve disease has remained a persistent cause of concern in patients with left ventricular assist devices. Aortic incompetence (AI) is a known predictor of both mortality and readmissions in this patient population and remains a challenging clinical problem. METHODS Ten left ventricular assist device patients with de novo aortic regurgitation and 19 control left ventricular assist device patients were identified. Three-dimensional models of patients' aortas were created from their computed tomography scans, following which large-scale patient-specific computational fluid dynamics simulations were performed with physiologically accurate boundary conditions using the SimVascular flow solver. RESULTS The spatial distributions of time-averaged wall shear stress and oscillatory shear index show no significant differences in the aortic root in patients with and without AI (mean difference, 0.67 dyne/cm2 [95% CI, -0.51 to 1.85]; P=0.23). Oscillatory shear index was also not significantly different between both groups of patients (mean difference, 0.03 [95% CI, -0.07 to 0.019]; P=0.22). The localized wall shear stress on the leaflet tips was significantly higher in the AI group than the non-AI group (1.62 versus 1.35 dyne/cm2; mean difference [95% CI, 0.15-0.39]; P<0.001), whereas oscillatory shear index was not significantly different between both groups (95% CI, -0.009 to 0.001; P=0.17). CONCLUSIONS Computational fluid dynamics serves a unique role in studying the hemodynamic features in left ventricular assist device patients where 4-dimensional magnetic resonance imaging remains unfeasible. Contrary to the widely accepted notions of highly disturbed flow, in this study, we demonstrate that the aortic root is a region of relatively stagnant flow. We further identified localized hemodynamic features in the aortic root that challenge our understanding of how AI develops in this patient population.
Collapse
Affiliation(s)
- Rohan Shad
- Department of Cardiothoracic Surgery, Stanford University School of Medicine
| | - Alexander D. Kaiser
- Institute for Computational and Mathematical Engineering, Stanford University
- Department of Pediatrics (Cardiology), Stanford University
| | - Sandra Kong
- Department of Cardiothoracic Surgery, Stanford University School of Medicine
| | - Robyn Fong
- Department of Cardiothoracic Surgery, Stanford University School of Medicine
| | - Nicolas Quach
- Department of Cardiothoracic Surgery, Stanford University School of Medicine
| | - Cayley Bowles
- Department of Cardiothoracic Surgery, Stanford University School of Medicine
| | - Patpilai Kasinpila
- Department of Cardiothoracic Surgery, Stanford University School of Medicine
| | - Yasuhiro Shudo
- Department of Cardiothoracic Surgery, Stanford University School of Medicine
| | - Jeffrey Teuteberg
- Department of Medicine (Cardiovascular Medicine), Stanford University
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University School of Medicine
| | - Alison L. Marsden
- Department of Bioengineering, Stanford University
- Institute for Computational and Mathematical Engineering, Stanford University
- Department of Pediatrics (Cardiology), Stanford University
| | - William Hiesinger
- Department of Cardiothoracic Surgery, Stanford University School of Medicine
| |
Collapse
|
17
|
Soltany Sadrabadi M, Hedayat M, Borazjani I, Arzani A. Fluid-structure coupled biotransport processes in aortic valve disease. J Biomech 2021; 117:110239. [PMID: 33515904 DOI: 10.1016/j.jbiomech.2021.110239] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/22/2020] [Accepted: 01/04/2021] [Indexed: 12/28/2022]
Abstract
Biological transport processes near the aortic valve play a crucial role in calcific aortic valve disease initiation and bioprosthetic aortic valve thrombosis. Hemodynamics coupled with the dynamics of the leaflets regulate these transport patterns. Herein, two-way coupled fluid-structure interaction (FSI) simulations of a 2D bicuspid aortic valve and a 3D mechanical heart valve were performed and coupled with various convective mass transport models that represent some of the transport processes in calcification and thrombosis. Namely, five different continuum transport models were developed to study biochemicals that originate from the blood and the leaflets, as well as residence-time and flow stagnation. Low-density lipoprotein (LDL) and platelet activation were studied for their role in calcification and thrombosis, respectively. Coherent structures were identified using vorticity and Lagrangian coherent structures (LCS) for the 2D and 3D models, respectively. A very close connection between vortex structures and biochemical concentration patterns was shown where different vortices controlled the concentration patterns depending on the transport mechanism. Additionally, the relationship between leaflet concentration and wall shear stress was revealed. Our work shows that blood flow physics and coherent structures regulate the flow-mediated biological processes that are involved in aortic valve calcification and thrombosis, and therefore could be used in the design process to optimize heart valve replacement durability.
Collapse
Affiliation(s)
| | - Mohammadali Hedayat
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, USA
| | - Iman Borazjani
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, USA
| | - Amirhossein Arzani
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ, USA.
| |
Collapse
|
18
|
Sheriff J, Malone LE, Avila C, Zigomalas A, Bluestein D, Bahou WF. Shear-Induced Platelet Activation is Sensitive to Age and Calcium Availability: A Comparison of Adult and Cord Blood. Cell Mol Bioeng 2020; 13:575-590. [PMID: 33281988 PMCID: PMC7704822 DOI: 10.1007/s12195-020-00628-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/16/2020] [Indexed: 10/24/2022] Open
Abstract
INTRODUCTION Antiplatelet therapy for neonates and infants is often extrapolated from the adult experience, based on limited observation of agonist-induced neonatal platelet hypoactivity and poor understanding of flow shear-mediated platelet activation. Therefore, thrombotic events due to device-associated disturbed flow are inadequately mitigated in critically ill neonates with indwelling umbilical catheters and infants receiving cardiovascular implants. METHODS Whole blood (WB), platelet-rich plasma (PRP), and gel-filtered platelets (GFP) were prepared from umbilical cord and adult blood, and exposed to biochemical agonists or pathological shear stress of 70 dyne/cm2. We evaluated α-granule release, phosphatidylserine (PS) scrambling, and procoagulant response using P-selectin expression, Annexin V binding, and thrombin generation (PAS), respectively. Activation modulation due to depletion of intracellular and extracellular calcium, requisite second messengers, was also examined. RESULTS Similar P-selectin expression was observed for sheared adult and cord platelets, with concordant inhibition due to intracellular and extracellular calcium depletion. Sheared cord platelet Annexin V binding and PAS activity was similar to adult values in GFP, but lower in PRP and WB. Annexin V on sheared cord platelets was calcium-independent, with PAS slightly reduced by intracellular calcium depletion. CONCLUSIONS Increased PS activity on purified sheared cord platelets suggest that their intrinsic function under pathological flow conditions is suppressed by cell-cell or plasmatic components. Although secretory functions of adult and cord platelets retain comparable calcium-dependence, PS exposure in sheared cord platelets is uniquely calcium-independent and distinct from adults. Identification of calcium-regulated developmental disparities in shear-mediated platelet function may provide novel targets for age-specific antiplatelet therapy.
