1
|
Tuncer C, Güden M, Orhan M, Sarıkaya MK, Taşdemirci A. Quasi-static and dynamic Brazilian testing and failure analysis of a deer antler in the transverse to the osteon growth direction. J Mech Behav Biomed Mater 2023; 138:105648. [PMID: 36610280 DOI: 10.1016/j.jmbbm.2023.105648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/01/2023] [Indexed: 01/05/2023]
Abstract
The transverse tensile strength of a naturally fallen red deer antler (Cervus Elaphus) was determined through indirect Brazilian tests using dry disc-shape specimens at quasi-static and high strain rates. Dynamic Brazilian tests were performed in a compression Split-Hopkinson Pressure Bar. Quasi-static tensile and indirect Brazilian tests were also performed along the osteon growth direction for comparison. The quasi-static transverse tensile strength ranged 31.5-44.5 MPa. The strength increased to 83 MPa on the average in the dynamic Brazilian tests, proving a rate sensitive transverse strength. The quasi-static tensile strength in the osteon growth direction was however found comparably higher, 192 MPa. A Weibull analysis indicated a higher tensile ductility in the osteon growth direction than in the transverse to the osteon growth direction. The microscopic analysis of the quasi-static Brazilian test specimens (tensile strain along the osteon growth direction) revealed a micro-cracking mechanism operating by the crack deflection/twisting at the lacunae in the concentric lamellae region and at the interface between concentric lamellae and interstitial lamellae. On the other side, the specimens in the transverse direction fractured in a more brittle manner by the separation/delamination of the concentric lamellae and pulling of the interstitial lamellae. The detected increase in the transverse strength in the high strain rate tests was further ascribed to the pull and fracture of the visco-plastic collagen fibers in the interstitial lamellae. This was also confirmed microscopically; the dynamically tested specimens exhibited flatter fracture surfaces.
Collapse
Affiliation(s)
- Can Tuncer
- Department of Mechanical Engineering, Faculty of Engineering, Pamukkale University, Denizli, Turkey
| | - Mustafa Güden
- Department of Mechanical Engineering, Faculty of Engineering, İzmir Institute of Technology, Urla, İzmir, Turkey
| | - Mehmet Orhan
- Department of Mechanical Engineering, Faculty of Engineering, Pamukkale University, Denizli, Turkey.
| | - Mustafa Kemal Sarıkaya
- Department of Mechanical Engineering, Faculty of Engineering, İzmir Institute of Technology, Urla, İzmir, Turkey
| | - Alper Taşdemirci
- Department of Mechanical Engineering, Faculty of Engineering, İzmir Institute of Technology, Urla, İzmir, Turkey
| |
Collapse
|
2
|
Uniyal P, Sihota P, Kumar N. Effect of organic matrix alteration on strain rate dependent mechanical behaviour of cortical bone. J Mech Behav Biomed Mater 2021; 125:104910. [PMID: 34700105 DOI: 10.1016/j.jmbbm.2021.104910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/24/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022]
Abstract
The organic matrix phase of bone plays important role in its mechanical performance, especially in the post-yield regime. Also, the organic phase influences loading rate-dependent behaviour of bone which is relevant during the high-speed loading events. Many diseases, as well as aging, affect the matrix phase of bone which causes compromised mechanical properties. Improved understanding of alterations in the organic matrix phase on mechanical response of bone will be helpful in the mitigation of fractures associated with inferior matrix quality. In the present work, effect of alteration in organic matrix of cortical bone on its strain-rate dependent behaviour was investigated. To produce different amounts of collagen denaturation, bovine cortical bones were heated at the temperature of 180 °C and 240 °C. Further, compression testing was performed at quasi-static strain rates of 10-4 s-1 to 10-2 s-1 using a conventional testing machine whereas a modified Split Hopkinson Pressure Bar (SHPB) was used for high strain rate (∼103) testing. Thermal treatment-induced changes in the mineral and organic phases of bone were assessed using X-ray diffraction (XRD) and Fourier-transform infrared-attenuated total reflection (FTIR-ATR) techniques respectively. Compression test results show that thermal treatment of bone up to 180 °C did not affect mechanical properties significantly whereas treating at 240 °C significantly reduced elastic modulus, failure stress and failure strain. Also, thermal denaturation of collagen reduced the strain rate sensitivity of cortical bone at high strain rates. Similar to the compression test observations, nanoindentation results show a significant reduction in elastic modulus and hardness of denatured samples. Further, FTIR results revealed that with the heat treatment of bone, collagen structure undergoes conformational changes at the molecular level. The initial helix structure breakdowns into unordered/random coil structures which subsequently reduced the mechanical competence of bone. The present study provides insight into the effect of organic matrix modification on mechanical behaviour of cortical bone which could be helpful in understanding bone disorders associated with organic matrix phase and development of therapeutic interventions.
