1
|
Cordes CMA, Leonardis JM, Samet J, Schnorenberg AJ, England M, Mukherjee S, Vogel LC, Seitz AL, Slavens BA. Handrim kinetics and quantitative ultrasound parameters for assessment of subacromial impingement in wheelchair users with pediatric-onset spinal cord injury. Gait Posture 2024; 113:561-569. [PMID: 39182433 PMCID: PMC11388546 DOI: 10.1016/j.gaitpost.2024.08.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Most manual wheelchair users with pediatric-onset spinal cord injury (SCI) will experience shoulder pain or pathology at some point in their life. However, guidelines for preservation of the upper limb in children with SCI are limited. RESEARCH QUESTION What are the relationships between manual wheelchair handrim kinetics and quantitative ultrasound parameters related to subacromial impingement in individuals with pediatric-onset SCI? METHODS Subacromial impingement risk factors including supraspinatus tendon thickness (SST), acromiohumeral distance (AHD), and occupation ratio (OR; SST/AHD) were measured with ultrasound in 11 manual wheelchair users with pediatric-onset SCI. Handrim kinetics were acquired during the stroke cycle, including peak resultant force (FR), peak rate of rise of resultant force (ROR) and fractional effective force (FEF). Variability of handrim kinetics was computed using the coefficient of variation and linear regression was performed to assess correlations between handrim metrics and quantitative ultrasound parameters. RESULTS Peak resultant force significantly increased 1.4 % and variability of FEF significantly decreased 8.0 % for every 0.1 cm increase in AHD. FEF decreased 3.5 % for every 0.1 cm increase in SST. Variability of peak resultant force significantly increased 3.6 % and variability of peak ROR of resultant force significantly increased 7.3 % for every 0.1 cm increase in SST. FEF variability significantly decreased 11.6 % for every 0.1 cm increase in SST. Peak ROR significantly decreased 1.54 % with every 10 % increase in OR. FEF variability significantly decreased 1.5 % with every 10 % increase in OR. SIGNIFICANCE This is the first study to investigate relationships among handrim kinetics and shoulder structure in manual wheelchair users with pediatric-onset SCI. Associations were identified between subacromial impingement risk factors and magnitude and variability of wheelchair handrim kinetics. These results indicate the critical need to further explore the relationships among wheelchair handrim kinetics, shoulder joint dynamics, and shoulder pathology in manual wheelchair users with pediatric-onset SCI.
Collapse
Affiliation(s)
- Caleb M A Cordes
- University of Wisconsin-Milwaukee, Department of Rehabilitation Sciences and Technology, Milwaukee, WI 53211, USA; University of Wisconsin-Milwaukee, Department of Mechanical Engineering, Milwaukee, WI 53211, USA.
| | - Joshua M Leonardis
- University of Wisconsin-Milwaukee, Department of Rehabilitation Sciences and Technology, Milwaukee, WI 53211, USA; University of Illinois Urbana-Champaign, College of Applied Health Sciences, Urbana, IL 61801, USA; University of Illinois Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, IL 61801, USA
| | - Jonathan Samet
- Ann and Robert H. Lurie Children's Hospital, Department of Medical Imaging, Chicago, IL 60611, USA; Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alyssa J Schnorenberg
- University of Wisconsin-Milwaukee, Department of Mechanical Engineering, Milwaukee, WI 53211, USA
| | - Mark England
- Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shubhra Mukherjee
- Shriners Children's Chicago, Chicago, IL 60707, USA; Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Amee L Seitz
- Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Brooke A Slavens
- University of Wisconsin-Milwaukee, Department of Rehabilitation Sciences and Technology, Milwaukee, WI 53211, USA; University of Wisconsin-Milwaukee, Department of Mechanical Engineering, Milwaukee, WI 53211, USA
| |
Collapse
|
2
|