Collapse
Affiliation(s)
- Jawaad Sheriff
- Department of Biomedical Engineering, T08-50 Health Sciences Center, Stony Brook University, Stony Brook, NY 11794-8084 USA
| | - Lisa E. Malone
- Division of Hematology and Oncology, Department of Medicine, Stony Brook University, Stony Brook, NY 11794 USA
| | - Cecilia Avila
- Department of Obstetrics, Gynecology and Reproductive Medicine, Stony Brook University, Stony Brook, NY 11794 USA
| | - Amanda Zigomalas
- Department of Biomedical Engineering, T08-50 Health Sciences Center, Stony Brook University, Stony Brook, NY 11794-8084 USA
| | - Danny Bluestein
- Department of Biomedical Engineering, T08-50 Health Sciences Center, Stony Brook University, Stony Brook, NY 11794-8084 USA
| | - Wadie F. Bahou
- Division of Hematology and Oncology, Department of Medicine, Stony Brook University, Stony Brook, NY 11794 USA
| |
Collapse
|
19
|
Kasinpila P, Kong S, Fong R, Shad R, Kaiser AD, Marsden AL, Woo YJ, Hiesinger W. Use of patient-specific computational models for optimization of aortic insufficiency after implantation of left ventricular assist device. J Thorac Cardiovasc Surg 2020; 162:1556-1563. [PMID: 32653292 DOI: 10.1016/j.jtcvs.2020.04.164] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Aortic incompetence (AI) is observed to be accelerated in the continuous-flow left ventricular assist device (LVAD) population and is related to increased mortality. Using computational fluid dynamics (CFD), we investigated the hemodynamic conditions related to the orientation of the LVAD outflow in these patients. METHOD We identified 10 patients with new aortic regurgitation, and 20 who did not, after LVAD implantation between 2009 and 2018. Three-dimensional models of patients' aortas were created from their computed tomography scans. The geometry of the LVAD outflow graft in relation to the aorta was quantified using azimuth angles (AA), polar angles (PAs), and distance from aortic root. The models were used to run CFD simulations, which calculated the pressures and wall shear stress (rWSS) exerted on the aortic root. RESULTS The AA and PA were found to be similar. However, for combinations of high values of AA and low values of PA, there were no patients with AI. The distance from aortic root to the outflow graft was also smaller in patients who developed AI (3.39 ± 0.7 vs 4.07 ± 0.77 cm, P = .04). There was no significant difference in aortic root pressures in the 2 groups. The rWSS was greater in AI patients (4.60 ± 5.70 vs 2.37 ± 1.20 dyne/cm2, P < .001). Qualitatively, we observed a trend of greater perturbations, regions of high rWSS, and flow eddies in the AI group. CONCLUSIONS Using CFD simulations, we demonstrated that patients who developed de novo AI have greater rWSS at the aortic root, and their outflow grafts were placed closer to the aortic roots than those patients without de novo AI.
Collapse
Affiliation(s)
- Patpilai Kasinpila
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Sandra Kong
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Robyn Fong
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Rohan Shad
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Alexander D Kaiser
- Departments of Bioengineering, Stanford University, Stanford, Calif; Pediatrics (Cardiology), Stanford University, Stanford, Calif
| | - Alison L Marsden
- Pediatrics (Cardiology), Stanford University, Stanford, Calif; Institute for Computational and Mathematical Engineering, Stanford University, Stanford, Calif
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - William Hiesinger
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif.
| |
Collapse
|
20
|
Chivukula VK, Beckman JA, Prisco AR, Lin S, Dardas TF, Cheng RK, Farris SD, Smith JW, Mokadam NA, Mahr C, Aliseda A. Small Left Ventricular Size Is an Independent Risk Factor for Ventricular Assist Device Thrombosis. ASAIO J 2020; 65:152-159. [PMID: 29677037 DOI: 10.1097/mat.0000000000000798] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The prevalence of ventricular assist device (VAD) therapy has continued to increase due to a stagnant donor supply and growing advanced heart failure (HF) population. We hypothesize that left ventricular (LV) size strongly influences biocompatibility and risk of thrombosis. Unsteady computational fluid dynamics (CFD) was used in conjunction with patient-derived computational modeling and virtual surgery with a standard, apically implanted inflow cannula. A dual-focus approach of evaluating thrombogenicity was employed: platelet-based metrics to characterize the platelet environment and flow-based metrics to investigate hemodynamics. Left ventricular end-diastolic dimensions (LVEDds) ranging from 4.5 to 6.5 cm were studied and ranked according to relative thrombogenic potential. Over 150,000 platelets were individually tracked in each LV model over 15 cardiac cycles. As LV size decreased, platelets experienced markedly increased shear stress histories (SHs), whereas platelet residence time (RT) in the LV increased with size. The complex interplay between increased SH and longer RT has profound implications on thrombogenicity, with a significantly higher proportion of platelets in small LVs having long RT times and being subjected to high SH, contributing to thrombus formation. Our data suggest that small LV size, rather than decreased VAD speed, is the primary pathologic mechanism responsible for the increased incidence of thrombosis observed in VAD patients with small LVs.