Collapse
Affiliation(s)
- Piyush Uniyal
- Department for Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
| | - Praveer Sihota
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
| | - Navin Kumar
- Department for Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India; Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, India.
| |
Collapse
|
3
|
Niki Y, Seifzadeh A. Characterization and comparison of hyper-viscoelastic properties of normal and osteoporotic bone using stress-relaxation experiment. J Mech Behav Biomed Mater 2021; 123:104754. [PMID: 34391015 DOI: 10.1016/j.jmbbm.2021.104754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/10/2021] [Accepted: 07/30/2021] [Indexed: 11/28/2022]
Abstract
Bone tissue behavior under various loads is nonlinear elastic due to irreversible energy absorption. Also, viscoelasticity is one of the most important properties of bone which is very important in dynamic analyses and helps a lot in making artificial bone. In this study, rat tibia bone specimens were subjected to compression stress-relaxation test for normal (n = 5) and osteoporotic (n = 5) groups in order to characterize their mechanical properties using finite element modeling coupled with an optimization algorithm. Using this method, the structural equation parameters for the Neo-Hookean model and the Prony series coefficients were used to describe the hyper-elastic and the viscoelastic behavior of specimens, respectively; moreover, the properties of materials including the bulk, shear and Young's moduli for both groups were obtained and compared. The shear modulus was also gained as a function of time. In addition, the percentage of stress reduction and its relation to the initial stress were investigated for specimens. Finally, the effect of changes in each of the parameters of the hyper-viscoelastic structural equation on the force response was determined. Results of this study can be used in predicting the transient response and dynamic analysis of the bone.
Collapse
Affiliation(s)
- Yasaman Niki
- Department of Biomedical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Alireza Seifzadeh
- Department of Biomedical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Isfahan, Iran.
| |
Collapse
|
4
|
Ali Abdalkadum HA, Bedaiwi BA. Temperature Effects on Creep Behaviour of Bovine Cortical Bones. IOP CONFERENCE SERIES: MATERIALS SCIENCE AND ENGINEERING 2018; 454:012156. [DOI: 10.1088/1757-899x/454/1/012156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
5
|
Smolen C, Quenneville CE. A Finite Element Model of the Foot/Ankle to Evaluate Injury Risk in Various Postures. Ann Biomed Eng 2017; 45:1993-2008. [PMID: 28470459 DOI: 10.1007/s10439-017-1844-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 04/25/2017] [Indexed: 11/25/2022]
Abstract
The foot/ankle complex is frequently injured in many types of debilitating events, such as car crashes. Numerical models used to assess injury risk are typically minimally validated and do not account for ankle posture variations that frequently occur during these events. The purpose of this study was to evaluate a finite element model of the foot and ankle accounting for these positional changes. A model was constructed from computed tomography scans of a male cadaveric lower leg and was evaluated by comparing simulated bone positions and strain responses to experimental results at five postures in which fractures are commonly reported. The bone positions showed agreement typically within 6° or less in all anatomical directions, and strain matching was consistent with the range of errors observed in similar studies (typically within 50% of the average strains). Fracture thresholds and locations in each posture were also estimated to be similar to those reported in the literature (ranging from 6.3 kN in the neutral posture to 3.9 kN in combined eversion and external rotation). The least vulnerable posture was neutral, and all other postures had lower fracture thresholds, indicating that examination of the fracture threshold of the lower limb in the neutral posture alone may be an underestimation. This work presents an important step forward in the modeling of lower limb injury risk in altered ankle postures. Potential clinical applications of the model include the development of postural guidelines to minimize injury, as well as the evaluation of new protective systems.