Fathian R, Khandan A, Rahmanifar N, Ho C, Rouhani H. Feasibility and Validity of Wearable Sensors for Monitoring Temporal Parameters in Manual Wheelchair Propulsion. IEEE J Biomed Health Inform 2024; 28:5239-5246. [PMID: 38814765 DOI: 10.1109/jbhi.2024.3407525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Upper extremity pain and injury are among the most common musculoskeletal complications manual wheelchair users face. Assessing the temporal parameters of manual wheelchair propulsion, such as propulsion duration, cadence, push duration, and recovery duration, is essential for providing a deep insight into the mobility, level of activity, energy expenditure, and cumulative exposure to repetitive tasks and thus providing personalized feedback. The purpose of this paper is to investigate the use of inertial measurement units (IMUs) to estimate these temporal parameters by identifying the start and end time of hand contact with the push-rim during each propulsion cycle. We presented a model based on data collected from 23 participants (14 males and 9 females, including 9 experienced manual wheelchair users) to guarantee the reliability and generalizability of our method. The obtained outcomes from our IMU-based model were then compared against an instrumented wheelchair (SMARTWheel) as a reference criterion. The results illustrated that our model was able to accurately detect hand contact and hand release and predict temporal parameters, including the push duration and recovery duration in manual wheelchair users, with the mean error ± standard deviation of 10 ± 60 milliseconds and -20 ± 80 milliseconds, respectively. The findings of this study demonstrate the potential of hand-mounted IMUs as a reliable and objective tool for analyzing temporal parameters in manual wheelchair propulsion. IMUs offer significant strides towards inclusivity and accessibility due to their portability and user-friendliness and can democratize health monitoring of manual wheelchair users by making it accessible to a broader range of users compared to traditional technologies.
Collapse
|
3
|
Walford SL, Rankin JW, Mulroy SJ, Neptune RR. Differences in Glenohumeral Joint Contact Forces Between Recovery Hand Patterns During Wheelchair Propulsion With and Without Shoulder Muscle Weakness: A Simulation Study. J Biomech Eng 2024; 146:041005. [PMID: 38270963 PMCID: PMC10983712 DOI: 10.1115/1.4064590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
The majority of manual wheelchair users (MWCU) develop shoulder pain or injuries, which is often caused by impingement. Because propulsion mechanics are influenced by the recovery hand pattern used, the pattern may affect shoulder loading and susceptibility to injury. Shoulder muscle weakness is also correlated with shoulder pain, but how shoulder loading changes with specific muscle group weakness is unknown. Musculoskeletal modeling and simulation were used to compare glenohumeral joint contact forces (GJCFs) across hand patterns and determine how GJCFs vary when primary shoulder muscle groups are weakened. Experimental data were analyzed to classify individuals into four hand pattern groups. A representative musculoskeletal model was then developed for each group and simulations generated to portray baseline strength and six muscle weakness conditions. Three-dimensional GJCF peaks and impulses were compared across hand patterns and muscle weakness conditions. The semicircular pattern consistently had lower shear (anterior-posterior and superior-inferior) GJCFs compared to other patterns. The double-loop pattern had the highest superior GJCFs, while the single-loop pattern had the highest anterior and posterior GJCFs. These results suggest that using the semicircular pattern may be less susceptible to shoulder injuries such as subacromial impingement. Weakening the internal rotators and external rotators resulted in the greatest increases in shear GJCFs and decreases in compressive GJCF, likely due to decreased force from rotator cuff muscles. These findings suggest that strengthening specific muscle groups, especially the rotator cuff, is critical for decreasing the risk of shoulder overuse injuries.