Collapse
Affiliation(s)
| | | | - Anthony R Prisco
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Shin Lin
- Division of Cardiology, University of Washington, Seattle, Washington
| | - Todd F Dardas
- Division of Cardiology, University of Washington, Seattle, Washington
| | - Richard K Cheng
- Division of Cardiology, University of Washington, Seattle, Washington
| | - Stephen D Farris
- Division of Cardiology, University of Washington, Seattle, Washington
| | - Jason W Smith
- Division of Cardiothoracic Surgery, University of Washington, Seattle, Washington
| | - Nahush A Mokadam
- Division of Cardiothoracic Surgery, University of Washington, Seattle, Washington
| | - Claudius Mahr
- Division of Cardiology, University of Washington, Seattle, Washington
| | | |
Collapse
|
21
|
Goode D, Dhaliwal R, Mohammadi H. Transcatheter Mitral Valve Replacement: State of the Art. Cardiovasc Eng Technol 2020; 11:229-253. [DOI: 10.1007/s13239-020-00460-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 02/14/2020] [Indexed: 10/24/2022]
|
22
|
Li M, Walk R, Roka-Moiia Y, Sheriff J, Bluestein D, Barth EJ, Slepian MJ. Circulatory loop design and components introduce artifacts impacting in vitro evaluation of ventricular assist device thrombogenicity: A call for caution. Artif Organs 2019; 44:E226-E237. [PMID: 31876310 DOI: 10.1111/aor.13626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/20/2019] [Accepted: 12/16/2019] [Indexed: 12/28/2022]
Abstract
Mechanical circulatory support (MCS) devices continue to be hampered by thrombotic adverse events (AEs), a consequence of device-imparted supraphysiologic shear stresses, leading to shear-mediated platelet activation (SMPA). In advancing MCS devices from design to clinical use, in vitro circulatory loops containing the device under development and testing are utilized as a means of assessing device thrombogenicity. Physical characteristics of these test circulatory loops may also contribute to inadvertent platelet activation through imparted shear stress, adding inadvertent error in evaluating MCS device thrombogenicity. While investigators normally control for the effect of a loop, inadvertent addition of what are considered innocuous connectors may impact test results. Here, we tested the effect of common, additive components of in vitro circulatory test loops, that is, connectors and loop geometry, as to their additive contribution to shear stress via both in silico and in vitro models. A series of test circulatory loops containing a ventricular assist device (VAD) with differing constituent components, were established in silico including: loops with 0~5 Luer connectors, a loop with a T-connector creating 90° angulation, and a loop with 90° angulation. Computational fluid dynamics (CFD) simulations were performed using a k - ω shear stress transport turbulence model to platelet activation index (PAI) based on a power law model. VAD-operated loops replicating in silico designs were assembled in vitro and gel-filtered human platelets were recirculated within (1 hour) and SMPA was determined. CFD simulations demonstrated high shear being introduced at non-smooth regions such as edge-connector boundaries, tubing, and at Luer holes. Noticeable peaks' shifts of scalar shear stress (sss) distributions toward high shear-region existed with increasing loop complexity. Platelet activation also increased with increasing shear exposure time, being statistically higher when platelets were exposed to connector-employed loop designs. The extent of platelet activation in vitro could be successfully predicted by CFD simulations. Loops employing additional components (non-physiological flow pattern connectors) resulted in higher PAI. Loops with more components (5-connector loop and 90° T-connector) showed 63% and 128% higher platelet activation levels, respectively, versus those with fewer (0-connector (P = .023) and a 90° heat-bend loop (P = .0041). Our results underscore the importance of careful consideration of all component elements, and suggest the need for standardization in designing in vitro circulatory loops for MCS device evaluation to avoid inadvertent additive SMPA during device evaluation, confounding overall results. Specifically, we caution on the use and inadvertent introduction of additional connectors, ports, and other shear-generating elements which introduce artifact, clouding primary device evaluation via introduction of additive SMPA.
Collapse
Affiliation(s)
- Mengtang Li
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Ryan Walk
- Department of Medicine, Sarver Heart Center, University of Arizona, Tucson, AZ, USA
| | - Yana Roka-Moiia
- Department of Medicine, Sarver Heart Center, University of Arizona, Tucson, AZ, USA
| | - Jawaad Sheriff
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Eric J Barth
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Marvin J Slepian
- Department of Medicine, Sarver Heart Center, University of Arizona, Tucson, AZ, USA.,Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.,Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
23
|
Chen Z, Zhang J, Li T, Tran D, Griffith BP, Wu ZJ. The impact of shear stress on device-induced platelet hemostatic dysfunction relevant to thrombosis and bleeding in mechanically assisted circulation. Artif Organs 2019; 44:E201-E213. [PMID: 31849074 DOI: 10.1111/aor.13609] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/21/2022]
Abstract
The aim of this study was to examine the impact of the nonphysiological shear stress (NPSS) on platelet hemostatic function relevant to thrombosis and bleeding in mechanically assisted circulation. Fresh human blood was circulated for four hours in in vitro circulatory flow loops with a CentriMag blood pump operated under a flow rate of 4.5 L/min against three pressure heads (70 mm Hg, 150 mm Hg, and 350 mm Hg) at 2100, 2800, and 4000 rpm, respectively. Hourly blood samples from the CentriMag pump-assisted circulation loops were collected and analyzed for glycoprotein (GP) IIb/IIIa activation and receptor shedding of GPVI and GPIbα on the platelet surface with flow cytometry. Adhesion of platelets to fibrinogen, collagen, and von Willebrand factor (VWF) of the collected blood samples was quantified with fluorescent microscopy. In parallel, mechanical shear stress fields within the CentriMag pump operated under the three conditions were assessed by computational fluid dynamics (CFD) analysis. The experimental results showed that levels of platelet GPIIb/IIIa activation and platelet receptor shedding (GPVI and GPIbα) in the blood increased with increasing the circulation time. The levels of platelet activation and loss of platelet receptors GPVI and GPIbα were consistently higher with higher pressure heads at each increasing hour in the CentriMag pump-assisted circulation. The platelet adhesion on fibrinogen increased with increasing the circulation time for all three CentriMag operating conditions and was correlated well with the level of platelet activation. In contrast, the platelet adhesion on collagen and VWF decreased with increasing the circulation time under all the three conditions and was correlated well with the loss of the receptors GPVI and GPIbα on the platelet surface, respectively. The CFD results showed that levels of shear stresses inside the CentriMag pump under all three operating conditions exceeded the maximum level of shear stress in the normal physiological circulation and were strongly dependent on the pump operating condition. The level of platelet activation and loss of key platelet adhesion receptors (GPVI and GPIbα) were correlated with the level of NPSS generated by the CentriMag pump, respectively. In summary, the level of NPSS associated with pump operating condition is a critical determinant of platelet dysfunction in mechanically assisted circulation.
Collapse
Affiliation(s)
- Zengsheng Chen
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jiafeng Zhang
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Tieluo Li
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Douglas Tran
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Bartley P Griffith
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Zhongjun J Wu
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland
| |
Collapse
|
24
|
Left Ventricular Assist Device Inflow Cannula Insertion Depth Influences Thrombosis Risk. ASAIO J 2019; 66:766-773. [DOI: 10.1097/mat.0000000000001068] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
25
|
Modeling sensitivity and uncertainties in platelet activation models applied on centrifugal pumps for extracorporeal life support. Sci Rep 2019; 9:8809. [PMID: 31217491 PMCID: PMC6584555 DOI: 10.1038/s41598-019-45121-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/29/2019] [Indexed: 11/08/2022] Open
Abstract
Two platelet activation models were studied with respect to uncertainties of model parameters and variables. The sensitivity was assessed using two direct/deterministic approaches as well as the statistical Monte Carlo method. The first two, are linear in character whereas the latter is non-linear. The platelet activation models were applied on platelets moving within an extracorporeal centrifugal blood pump. The phenomenological, Lagrangian stress- and time-based power law-based models under consideration, have experimentally calibrated parameters and the stress expressed in a scalar form. The sensitivity of the model with respect to model parameters and the expression of the scalar stress was examined focusing on a smaller group of platelets associated with an elevated risk of activation. The results showed a high disparity between the models in terms of platelet activation state, found to depend on the platelets’ trajectory in the pump and the expression used for the scalar stress. Monte Carlo statistics was applied to the platelets at risk for activation and not to the entire platelet population. The method reveals the non-linear sensitivity of the activation models. The results imply that power-law based models have a restricted range of validity. The conclusions of this study apply to both platelet activation and hemolysis models.