Collapse
Affiliation(s)
- Chris Smolen
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
| | - Cheryl E Quenneville
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada. .,School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
6
|
The effect of impact tool geometry and soft material covering on long bone fracture patterns in children. Int J Legal Med 2017; 131:1011-1021. [DOI: 10.1007/s00414-017-1532-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 01/03/2017] [Indexed: 10/20/2022]
|
7
|
Anderson PSL, LaCosse J, Pankow M. Point of impact: the effect of size and speed on puncture mechanics. Interface Focus 2016; 6:20150111. [PMID: 27274801 PMCID: PMC4843624 DOI: 10.1098/rsfs.2015.0111] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The use of high-speed puncture mechanics for prey capture has been documented across a wide range of organisms, including vertebrates, arthropods, molluscs and cnidarians. These examples span four phyla and seven orders of magnitude difference in size. The commonality of these puncture systems offers an opportunity to explore how organisms at different scales and with different materials, morphologies and kinematics perform the same basic function. However, there is currently no framework for combining kinematic performance with cutting mechanics in biological puncture systems. Our aim here is to establish this framework by examining the effects of size and velocity in a series of controlled ballistic puncture experiments. Arrows of identical shape but varying in mass and speed were shot into cubes of ballistic gelatine. Results from high-speed videography show that projectile velocity can alter how the target gel responds to cutting. Mixed models comparing kinematic variables and puncture patterns indicate that the kinetic energy of a projectile is a better predictor of penetration than either momentum or velocity. These results form a foundation for studying the effects of impact on biological puncture, opening the door for future work to explore the influence of morphology and material organization on high-speed cutting dynamics.
Collapse
Affiliation(s)
| | - J. LaCosse
- Department of Physics, Charles E. Jordan High School, Durham, NC 27707, USA
| | - M. Pankow
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
8
|
Li F, Li J, Kou H, Huang T, Zhou L. Compressive mechanical compatibility of anisotropic porous Ti6Al4V alloys in the range of physiological strain rate for cortical bone implant applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:233. [PMID: 26384823 DOI: 10.1007/s10856-015-5565-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/08/2015] [Indexed: 06/05/2023]
Abstract
Porous titanium and its alloys are believed to be promising materials for bone implant applications, since they can reduce the "stress shielding" effect by tailoring porosity and improve fixation of implant through bone ingrowth. In the present work, porous Ti6Al4V alloys for biomedical application were fabricated by diffusion bonding of alloy meshes. Compressive mechanical behavior and compatibility in the range of physiological strain rate were studied under quasi-static and dynamic conditions. The results show that porous Ti6Al4V alloys possess anisotropic structure with elongated pores in the out-of-plane direction. For porous Ti6Al4V alloys with 60-70 % porosity, more than 40 % pores are in the range of 200-500 μm which is the optimum pore size suited for bone ingrowth. Quasi-static Young's modulus and yield stress of porous Ti6Al4V alloys with 30-70 % relative density are in the range of 6-40 GPa and 100-500 MPa, respectively. Quasi-static compressive properties can be quantitatively tailored by porosity to match those of cortical bone. Strain rate sensitivity of porous Ti6Al4V alloys is related to porosity. Porous Ti6Al4V alloys with porosity higher than 50 % show enhanced strain rate sensitivity, which is originated from that of base materials and micro-inertia effect. Porous Ti6Al4V alloys with 60-70 % porosity show superior compressive mechanical compatibility in the range of physiological strain rate for cortical bone implant applications.