Collapse
Affiliation(s)
- Shelby L. Walford
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712-1591
| | - Jeffery W. Rankin
- Pathokinesiology Laboratory, Rancho Los Amigos National Rehabilitation Center, Downey, CA 90242; Rehabilitation Engineering, Rancho Los Amigos National Rehabilitation Center, Downey, CA 90242
| | - Sara J. Mulroy
- Pathokinesiology Laboratory, Rancho Los Amigos National Rehabilitation Center, Downey, CA 90242; Rehabilitation Engineering, Rancho Los Amigos National Rehabilitation Center, Downey, CA 90242
| | - Richard R. Neptune
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712-1591
| |
Collapse
|
4
|
Valiquette AM, Graf AR, Mickshl DJ, Zganjar AJ, Grindel SI. Rotator Cuff Repair in Upper Extremity Ambulators: An Assessment of Longitudinal Outcomes. JSES Int 2022; 6:942-947. [PMID: 36353413 PMCID: PMC9637750 DOI: 10.1016/j.jseint.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Individuals who rely on wheelchairs, walkers, and crutches for ambulation have an increased incidence of rotator cuff tears due to altered shoulder biomechanics and increased force transmission across the shoulder joint. The purpose of our study is to review our longitudinal outcomes treating upper extremity ambulators to guide patient expectations and identify risk factors for rotator cuff repair failure. Methods A total of fifteen patients were included after a cohort of thirty-nine patients were identified. The mean age was 54.9 years at the time of index rotator cuff repair, with each patient requiring either wheelchair, cane, walker, or crutches for ambulation. Clinical outcomes were measured (strength, range of motion, and pain scores), and patient-reported outcome scores (American Shoulder and Elbow Surgeons, Simple Shoulder Test, and University of California Los Angeles functional shoulder assessment tool) were obtained. No follow-up imaging was obtained unless indicated by a change in clinical status. Results Within our cohort, 14 of 15 (93%) presented with supraspinatus tears, 7 of 15 (47%) with infraspinatus tears, and only 3 of 15 (20%) with subscapularis pathology. Additionally, the rates of concurrent biceps pathology or acromioclavicular joint pathology were significant at 53% and 73%, respectively. Only one patient in our cohort experienced known failure of cuff repair, despite longitudinal follow-up at an average of 97 months following surgery, however, routine follow-up imaging was not obtained. There were statistically significant improvements in visual analog scale pain scores, forward flexion ROM and strength, and abduction ROM. Additionally, statistically significant improvements were noted in all patient-reported outcome scores measured. Conclusion Despite the apparent risks associated in rotator cuff repair in upper extremity ambulators, these patients demonstrate clinically significant improvements following surgery. Appreciating additional pathology beyond the rotator cuff is important in formulating a treatment plan.
Collapse
|
5
|
Development of Transport for Disabled People on the Example of Wheelchair Propulsion with Cam-Thread Drive. ENERGIES 2021. [DOI: 10.3390/en14238137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The increasingly frequent use of electric drives is a new direction of development in personal transport. Sometimes these drives take over the work of human muscles, and sometimes they only support them. This is particularly evident in means of transport such as bicycles and scooters, but also in transporting people with disabilities. This study questions whether this is the only right development direction, and explores the possibility of developing means of transport for the more effective use of human muscles by proposing new structural solutions. We identified that such an action favors the minimization of the environmental load generated by technical facilities and, at the same time, may be a response to social needs resulting from the principles of sustainable development. This paper presents the operation principle of the innovative Wheelchair Cam-thread Drive (WCD), followed by field tests, laboratory measurements and biomechanical analyses of the WCD, comparing it with a typical Wheelchair Push-rim Drive (WPD). We found that the WCD allows efficient driving on flat and level surfaces, but its propulsion method can adversely alter the location of the center of gravity on the human-wheelchair system. A brake is also required to control the driving speed. Ultimately, the WCD was found to put less strain on the human movement system, so it could be used for rehabilitation exercises. The WCD appears to be a promising design, deserving further research into the drive biomechanics and the optimization of the mechanism operation. Such an innovative manual drive presents an interesting alternative to electric drives.
Collapse
|
6
|
Roy V, Lee L, Uihlein M, Roy I, Lee K. Ultrasonographic comparison of the lateral epicondyle in wheelchair-user (and able-bodied) tennis players: A pilot study. J Spinal Cord Med 2021; 44:29-36. [PMID: 30994414 PMCID: PMC7919900 DOI: 10.1080/10790268.2019.1603898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Objective: To evaluate whether manual wheelchair use and wheelchair tennis are associated with increased risk of lateral epicondylosis (LE). We hypothesized that the prevalence of LE would be highest in WC tennis players, followed by tennis players, WC users, and able-bodied subjects.Study design: Prospective cross-sectional pilot study.Setting: Milwaukee VAMC (clinic), National Veterans Wheelchair Games 2016 (medical event coverage).Participants: Wheelchair users, able-bodied controls, tennis players, non-tennis players.Interventions: Subjects meeting inclusion criteria underwent ultrasound examination of the dominant elbow evaluating for characteristics of LE (n = 83).Outcome measurements: Prevalence of LE between groups. Statistical analysis included odds ratios (OR), univariate and multivariate logistic regression.Results: There was no significant difference in diagnosis of LE between groups when comparing prevalence, unadjusted odds ratios, and predicted probabilities. When adjusted for age, able-bodied controls and tennis players had a similar increase in probability of LE with age; this effect was not seen for wheelchair users. Wheelchair users diagnosed with LE on US had spent significantly more time in a wheelchair (23 vs 13 years) than those with a negative diagnosis.Conclusions: Tennis playing in able bodied controls did not increase risk of LE. In wheelchair users, tennis playing does not appear to be associated with LE, though duration of wheelchair use appears to be a significant predictor of LE.Level of evidence: Level II.