Collapse
|
26
|
May‐Newman K, Montes R, Campos J, Marquez‐Maya N, Vu V, Zebrowski E, Motomura T, Benkowski R. Reducing regional flow stasis and improving intraventricular hemodynamics with a tipless inflow cannula design: An in vitro flow visualization study using the EVAHEART LVAD. Artif Organs 2019; 43:834-848. [DOI: 10.1111/aor.13477] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/11/2019] [Accepted: 04/23/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Karen May‐Newman
- Bioengineering Program, Department of Mechanical Engineering San Diego State University San Diego California
| | - Ricardo Montes
- Bioengineering Program, Department of Mechanical Engineering San Diego State University San Diego California
| | - Josue Campos
- Bioengineering Program, Department of Mechanical Engineering San Diego State University San Diego California
| | - Nikolas Marquez‐Maya
- Bioengineering Program, Department of Mechanical Engineering San Diego State University San Diego California
| | - Vi Vu
- Bioengineering Program, Department of Mechanical Engineering San Diego State University San Diego California
| | | | | | | |
Collapse
|
27
|
Abstract
In this work, we present a numerical investigation of blood flow in a portion of the human vascular system. More precisely, the present work analyzed the blood flow in the upper portion of the aorta. The aorta and its ramified blood vessels are surrounded by the cardiac muscle. The blood flow generates pressure on the internal surfaces of the artery and its ramifications, thereby causing deformation of the cardiac muscle. The numerical analysis used the Navier–Stokes equations as the governing equations of blood flow for the calculation of the velocity field and pressure distribution in the blood. The neo-Hookean hyperelastic model was used for the description of the behavior of the vessel walls. The velocity and pressure distributions were analyzed. The deformation of the vessel was also investigated. The numerical results could be used to better understand and predict the factors that trigger cardiovascular diseases and distortions of the aorta and as a diagnostic tool in clinical applications.
Collapse
|
28
|
Vu V, May-Newman K. Bileaflet Prosthesis Design and Orientation Affect Fluid Shear, Residence Time, and Thrombus Formation. J Cardiothorac Vasc Anesth 2019; 33:2870-2872. [PMID: 31060942 DOI: 10.1053/j.jvca.2019.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 11/11/2022]
Abstract
The orientation and design of bileaflet valve prosthesis in the mitral position affects the intraventricular blood flow and exposure to shear. The combination of the anatomic orientation and a small gap size of the St. Jude Medical valve produces an increase in shear exposure and blood residence time, which both predispose the formation of thrombus in the high shear gaps of the valve hinges.
Collapse
Affiliation(s)
- Vi Vu
- Bioengineering Program, Dept. of Mechanical Engineering, San Diego State University, San Diego, CA
| | - Karen May-Newman
- Bioengineering Program, Dept. of Mechanical Engineering, San Diego State University, San Diego, CA.
| |
Collapse
|
29
|
Device Thrombogenicity Emulation: An In Silico Predictor of In Vitro and In Vivo Ventricular Assist Device Thrombogenicity. Sci Rep 2019; 9:2946. [PMID: 30814674 PMCID: PMC6393420 DOI: 10.1038/s41598-019-39897-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 02/04/2019] [Indexed: 12/02/2022] Open
Abstract
Ventricular assist devices (VAD), a mainstay of therapy for advanced and end-stage heart failure, remain plagued by device thrombogenicity. Combining advanced in silico and in vitro methods, Device Thrombogenicity Emulation (DTE) is a device design approach for enhancing VAD thromboresistance. Here we tested DTE efficacy in experimental VAD designs. DTE incorporates iterative design modifications with advanced CFD to compute the propensity of large populations of platelets to activate by flow-induced stresses (statistically representing the VAD ‘Thrombogenic Footprint’). The DTE approach was applied to a VAD (MINDTE) design with a favorable thromboresistance profile and compared against a design (MAXDTE) that generated an intentionally poor thromboresistance profile. DTE predictions were confirmed by testing physical prototypes in vitro by measuring VAD thrombogenicity using the modified prothrombinase assay. Chronic in vivo studies in VAD implanted calves, revealed MINDTE calf surviving well with low platelet activation, whereas the MAXDTE animal sustained thromboembolic strokes. DTE predictions were confirmed, correlating with in vitro and in vivo thrombogenicity, supporting utility in guiding device development, potentially reducing the need for animal studies.
Collapse
|
30
|
Ngo AT, Sheriff J, Rocheleau AD, Bucher M, Jones KR, Sepp ALI, Malone LE, Zigomalas A, Maloyan A, Bahou WF, Bluestein D, McCarty OJT, Haley KM. Assessment of neonatal, cord, and adult platelet granule trafficking and secretion. Platelets 2019; 31:68-78. [PMID: 30810440 PMCID: PMC6711836 DOI: 10.1080/09537104.2019.1573314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 02/01/2019] [Accepted: 01/16/2019] [Indexed: 10/27/2022]
Abstract
Despite the transient hyporeactivity of neonatal platelets, full-term neonates do not display a bleeding tendency, suggesting potential compensatory mechanisms which allow for balanced and efficient neonatal hemostasis. This study aimed to utilize small-volume, whole blood platelet functional assays to assess the neonatal platelet response downstream of the hemostatic platelet agonists thrombin and adenosine diphosphate (ADP). Thrombin activates platelets via the protease-activated receptors (PARs) 1 and 4, whereas ADP signals via the receptors P2Y1 and P2Y12 as a positive feedback mediator of platelet activation. We observed that neonatal and cord blood-derived platelets exhibited diminished PAR1-mediated granule secretion and integrin activation relative to adult platelets, correlating to reduced PAR1 expression by neonatal platelets. PAR4-mediated granule secretion was blunted in neonatal platelets, correlating to lower PAR4 expression as compared to adult platelets, while PAR4 mediated GPIIb/IIIa activation was similar between neonatal and adult platelets. Under high shear stress, cord blood-derived platelets yielded similar thrombin generation rates but reduced phosphatidylserine expression as compared to adult platelets. Interestingly, we observed enhanced P2Y1/P2Y12-mediated dense granule trafficking in neonatal platelets relative to adults, although P2Y1/P2Y12 expression in neonatal, cord, and adult platelets were similar, suggesting that neonatal platelets may employ an ADP-mediated positive feedback loop as a potential compensatory mechanism for neonatal platelet hyporeactivity.