Collapse
Affiliation(s)
- Fuping Li
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Jinshan Li
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
- National & Local Joint Engineering Research Center for Precision Thermalforming Technology of Advanced Metal Materials, Xi'an, 710072, People's Republic of China
| | - Hongchao Kou
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
- National & Local Joint Engineering Research Center for Precision Thermalforming Technology of Advanced Metal Materials, Xi'an, 710072, People's Republic of China.
| | - Tingting Huang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Lian Zhou
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| |
Collapse
|
9
|
Sotto-Maior BS, Mercuri EGF, Senna PM, Assis NMSP, Francischone CE, Del Bel Cury AA. Evaluation of bone remodeling around single dental implants of different lengths: a mechanobiological numerical simulation and validation using clinical data. Comput Methods Biomech Biomed Engin 2015; 19:699-706. [PMID: 26249362 DOI: 10.1080/10255842.2015.1052418] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Algorithmic models have been proposed to explain adaptive behavior of bone to loading; however, these models have not been applied to explain the biomechanics of short dental implants. Purpose of present study was to simulate bone remodeling around single implants of different lengths using mechanoregulatory tissue differentiation model derived from the Stanford theory, using finite elements analysis (FEA) and to validate the theoretical prediction with the clinical findings of crestal bone loss. Loading cycles were applied on 7-, 10-, or 13-mm-long dental implants to simulate daily mastication and bone remodeling was assessed by changes in the strain energy density of bone after a 3, 6, and 12 months of function. Moreover, clinical findings of marginal bone loss in 45 patients rehabilitated with same implant designs used in the simulation (n = 15) were computed to validate the theoretical results. FEA analysis showed that although the bone density values reduced over time in the cortical bone for all groups, bone remodeling was independent of implant length. Clinical data showed a similar pattern of bone resorption compared with the data generated from mathematical analyses, independent of implant length. The results of this study showed that the mechanoregulatory tissue model could be employed in monitoring the morphological changes in bone that is subjected to biomechanical loads. In addition, the implant length did not influence the bone remodeling around single dental implants during the first year of loading.
Collapse
Affiliation(s)
- Bruno Salles Sotto-Maior
- a Department of Restorative Dentistry , Federal University of Juiz de Fora , Juiz de Fora , Brazil
| | | | - Plinio Mendes Senna
- c Department of Health Sciences Center , Unigranrio University , Duque de Caxias, Rio de Janeiro , Brazil
| | | | | | - Altair Antoninha Del Bel Cury
- e Department of Prosthodontic and Periodontology, Piracicaba Dental School , Campinas State University , Campinas , Brazil
| |
Collapse
|
10
|
Tüfekci K, Kayacan R, Kurbanoğlu C. Effects of gamma radiation sterilization and strain rate on compressive behavior of equine cortical bone. J Mech Behav Biomed Mater 2014; 34:231-42. [PMID: 24607761 DOI: 10.1016/j.jmbbm.2014.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 01/24/2014] [Accepted: 02/02/2014] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Gamma radiation has been widely used for sterilization of bone allograft. However, sterilization by gamma radiation damages the material properties of bone which is a major clinical concern since bone allograft is used in load bearing applications. While the degree of this damage is well investigated for quasi-static and cyclic loading conditions, there does not appear any information on mechanical behavior of gamma-irradiated cortical bone at high speed loading conditions. In this study, the effects of gamma irradiation on high strain rate compressive behavior of equine cortical bone were investigated using a Split Hopkinson Pressure Bar (SHPB). Quasi-static compression testing was also performed. METHODS Equine cortical bone tissue from 8year old retired racehorses was divided into two groups: non-irradiated and gamma-irradiated at 30kGy. Quasi-static and high strain rate compression tests were performed at average strain rates of 0.0045/s and 725/s, respectively. RESULTS Agreeing with previous results on the embrittlement of cortical bone when gamma-irradiated, the quasi-static results showed that gamma-irradiation significantly decreased ultimate strength (9%), ultimate strain (27%) and toughness (41%), while not having significant effect on modulus of elasticity, yield strain and resilience. More importantly, contrary to what is typically observed in quasi-static loading, the gamma-irradiated bone under high speed loading showed significantly higher modulus of elasticity (45%), ultimate strength (24%) and toughness (26%) than those of non-irradiated bone, although the failure was at a similar strain. SIGNIFICANCE Under high speed loading, the mechanical properties of bone allografts were not degraded by irradiation, in contrast to the degradation measured in this and prior studies under quasi-static loading. This result calls into question the assumption that bone allograft is always degraded by gamma irradiation, regardless of loading conditions. However, it needs further investigation to be translated positively in a clinical setting.