Collapse
Affiliation(s)
- Vivian Roy
- Department of Physical Medicine & Rehabilitation, Medical College of Wisconsin, Milwaukee, Wisconsin, USA,Division of Spinal Cord Injury, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA,Correspondence to: Vivian Roy, Department of Physical Medicine & Rehabilitation, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Leah Lee
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Michael Uihlein
- Department of Physical Medicine & Rehabilitation, Medical College of Wisconsin, Milwaukee, Wisconsin, USA,Division of Spinal Cord Injury, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Ishan Roy
- Department of Physical Medicine & Rehabilitation, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Kenneth Lee
- Department of Physical Medicine & Rehabilitation, Medical College of Wisconsin, Milwaukee, Wisconsin, USA,Division of Spinal Cord Injury, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| |
Collapse
|
7
|
Wheelchair propulsion fatigue thresholds in electromyographic and ventilatory testing. Spinal Cord 2020; 58:1104-1111. [PMID: 32367012 DOI: 10.1038/s41393-020-0470-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 03/29/2020] [Accepted: 04/08/2020] [Indexed: 11/08/2022]
Abstract
STUDY DESIGN Qualitative study. OBJECTIVE The objective of the present study are physiological processes occurring when the intensity of manual wheelchair propulsion approaches levels causing muscular fatigue. In particular, we set out to (1) detect the electromyographic (EMG) and ventilatory fatigue threshold during a single wheelchair incremental test, (2) examine the relationship between EMG threshold (EMGT) and ventilatory threshold (VT), and (3) detect the EMG threshold differences between the propulsive and recovery muscle synergies. SETTING Biomechanics laboratory at the University of Alberta, Canada. METHODS Oxygen uptake and EMG signals from ten wheelchair users (seven males and three females) were recorded as they were each performing an incremental propulsion bout in their own wheelchairs on a wheelchair ergometer. The V-slope method was used to identify the VT, and the EMGT of each of the eight muscles (anterior deltoid, middle deltoid, posterior deltoid, infraspinatus, upper trapezius, sternal head of pectoralis major, biceps brachii, and triceps brachii) was determined using the bisegmental linear regression method. RESULTS For each participant, we were able to determine the EMGT and VT from a single incremental wheelchair propulsion bout. EMGT stands in good agreement with VT, and there was a high similarity in EMGT between push and recovery muscles (intraclass correlation coefficient = 0.91). CONCLUSION The EMG fatigue threshold method can serve as a valid and reliable tool for identifying the onset of muscular fatigue during wheelchair propulsion, thus providing a foundation for automated muscle fatigue detection/prediction in wearable technology.
Collapse
|
8
|
Haubert LL, Mulroy SJ, Requejo PS, Maneekobkunwong S, Gronley JK, Rankin JW, Rodriguez D, Hong K. Effect of reverse manual wheelchair propulsion on shoulder kinematics, kinetics and muscular activity in persons with paraplegia. J Spinal Cord Med 2020; 43:594-606. [PMID: 30768378 PMCID: PMC7534316 DOI: 10.1080/10790268.2019.1570436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Objective: Shoulder pain after spinal cord injury (SCI) is attributed to increased mobility demands on the arms and negatively impacts independence and quality of life. Repetitive superior and posterior shoulder joint forces produced during traditional wheelchair (WC) locomotion can result in subacromial impingement if unopposed, as with muscular fatigue or weakness. ROWHEELS® (RW), geared rear wheels that produce forward WC movement with backward rim pulling, could alter these forces. Design: Cross sectional. Setting: Research laboratory at a rehabilitation hospital. Participants: Ten manual WC users with paraplegia. Outcome measures: Propulsion characteristics and right upper extremity/trunk kinematics and shoulder muscle activity were collected during ergometer propulsion: (1) self-selected free speed reverse propulsion with RW, (2) matched-speed reverse (rSW), and (3) forward propulsion (fSW) with instrumented Smartwheels (SW). Inverse dynamics using right-side SW rim kinetics and kinematics compared shoulder kinetics during rSW and fSW. Results: Free propulsion velocity, cycle distance and cadence were similar during RW, rSW and fSW. Overall shoulder motion was similar except that peak shoulder extension was significantly reduced in both RW and rSW versus fSW. Anteriorly and inferiorly directed SW rim forces were decreased during rSW versus fSW propulsion, but posteriorly and superiorly directed rim forces were significantly greater. Superior and posterior shoulder joint forces and flexor, adductor, and external rotation moments were significantly less during rSW, without a significant difference in net shoulder forces and moments. Traditional propulsive-phase muscle activity was significantly reduced and recovery-phase muscle activity was increased during reverse propulsion. Conclusion: These results suggest that reverse propulsion may redirect shoulder demands and prevent subacromial impingement, thereby preventing injury and preserving independent mobility for individuals with paraplegia.