Collapse
Affiliation(s)
- Anh T.P. Ngo
- Department of Biomedical Engineering, Oregon Health &
Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, USA 97239
| | - Jawaad Sheriff
- Department of Biomedical Engineering; Stony Brook
University, Stony Brook, NY, USA 11794
| | - Anne D. Rocheleau
- Department of Biomedical Engineering, Oregon Health &
Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, USA 97239
| | - Matthew Bucher
- Knight Cardiovascular Institute, Oregon Health &
Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, USA 97239
- Department of Obstetrics and Gynecology, Oregon Health
& Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, USA 97239
| | - Kendra R. Jones
- Department of Biomedical Engineering, Oregon Health &
Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, USA 97239
| | - Anna-Liisa I. Sepp
- Department of Biomedical Engineering, Oregon Health &
Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, USA 97239
| | - Lisa E. Malone
- Division of Hematology, Department of Medicine, Stony Brook
University, Stony Brook, NY, USA 11794
| | - Amanda Zigomalas
- Department of Biomedical Engineering; Stony Brook
University, Stony Brook, NY, USA 11794
| | - Alina Maloyan
- Knight Cardiovascular Institute, Oregon Health &
Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, USA 97239
- Department of Obstetrics and Gynecology, Oregon Health
& Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, USA 97239
| | - Wadie F. Bahou
- Division of Hematology, Department of Medicine, Stony Brook
University, Stony Brook, NY, USA 11794
| | - Danny Bluestein
- Department of Biomedical Engineering; Stony Brook
University, Stony Brook, NY, USA 11794
| | - Owen J. T. McCarty
- Department of Biomedical Engineering, Oregon Health &
Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, USA 97239
| | - Kristina M. Haley
- The Hemophilia Center, Oregon Health & Science
University, 3181 SW Sam Jackson Park Rd, Portland, OR, USA 97239
| |
Collapse
|
31
|
Current Challenges and Emergent Technologies for Manufacturing Artificial Right Ventricle to Pulmonary Artery (RV-PA) Cardiac Conduits. Cardiovasc Eng Technol 2019; 10:205-215. [DOI: 10.1007/s13239-019-00406-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 02/05/2019] [Indexed: 01/12/2023]
|
32
|
Mitral Valve Prosthesis Design Affects Hemodynamic Stasis and Shear In The Dilated Left Ventricle. Ann Biomed Eng 2019; 47:1265-1280. [DOI: 10.1007/s10439-019-02218-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/23/2019] [Indexed: 11/26/2022]
|
33
|
Hedayat M, Borazjani I. Comparison of platelet activation through hinge vs bulk flow in bileaflet mechanical heart valves. J Biomech 2019; 83:280-290. [DOI: 10.1016/j.jbiomech.2018.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 11/12/2018] [Accepted: 12/03/2018] [Indexed: 10/27/2022]
|
34
|
Patient-specific simulation of transcatheter aortic valve replacement: impact of deployment options on paravalvular leakage. Biomech Model Mechanobiol 2018; 18:435-451. [PMID: 30460623 DOI: 10.1007/s10237-018-1094-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/01/2018] [Indexed: 10/27/2022]
Abstract
Transcatheter aortic valve replacement (TAVR) has emerged as an effective alternative to conventional surgical valve replacement in high-risk patients afflicted by severe aortic stenosis. Despite newer-generation devices enhancements, post-procedural complications such as paravalvular leakage (PVL) and related thromboembolic events have been hindering TAVR expansion into lower-risk patients. Computational methods can be used to build and simulate patient-specific deployment of transcatheter aortic valves (TAVs) and help predict the occurrence and degree of PVL. In this study finite element analysis and computational fluid dynamics were used to investigate the influence of procedural parameters on post-deployment hemodynamics on three retrospective clinical cases affected by PVL. Specifically, TAV implantation depth and balloon inflation volume effects on stent anchorage, degree of paravalvular regurgitation and thrombogenic potential were analyzed for cases in which Edwards SAPIEN and Medtronic CoreValve were employed. CFD results were in good agreement with corresponding echocardiography data measured in patients in terms of the PVL jets locations and overall PVL degree. Furthermore, parametric analyses demonstrated that positioning and balloon over-expansion may have a direct impact on the post-deployment TAVR performance, achieving as high as 47% in PVL volume reduction. While the model predicted very well clinical data, further validation on a larger cohort of patients is needed to verify the level of the model's predictions in various patient-specific conditions. This study demonstrated that rigorous and realistic patient-specific numerical models could potentially serve as a valuable tool to assist physicians in pre-operative TAVR planning and TAV selection to ultimately reduce the risk of clinical complications.
Collapse
|
35
|
Lommel MA, Goubergrits L, Affeld K, Kertzscher U. Couette shearing device for the investigation of shear-induced damage of the primary hemostasis by left ventricular assist devices. Int J Artif Organs 2018; 42:143-150. [PMID: 30345868 DOI: 10.1177/0391398818802950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION: Continuous-flow left ventricular assist devices have evolved from short-time therapy into permanent or so-called destination therapy. One complication in long-term usage is bleeding, which is presumably attributed to shear-induced interference of left ventricular assist devices with the coagulation system. METHODS: The influence of dynamic shear stresses on primary hemostasis by single or multiple passes through left ventricular assist devices was investigated. A novel Couette-type shearing device, especially fitted to simulate left ventricular assist devices with highly dynamic and repetitive stresses, was developed. To evaluate the clotting ability of the blood and thus the bleeding tendency, the closure time of the platelet function analyzer (PFA-100®, Dade Behring, Marburg, Germany) was used. The relationship of the PFA-100 closure time was fitted to measurement points with shear stress and exposure time as parameters. RESULTS: 76 samples of human blood collected from four different healthy donors in sodium-citrate anticoagulant solution were tested, including 20 control samples. A damage model according to the power law approach could be developed. A linear correlation of shear stress and exposure time to the PFA-100 closure time could be determined. In addition, a model was developed to calculate the increase in the PFA closure time on the basis of shear stress over time curves. DISCUSSION: With the shearing device, half-sine-wave-shaped shear stress patterns relevant to rotary blood pumps can be achieved with very good repeatability. The proposed damage model could be used to compare and optimize left ventricular assist devices under development. The tests showed a significant decrease in coagulability after only a few repetitions.