Collapse
Affiliation(s)
- Kenan Tüfekci
- Department of Mechanical Engineering, Süleyman Demirel University, 32260 Isparta, Turkey.
| | - Ramazan Kayacan
- Department of Mechanical Engineering, Süleyman Demirel University, 32260 Isparta, Turkey.
| | - Cahit Kurbanoğlu
- Department of Mechanical Engineering, İstanbul Medeniyet University, Göztepe Kadıköy - İstanbul, Turkey.
| |
Collapse
|
11
|
Muccino E, Porta D, Magli F, Cigada A, Sala R, Gibelli D, Cattaneo C. Applicability of cranial models in urethane resin and foam as a substitute for bone: are synthetic materials reliable? J Forensic Sci 2013; 58:1257-1263. [PMID: 23865474 DOI: 10.1111/1556-4029.12164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 06/28/2012] [Accepted: 06/30/2012] [Indexed: 11/30/2022]
Abstract
As literature is poor in functional synthetic cranial models, in this study, synthetic handmade models of cranial vaults were produced in two different materials (a urethane resin and a self-hardening foam), from multiple bone specimens (eight original cranial vaults: four human and four swine), in order to test their resemblance to bone structure in behavior, during fracture formation. All the vaults were mechanically tested with a 2-kg impact weight and filmed with a high-speed camera. Fracture patterns were homogeneous in all swine vaults and heterogeneous in human vaults, with resin fractures more similar to bone fractures. Mean fracture latency time extrapolated by videos were of 0.75 msec (bone), 1.5 msec (resin), 5.12 msec (foam) for human vaults and of 0.625 msec (bone), 1.87 msec (resin), 3.75 msec (foam) for swine vaults. These data showed that resin models are more similar to bone than foam reproductions, but that synthetic material may behave quite differently from bone as concerns fracture latency times.
Collapse
Affiliation(s)
- Enrico Muccino
- LABANOF, Laboratorio di Antropologia e Odontologia Forense, Sezione di Medicina Legale, Dipartimento di Scienze Biomediche per la Salute-Sezione di Medicina Legale, Università degli Studi di Milano, Via Luigi Mangiagalli 37, 20133, Milano, Italy
| | - Davide Porta
- LABANOF, Laboratorio di Antropologia e Odontologia Forense, Sezione di Medicina Legale, Dipartimento di Scienze Biomediche per la Salute-Sezione di Medicina Legale, Università degli Studi di Milano, Via Luigi Mangiagalli 37, 20133, Milano, Italy
| | - Francesca Magli
- LABANOF, Laboratorio di Antropologia e Odontologia Forense, Sezione di Medicina Legale, Dipartimento di Scienze Biomediche per la Salute-Sezione di Medicina Legale, Università degli Studi di Milano, Via Luigi Mangiagalli 37, 20133, Milano, Italy
| | - Alfredo Cigada
- Sezione di Misure e Tecniche Sperimentali, Dipartimento di Meccanica, Politecnico di Milano, Via La Masa 1, 20156, Milano, Italy
| | - Remo Sala
- Sezione di Misure e Tecniche Sperimentali, Dipartimento di Meccanica, Politecnico di Milano, Via La Masa 1, 20156, Milano, Italy
| | - Daniele Gibelli
- LABANOF, Laboratorio di Antropologia e Odontologia Forense, Sezione di Medicina Legale, Dipartimento di Scienze Biomediche per la Salute-Sezione di Medicina Legale, Università degli Studi di Milano, Via Luigi Mangiagalli 37, 20133, Milano, Italy
| | - Cristina Cattaneo
- LABANOF, Laboratorio di Antropologia e Odontologia Forense, Sezione di Medicina Legale, Dipartimento di Scienze Biomediche per la Salute-Sezione di Medicina Legale, Università degli Studi di Milano, Via Luigi Mangiagalli 37, 20133, Milano, Italy
| |
Collapse
|
12
|
Tanimoto Y, Hirayama S, Yamaguchi M, Nishiwaki T. Static and dynamic moduli of posterior dental resin composites under compressive loading. J Mech Behav Biomed Mater 2011; 4:1531-9. [DOI: 10.1016/j.jmbbm.2011.05.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 10/18/2022]
|