Collapse
Affiliation(s)
- Lisa Lighthall Haubert
- Pathokinesiology Lab, Rancho Los Amigos National Rehabilitation Center, Downey, California, USA,Correspondence to: Lisa Lighthall Haubert, Rancho Los Amigos National Rehabilitation Center, 7601 E. Imperial Highway, Pathokinesiology Lab, Annex 600A, Downey, CA90242, USA.
| | - Sara J. Mulroy
- Pathokinesiology Lab, Rancho Los Amigos National Rehabilitation Center, Downey, California, USA
| | - Philip S. Requejo
- Pathokinesiology Lab, Rancho Los Amigos National Rehabilitation Center, Downey, California, USA
| | - Somboon Maneekobkunwong
- Pathokinesiology Lab, Rancho Los Amigos National Rehabilitation Center, Downey, California, USA
| | - JoAnne K. Gronley
- Pathokinesiology Lab, Rancho Los Amigos National Rehabilitation Center, Downey, California, USA
| | - Jeffery W. Rankin
- Pathokinesiology Lab, Rancho Los Amigos National Rehabilitation Center, Downey, California, USA
| | - Diego Rodriguez
- Pathokinesiology Lab, Rancho Los Amigos National Rehabilitation Center, Downey, California, USA
| | - Kristi Hong
- Pathokinesiology Lab, Rancho Los Amigos National Rehabilitation Center, Downey, California, USA
| |
Collapse
|
9
|
Brown C, McPhee J. Predictive Forward Dynamic Simulation of Manual Wheelchair Propulsion on a Rolling Dynamometer. J Biomech Eng 2020; 142:071008. [PMID: 32050022 DOI: 10.1115/1.4046298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Indexed: 07/25/2024]
Abstract
Research studies to understand the biomechanics of manual wheelchair propulsion often incorporate experimental data and mathematical models. This project aimed to advance this field of study by developing a two-dimensional (2D) model to generate first of its kind forward dynamic fully predictive computer simulations of a wheelchair basketball athlete on a stationary ergometer. Subject-specific parameters and torque generator functions were implemented in the model from dual X-ray absorptiometry and human dynamometer measurements. A direct collocation optimization method was used in a wheelchair propulsion model for the first time to replicate the human muscle recruitment strategy. Simulations were generated for varying time constraints and seat positions. Similar magnitudes of kinematic and kinetic data were observed between simulation and experimental data of a first push. Furthermore, seat heights inferior to the neutral position were found to produce similar joint torques to those reported in previous studies. An anterior seat placement produced the quickest push time with the least amount of shoulder torque required. The work completed in this project demonstrates that fully predictive simulations of wheelchair propulsion have the potential of varying simulation parameters to draw meaningful conclusions.