Collapse
Affiliation(s)
- Michael Achim Lommel
- Biofluid Mechanics Laboratory, Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Leonid Goubergrits
- Biofluid Mechanics Laboratory, Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Klaus Affeld
- Biofluid Mechanics Laboratory, Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrich Kertzscher
- Biofluid Mechanics Laboratory, Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
36
|
Marom G, Eswaran SK, Rapoza RJ, Hossainy SFA, Slepian MJ, Bluestein D. Design Effect of Metallic (Durable) and Polymeric (Resorbable) Stents on Blood Flow and Platelet Activation. Artif Organs 2018; 42:1148-1156. [DOI: 10.1111/aor.13276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/13/2018] [Accepted: 04/13/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Gil Marom
- Department of Biomedical Engineering; Stony Brook University; Stony Brook NY USA
- School of Mechanical Engineering; Tel Aviv University; Tel Aviv Israel
| | | | | | | | - Marvin J. Slepian
- Department of Biomedical Engineering; Stony Brook University; Stony Brook NY USA
- Departments of Medicine and Biomedical Engineering; Sarver Heart Center, University of Arizona; Tucson AZ USA
| | - Danny Bluestein
- Department of Biomedical Engineering; Stony Brook University; Stony Brook NY USA
| |
Collapse
|
37
|
Abstract
Treatment of end-stage heart failure includes cardiac transplantation or ventricular assist device (VAD) therapy. Although increasingly prevalent, current VAD therapy has inherent complications, including thrombosis. Studies have demonstrated that VAD implantation alters intracardiac blood flow, creating areas of stagnation that predispose to thrombus formation. Two potential surgical configurations exist for VAD implantation: through the apical or diaphragmatic surfaces of the heart. We hypothesized that diaphragmatic implantation causes more stagnation than apical implantation. We also hypothesized that intermittent aortic valve (AV) opening reduces stagnation of blood inside the left ventricle (LV) when compared with a closed AV. To test these hypotheses, a human LV geometry was recreated in silico and a VAD inflow cannula was virtually implanted in each configuration. A computational indicator-dilution study was conducted where "virtually dyed blood" was washed out of the LV by injecting blood with no dye. Simulations demonstrated a substantial reduction in stagnation with intermittent AV opening. In addition, virtual dye was cleared slightly faster in the apical configuration. Simulations from our study demonstrate the clinical importance of VAD management to allow intermittent opening of the AV to prevent subvalvular stagnation, and also suggests that apical configuration might be more hemodynamically favorable.
Collapse
|
38
|
Buck AKW, Goebel SG, Goodin MS, Wright NJ, Groszek JJ, Moyer J, Singh S, Bluestein D, Fissell WH, Roy S. Original article submission: Platelet stress accumulation analysis to predict thrombogenicity of an artificial kidney. J Biomech 2018; 69:26-33. [PMID: 29395231 DOI: 10.1016/j.jbiomech.2018.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/27/2017] [Accepted: 01/08/2018] [Indexed: 02/01/2023]
Abstract
An implantable artificial kidney using a hemofilter constructed from an array of silicon membranes to provide ultrafiltration requires a suitable blood flow path to ensure stable operation in vivo. Two types of flow paths distributing blood to the array of membranes were evaluated: parallel and serpentine. Computational fluid dynamics (CFD) simulations were used to guide the development of the blood flow paths. Pressure data from animal tests were used to obtain pulsatile flow conditions imposed in the transient simulations. A key consideration for stable operation in vivo is limiting platelet stress accumulation to avoid platelet activation and thrombus formation. Platelet stress exposure was evaluated by CFD particle tracking methods through the devices to provide distributions of platelet stress accumulation. The distributions of stress accumulation over the duration of a platelet lifetime for each device revealed that stress accumulation for the serpentine flow path exceeded levels expected to cause platelet activation while the accumulated stress for the parallel flow path was below expected activation levels.
Collapse
Affiliation(s)
- Amanda K W Buck
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | | | | | - Nathan J Wright
- Department of Bioengineering & Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Joseph J Groszek
- Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jarrett Moyer
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Sukhveer Singh
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - William H Fissell
- Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shuvo Roy
- Department of Bioengineering & Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
39
|
Ventricular Assist Device Implantation Configurations Impact Overall Mechanical Circulatory Support System Thrombogenic Potential. ASAIO J 2018; 63:285-292. [PMID: 27922885 DOI: 10.1097/mat.0000000000000488] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ventricular assist devices (VADs) became in recent years the standard of care therapy for advanced heart failure with hemodynamic compromise. With the steadily growing population of device recipients, various postimplant complications have been reported, mostly associated with the hypershear generated by VADs that enhance their thrombogenicity by activating platelets. Although VAD design optimization can significantly improve its thromboresistance, the implanted VAD need to be evaluated as part of a system. Several clinical studies indicated that variability in implantation configurations may contribute to the overall system thrombogenicity. Numerical simulations were conducted in the HeartAssist 5 (HA5) and HeartMate II (HMII) VADs in the following implantation configurations: 1) inflow cannula angles: 115° and 140° (HA5); 2) three VAD circumferential orientations: 0°, 30°, and 60° (HA5 and HMII); and 3) 60° and 90° outflow graft anastomotic angles with respect to the ascending aorta (HA5). The stress accumulation of the platelets was calculated along flow trajectories and collapsed into a probability density function, representing the "thrombogenic footprint" of each configuration-a proxy to its thrombogenic potential (TP). The 140° HA5 cannula generated lower TP independent of the circumferential orientation of the VAD. Sixty-degree orientation generated the lowest TP for the HA5 versus 0° for the HMII. An anastomotic angle of 60° resulted in lower TP for HA5. These results demonstrate that optimizing the implantation configuration reduces the overall system TP. Thromboresistance can be enhanced by combining VAD design optimization with the surgical implantation configurations for achieving better clinical outcomes of implanted VADs.
Collapse
|
40
|
Valerio L, Sheriff J, Tran PL, Brengle W, Redaelli A, Fiore GB, Pappalardo F, Bluestein D, Slepian MJ. Routine clinical anti-platelet agents have limited efficacy in modulating hypershear-mediated platelet activation associated with mechanical circulatory support. Thromb Res 2017; 163:162-171. [PMID: 29428715 DOI: 10.1016/j.thromres.2017.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/03/2017] [Accepted: 12/02/2017] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Continuous flow ventricular assist devices (cfVADs) continue to be limited by thrombotic complications associated with disruptive flow patterns and supraphysiologic shear stresses. Patients are prescribed complex antiplatelet therapies, which do not fully prevent recurrent thromboembolic events. This is partially due to limited data on antiplatelet efficacy under cfVAD-associated shear conditions. MATERIALS AND METHODS We investigated the efficacy of antiplatelet drugs directly acting on three pathways: (1) cyclooxygenase (aspirin), (2) phosphodiesterase (dipyridamole, pentoxifylline, cilostazol), and (3) glycoprotein IIb-IIIa (eptifibatide). Gel-filtered platelets treated with these drugs were exposed for 10min to either constant shear stresses (30dyne/cm2 and 70dyne/cm2) or dynamic shear stress profiles extracted from simulated platelet trajectories through a cfVAD (Micromed DeBakey). Platelet activation state (PAS) was measured using a modified prothrombinase-based assay, with drug efficacy quantified based on PAS reduction compared to untreated controls. RESULTS AND CONCLUSIONS Significant PAS reduction was observed for all drugs after exposure to 30dyne/cm2 constant shear stress, and all drugs but dipyridamole after exposure to the 30th percentile shear stress waveform of the cfVAD. However, only cilostazol was significantly effective after 70dyne/cm2 constant shear stress exposure, though no significant reduction was observed upon exposure to median shear stress conditions in the cfVAD. These results, coupled with the persistence of reported clinical thrombotic complication, suggest the need for the development of new classes of drugs that are especially designed to mitigate thrombosis in cfVAD patients, while reducing or eliminating the risk of bleeding.
Collapse
Affiliation(s)
- Lorenzo Valerio
- Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milan, Italy; Department of Cardiothoracic Anesthesia and Intensive Care, Istituto Scientifico San Raffaele, Milan, Italy
| | - Jawaad Sheriff
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Phat L Tran
- Department of Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, AZ, USA
| | - William Brengle
- Department of Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, AZ, USA
| | - Alberto Redaelli
- Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Gianfranco B Fiore
- Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Federico Pappalardo
- Department of Cardiothoracic Anesthesia and Intensive Care, Istituto Scientifico San Raffaele, Milan, Italy
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Marvin J Slepian
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA; Department of Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, AZ, USA; Department of Medicine, Sarver Heart Center, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
41
|
Aliseda A, Chivukula VK, McGah P, Prisco AR, Beckman JA, Garcia GJ, Mokadam NA, Mahr C. LVAD Outflow Graft Angle and Thrombosis Risk. ASAIO J 2017; 63:14-23. [PMID: 28033200 PMCID: PMC5201113 DOI: 10.1097/mat.0000000000000443] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This study quantifies thrombogenic potential (TP) of a wide range of left ventricular assist device (LVAD) outflow graft anastomosis angles through state-of-the-art techniques: 3D imaged-based patient-specific models created via virtual surgery and unsteady computational fluid dynamics with Lagrangian particle tracking. This study aims at clarifying the influence of a single parameter (outflow graft angle) on the thrombogenesis associated with flow patterns in the aortic root after LVAD implantation. This is an important and poorly-understood aspect of LVAD therapy, because several studies have shown strong inter and intrapatient thrombogenic variability and current LVAD implantation strategies do not incorporate outflow graft angle optimization. Accurate platelet-level investigation, enabled by statistical treatment of outliers in Lagrangian particle tracking, demonstrates a strong influence of outflow graft anastomoses angle on thrombogenicity (platelet residence times and activation state characterized by shear stress accumulation) with significantly reduced TP for acutely-angled anastomosed outflow grafts. The methodology presented in this study provides a device-neutral platform for conducting comprehensive thrombogenicity evaluation of LVAD surgical configurations, empowering optimal patient-focused surgical strategies for long-term treatment and care for advanced heart failure patients.
Collapse
Affiliation(s)
- Alberto Aliseda
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | | | - Patrick McGah
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Anthony R. Prisco
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Guilherme J.M. Garcia
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nahush A Mokadam
- Division of Cardiothoracic Surgery, University of Washington, Seattle, WA, USA
| | - Claudius Mahr
- Division of Cardiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
42
|
Review of numerical methods for simulation of mechanical heart valves and the potential for blood clotting. Med Biol Eng Comput 2017; 55:1519-1548. [DOI: 10.1007/s11517-017-1688-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/10/2017] [Indexed: 11/26/2022]
|
43
|
Hedayat M, Asgharzadeh H, Borazjani I. Platelet activation of mechanical versus bioprosthetic heart valves during systole. J Biomech 2017; 56:111-116. [DOI: 10.1016/j.jbiomech.2017.03.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 11/16/2022]
|
44
|
Hydrodynamic Simulation of an Orbital Shaking Test for the Degradation Assessment of Blood-Contact Biomedical Coatings. MICROMACHINES 2017. [PMCID: PMC6189871 DOI: 10.3390/mi8040132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biomedical coatings are used to promote the wear resistance and the biocompatibility of a mechanical heart valve. An orbital shaking test was proposed to assess the durability of the coatings by the amount material eroded by the surrounding fluid. However, there is still a lack of understanding with regards to the shaker’s rotating conditions and the corresponding physiological condition. This study implemented numerical simulations by establishing a fluid dynamic model to evaluate the intensity of the shear stress under various rotating speeds and diameters of the shaker. The results are valuable to conduct in vitro tests for estimating the performance of biomedical coatings under real hemodynamic conditions and can be applied to other fluid-contact implants.
Collapse
|
45
|
Bluestein D. Utilizing Computational Fluid Dynamics in Cardiovascular Engineering and Medicine-What You Need to Know. Its Translation to the Clinic/Bedside. Artif Organs 2017; 41:117-121. [PMID: 28181302 DOI: 10.1111/aor.12914] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794-8181, USA
| |
Collapse
|
46
|
Capoccia M. Mechanical Circulatory Support for Advanced Heart Failure: Are We about to Witness a New "Gold Standard"? J Cardiovasc Dev Dis 2016; 3:E35. [PMID: 29367578 PMCID: PMC5715724 DOI: 10.3390/jcdd3040035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 12/03/2016] [Accepted: 12/06/2016] [Indexed: 01/08/2023] Open
Abstract
The impact of left ventricular assist devices (LVADs) for the treatment of advanced heart failure has played a significant role as a bridge to transplant and more recently as a long-term solution for non-eligible candidates. Continuous flow left ventricular assist devices (CF-LVADs), based on axial and centrifugal design, are currently the most popular devices in view of their smaller size, increased reliability and higher durability compared to pulsatile flow left ventricular assist devices (PF-LVADs). The trend towards their use is increasing. Therefore, it has become mandatory to understand the physics and the mathematics behind their mode of operation for appropriate device selection and simulation set up. For this purpose, this review covers some of these aspects. Although very successful and technologically advanced, they have been associated with complications such as pump thrombosis, haemolysis, aortic regurgitation, gastro-intestinal bleeding and arterio-venous malformations. There is perception that the reduced arterial pulsatility may be responsible for these complications. A flow modulation control approach is currently being investigated in order to generate pulsatility in rotary blood pumps. Thrombus formation remains the most feared complication that can affect clinical outcome. The development of a preoperative strategy aimed at the reduction of complications and patient-device suitability may be appropriate. Patient-specific modelling based on 3D reconstruction from CT-scan combined with computational fluid dynamic studies is an attractive solution in order to identify potential areas of stagnation or challenging anatomy that could be addressed to achieve the desired outcome. The HeartMate II (axial) and the HeartWare HVAD (centrifugal) rotary blood pumps have been now used worldwide with proven outcome. The HeartMate III (centrifugal) is now emerging as the new promising device with encouraging preliminary results. There are now enough pumps on the market: it is time to focus on the complications in order to achieve the full potential and selling-point of this type of technology for the treatment of the increasing heart failure patient population.