Collapse
Affiliation(s)
- Colin Brown
- Department of System Design Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2 L 3G1, Canada
| | - John McPhee
- Department of System Design Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2 L 3G1, Canada
| |
Collapse
|
10
|
Yıldırım NÜ, Büyüköztürk Ş, Bayramlar K, Özengin N, Külünkoğlu BA, Çoban Ö. Developing a shoulder pain scale for wheelchair basketball players. J Back Musculoskelet Rehabil 2019; 32:479-485. [PMID: 30530961 DOI: 10.3233/bmr-181192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Shoulder pain in wheelchair (WC) basketball players is common. Yet there was no scale to define shoulder pain. OBJECTIVE This study was performed to develop a shoulder pain scale for WC basketball players. METHODS A five-step procedure was followed: Identifying the feature, writing down the items and drafting the form, formulating the final form, pre-pilot-pilot implementation, and validity-reliability analyses. The final form of the scale consisted of 15 items about self-care and sport-specific activities. RESULTS External factor analysis showed that the scale had a two-factor structure which is "Shoulder Pain during Sports" and "Shoulder Pain during Self-care Activities". Pre-rotation results of factor analysis showed that if all of the items were loaded on the first factor, it would have an eigenvalue more than 7 times larger than the eigenvalue of the second factor. Therefore, it can be concluded that the scale can be used as a one-dimensional scale. The Cronbach's Alpha values were found to be 0.94 and 0.92 for the shoulder pain factor during sports and self-care activities, respectively. Total value was found to be 0.95. The corrected item-total correlation values were all above 0.60. CONCLUSIONS This newly developed valid, reliable scale allows assessment of the shoulder pain of WC basketball players.
Collapse
Affiliation(s)
- Necmiye Ün Yıldırım
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Health Science University, Ankara, Turkey
| | | | - Kezban Bayramlar
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Hasan Kalyoncu University, Gaziantep, Turkey
| | - Nuriye Özengin
- Kemal Demir School of Physical Therapy and Rehabilitation, Abant İzzet Baysal University, Bolu, Turkey
| | - Bahar Anaforoğlu Külünkoğlu
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Özge Çoban
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| |
Collapse
|
11
|
Hybois S, Puchaud P, Bourgain M, Lombart A, Bascou J, Lavaste F, Fodé P, Pillet H, Sauret C. Comparison of shoulder kinematic chain models and their influence on kinematics and kinetics in the study of manual wheelchair propulsion. Med Eng Phys 2019; 69:153-160. [PMID: 31221514 DOI: 10.1016/j.medengphy.2019.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 04/03/2019] [Accepted: 06/06/2019] [Indexed: 11/30/2022]
Abstract
Several kinematic chains of the upper limbs have been designed in musculoskeletal models to investigate various upper extremity activities, including manual wheelchair propulsion. The aim of our study was to compare the effect of an ellipsoid mobilizer formulation to describe the motion of the scapulothoracic joint with respect to regression-based models on shoulder kinematics, shoulder kinetics and computational time, during manual wheelchair propulsion activities. Ten subjects, familiar with manual wheelchair propulsion, were equipped with reflective markers and performed start-up and propulsion cycles with an instrumented field wheelchair. Kinematic data obtained from the optoelectronic system and kinetic data measured by the sensors on the wheelchair were processed using the OpenSim software with three shoulder joint modeling versions (ellipsoid mobilizer, regression equations or fixed scapula) of an upper-limb musculoskeletal model. As expected, the results obtained with the three versions of the model varied, for both segment kinematics and shoulder kinetics. With respect to the model based on regression equations, the model describing the scapulothoracic joint as an ellipsoid could capture the kinematics of the upper limbs with higher fidelity. In addition, the mobilizer formulation allowed to compute consistent shoulder moments at a low computer processing cost. Further developments should be made to allow a subject-specific definition of the kinematic chain.
Collapse
Affiliation(s)
- Samuel Hybois
- Institut de Biomécanique Humaine Georges Charpak, Arts et Métiers ParisTech, Paris, France.
| | - Pierre Puchaud
- Institut de Biomécanique Humaine Georges Charpak, Arts et Métiers ParisTech, Paris, France; Centre d'Études et de Recherche sur l'Appareillage des Handicapés, Institution Nationale des Invalides, Créteil, France
| | - Maxime Bourgain
- Institut de Biomécanique Humaine Georges Charpak, Arts et Métiers ParisTech, Paris, France
| | - Antoine Lombart
- Institut de Biomécanique Humaine Georges Charpak, Arts et Métiers ParisTech, Paris, France; Centre d'Études et de Recherche sur l'Appareillage des Handicapés, Institution Nationale des Invalides, Créteil, France
| | - Joseph Bascou
- Institut de Biomécanique Humaine Georges Charpak, Arts et Métiers ParisTech, Paris, France; Centre d'Études et de Recherche sur l'Appareillage des Handicapés, Institution Nationale des Invalides, Créteil, France
| | - François Lavaste
- Institut de Biomécanique Humaine Georges Charpak, Arts et Métiers ParisTech, Paris, France; Centre d'Études et de Recherche sur l'Appareillage des Handicapés, Institution Nationale des Invalides, Créteil, France
| | - Pascale Fodé
- Centre d'Études et de Recherche sur l'Appareillage des Handicapés, Institution Nationale des Invalides, Créteil, France
| | - Hélène Pillet
- Institut de Biomécanique Humaine Georges Charpak, Arts et Métiers ParisTech, Paris, France
| | - Christophe Sauret
- Institut de Biomécanique Humaine Georges Charpak, Arts et Métiers ParisTech, Paris, France
| |
Collapse
|
12
|
Predictors of shoulder pain in manual wheelchair users. Clin Biomech (Bristol, Avon) 2019; 65:1-12. [PMID: 30927682 PMCID: PMC6520124 DOI: 10.1016/j.clinbiomech.2019.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/27/2019] [Accepted: 03/05/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Manual wheelchair users rely on their upper limbs to provide independent mobility, which leads to high muscular demand on their upper extremities and often results in shoulder pain and injury. However, the specific causes of shoulder pain are unknown. Previous work has shown that decreased shoulder muscle strength is predictive of shoulder pain onset, and others have analyzed joint kinematics and kinetics, propulsion technique and intra-individual variability for their relation to shoulder pathology. The purpose of this study was to determine in a longitudinal setting whether there are specific biomechanical measures that predict shoulder pain development in manual wheelchair users. METHODS All participants were asymptomatic for shoulder pain and categorized into pain and no pain groups based on assessments at 18 and 36 months later. Shoulder strength, handrim and joint kinetics, kinematics, spatiotemporal measures, intra-individual standard deviations and coefficients of variation were evaluated as predictors of shoulder pain. FINDINGS Individuals who developed shoulder pain had weaker shoulder adductor muscles, higher positive shoulder joint work during recovery, and less trunk flexion than those who did not develop pain. In addition, relative intra-individual variability was a better predictor of shoulder pain than absolute variability, however future work is needed to determine when increased versus decreased variability is more favorable for preventing shoulder pain. INTERPRETATION These predictors may provide insight into how to improve rehabilitation training and outcomes for manual wheelchair users and ultimately decrease their likelihood of developing shoulder pain and injuries.
Collapse
|
13
|
Lytle LL, Dannenbring JL, Kilgas MA, Elmer SJ. Eccentric Arm Cycling: A Potential Exercise for Wheelchair Users. Arch Phys Med Rehabil 2019; 100:914-922. [DOI: 10.1016/j.apmr.2018.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/17/2018] [Accepted: 11/12/2018] [Indexed: 11/25/2022]
|
14
|
Leving MT, Vegter RJK, de Vries WHK, de Groot S, van der Woude LHV. Changes in propulsion technique and shoulder complex loading following low-intensity wheelchair practice in novices. PLoS One 2018; 13:e0207291. [PMID: 30412627 PMCID: PMC6226177 DOI: 10.1371/journal.pone.0207291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/29/2018] [Indexed: 11/18/2022] Open
Abstract
Background Up to 80% of wheelchair users are affected by shoulder pain. The Clinical Practice Guidelines for preservation of upper limb function following spinal cord injury suggest that using a proper wheelchair propulsion technique could minimize the shoulder injury risk. Yet, the exact relationship between the wheelchair propulsion technique and shoulder load is not well understood. Objective This study aimed to examine the changes in shoulder loading accompanying the typical changes in propulsion technique following 80 min of low-intensity wheelchair practice distributed over 3 weeks. Methods Seven able-bodied participants performed the pre- and the post-test and 56 min of visual feedback-based low-intensity wheelchair propulsion practice. Kinematics and kinetics of propulsion technique were recorded during the pre- and the post-test. A musculoskeletal model was used to calculate muscle force and glenohumeral reaction force. Results Participants decreased push frequency (51→36 pushes/min, p = 0.04) and increased contact angle (68→94°, p = 0.02) between the pre- and the post-test. The excursion of the upper arm increased, approaching significance (297→342 mm, p = 0.06). Range of motion of the hand, trunk and shoulder remained unchanged. The mean glenohumeral reaction force per cycle decreased by 13%, approaching significance (268→232 N, p = 0.06). Conclusions Despite homogenous changes in propulsion technique, the kinematic solution to the task varied among the participants. Participants exhibited two glenohumeral reaction force distribution patterns: 1) Two individuals developed high force at the onset of the push, leading to increased peak and mean glenohumeral forces 2) Five individuals distributed the force more evenly over the cycle, lowering both peak and mean glenohumeral forces.