Collapse
Affiliation(s)
- Massimo Capoccia
- Scottish National Advanced Heart Failure Service, Golden Jubilee National Hospital, Glasgow G81 4DY, UK.
- Biomedical Engineering, University of Strathclyde, Glasgow G4 0NW, UK.
| |
Collapse
|
47
|
Chaux A, Gray RJ, Stupka JC, Emken MR, Scotten LN, Siegel R. Anticoagulant independent mechanical heart valves: viable now or still a distant holy grail. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:525. [PMID: 28149886 DOI: 10.21037/atm.2016.12.58] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Valvular heart disease remains a large public health problem for all societies; it attracts the attention of public health organizations, researchers and governments. Valve substitution is an integral part of the treatment for this condition. At present, the choice of valve prosthesis is either tissue or mechanical. Tissue valves have become increasingly popular in spite of unresolved problems with durability, hemodynamics, cost and need for anticoagulation therapy. As a consequence, mechanical valve innovation has virtually ceased; the last successful mechanical design is 25 years old. We postulate that with improved technology, knowledge and experience gained over the last quarter century, the best possible solution to the problem of valve substitution can be achieved with a mechanical valve that is anticoagulant independent, durable, hemodynamically and cost efficient. At present, it is possible to design, test and produce a valve that can accomplish these goals.
Collapse
Affiliation(s)
- Aurelio Chaux
- Visiting Scientist Cedars Sinai Medical Center Heart Institute, Los Angeles, CA, USA
| | - Richard J Gray
- Medical Director Tyler Heart Institute, Community Hospital of the Monterey Peninsula, CA, USA
| | | | | | | | | |
Collapse
|
48
|
Capelli C, Corsini C, Biscarini D, Ruffini F, Migliavacca F, Kocher A, Laufer G, Taylor AM, Schievano S, Andreas M, Burriesci G, Rath C. Pledget-Armed Sutures Affect the Haemodynamic Performance of Biologic Aortic Valve Substitutes: A Preliminary Experimental and Computational Study. Cardiovasc Eng Technol 2016; 8:17-29. [PMID: 27873180 PMCID: PMC5320018 DOI: 10.1007/s13239-016-0284-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 10/27/2016] [Indexed: 11/28/2022]
Abstract
Surgical aortic valve replacement is the most common procedure of choice for the treatment of severe aortic stenosis. Bioprosthetic valves are traditionally sewed-in the aortic root by means of pledget-armed sutures during open-heart surgery. Recently, novel bioprostheses which include a stent-based anchoring system have been introduced to allow rapid implantation, therefore reducing the duration and invasiveness of the intervention. Different effects on the hemodynamics were clinically reported associated with the two technologies. The aim of this study was therefore to investigate whether the differences in hemodynamic performances are an effect of different anchoring systems. Two commercially available bio-prosthetic aortic valves, one sewed-in with pledget-armed sutures and one rapid-deployment, were thus tested in this study by means of a combined approach of experimental and computational tools. In vitro experiments were performed to evaluate the overall hydrodynamic performance under identical standard conditions; computational fluid dynamics analyses were set-up to explore local flow variations due to different design of the anchoring system. The results showed how the performance of cardiac valve substitutes is negatively affected by the presence of pledget-armed sutures. These are causing flow disturbances, which in turn increase the mean pressure gradient and decrease the effective orifice area. The combined approach of experiments and numerical simulations can be effectively used to quantify the detailed relationship between local fluid-dynamics and overall performances associated with different valve technologies.
Collapse
Affiliation(s)
- Claudio Capelli
- UCL Institute of Cardiovascular Science, and Great Ormond Street Hospital for Children, NHS Foundation Trust, 30 Guilford Street, London, WC1N 1EH, UK.
| | - Chiara Corsini
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milan, Italy
| | - Dario Biscarini
- UCL Institute of Cardiovascular Science, and Great Ormond Street Hospital for Children, NHS Foundation Trust, 30 Guilford Street, London, WC1N 1EH, UK.,Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milan, Italy
| | - Francesco Ruffini
- UCL Institute of Cardiovascular Science, and Great Ormond Street Hospital for Children, NHS Foundation Trust, 30 Guilford Street, London, WC1N 1EH, UK.,Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milan, Italy
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milan, Italy
| | - Alfred Kocher
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Guenther Laufer
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Andrew M Taylor
- UCL Institute of Cardiovascular Science, and Great Ormond Street Hospital for Children, NHS Foundation Trust, 30 Guilford Street, London, WC1N 1EH, UK
| | - Silvia Schievano
- UCL Institute of Cardiovascular Science, and Great Ormond Street Hospital for Children, NHS Foundation Trust, 30 Guilford Street, London, WC1N 1EH, UK
| | - Martin Andreas
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Gaetano Burriesci
- Department of Mechanical Engineering, UCL, London, UK.,Fondazione Ri.MED, Bioengineering Group, Palermo, Italy
| | - Claus Rath
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria.,Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
49
|
Sheriff J, Tran PL, Hutchinson M, DeCook T, Slepian MJ, Bluestein D, Jesty J. The platelet hammer: In vitro platelet activation under repetitive hypershear. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:262-5. [PMID: 26736250 DOI: 10.1109/embc.2015.7318350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mechanical circulatory support (MCS) devices, such as ventricular assist devices and the total artificial heart, have emerged as a vital therapy for advanced and end-stage heart failure. However, MCS patients face life-long antiplatelet and anticoagulant therapy to minimize thrombotic complications resulting from the dynamic and supraphysiologic device-associated shear stress conditions, whose effect on platelet activation is poorly understood. We repeatedly exposed platelets to average shear stresses up to 1000 dyne/cm(2) for as short as 25 ms in the "platelet hammer," a syringe-capillary viscometer. Platelet activation state was measured using a modified prothrombinase assay and morphological changes analyzed using scanning electron microscopy. An increase in stress accumulation (SA), the product of shear stress and exposure time, led to an increase in the platelet activation state and post-high shear platelet activation rate, or sensitization. A significant increase in platelet activation state was observed beyond an SA of 1500 dyne-s/cm(2), with a marked increase in pseudopod length visible beyond an SA of 1000 dyne-s/cm(2). The platelet hammer may be used to study other shear-dependent pathologies and may ultimately enhance the safety and effectiveness of MCS devices and objective antithrombotic pharmacotherapy management.
Collapse
|
50
|
Simulation of an Inlet Structure of an Implantable Axial Blood Pump. BIOMEDICAL ENGINEERING-MEDITSINSKAYA TEKNIKA 2016. [DOI: 10.1007/s10527-016-9578-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|