Collapse
Affiliation(s)
- Marika T. Leving
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- * E-mail:
| | - Riemer J. K. Vegter
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Sonja de Groot
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Amsterdam Rehabilitation Research Center | Reade, Amsterdam, The Netherlands
| | - Lucas H. V. van der Woude
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Center for Rehabilitation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
15
|
Babu Rajendra Kurup N, Puchinger M, Gföhler M. Forward dynamic optimization of handle path and muscle activity for handle based isokinetic wheelchair propulsion: A simulation study. Comput Methods Biomech Biomed Engin 2018; 22:55-63. [PMID: 30398368 PMCID: PMC6457274 DOI: 10.1080/10255842.2018.1527321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Push-rim wheelchair propulsion is biomechanically inefficient and physiologically stressful to the musculoskeletal structure of human body. This study focuses to obtain a new, optimized propulsion shape for wheelchair users, which is within the ergonomic ranges of joint motion, thus reducing the probability of injuries. To identify the propulsion movement, forward dynamic optimization was performed on a 3D human musculoskeletal model linked to a handle based propulsion mechanism, having shape and muscle excitations as optimization variables. The optimization resulted in a handle path shape with a circularity ratio of 0.95, and produced a net propulsion power of 34.7 watts for an isokinetic propulsion cycle at 50 rpm. Compared to push-rim propulsion, the compact design of the new propulsion mechanism along with the ergonomically optimized propulsion shape may help to reduce the risk of injuries and thus improve the quality of life for wheelchair users.
Collapse
Affiliation(s)
| | - Markus Puchinger
- a Research Division for Biomechanics and Rehabilitation Engineering , TU Wien , Vienna , Austria
| | - Margit Gföhler
- a Research Division for Biomechanics and Rehabilitation Engineering , TU Wien , Vienna , Austria
| |
Collapse
|
16
|
Rammer J, Slavens B, Krzak J, Winters J, Riedel S, Harris G. Assessment of a markerless motion analysis system for manual wheelchair application. J Neuroeng Rehabil 2018; 15:96. [PMID: 30400917 PMCID: PMC6219189 DOI: 10.1186/s12984-018-0444-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 10/18/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Wheelchair biomechanics research advances accessibility and clinical care for manual wheelchair users. Standardized outcome assessments are vital tools for tracking progress, but there is a strong need for more quantitative methods. A system offering kinematic, quantitative detection, with the ease of use of a standardized outcome assessment, would be optimal for repeated, longitudinal assessment of manual wheelchair users' therapeutic progress, but has yet to be offered. RESULTS This work evaluates a markerless motion analysis system for manual wheelchair mobility in clinical, community, and home settings. This system includes Microsoft® Kinect® 2.0 sensors, OpenSim musculoskeletal modeling, and an automated detection, processing, and training interface. The system is designed to be cost-effective, easily used by caregivers, and capable of detecting key kinematic metrics involved in manual wheelchair propulsion. The primary technical advancements in this research are the software components necessary to detect and process the upper extremity kinematics during manual wheelchair propulsion, along with integration of the components into a complete system. The study defines and evaluates an adaptable systems methodology for processing kinematic data using motion capture technology and open-source musculoskeletal models to assess wheelchair propulsion pattern and biomechanics, and characterizes its accuracy, sensitivity and repeatability. Inter-trial repeatability of spatiotemporal parameters, joint range of motion, and musculotendon excursion were all found to be significantly correlated (p < 0.05). CONCLUSIONS The system is recommended for use in clinical settings for frequent wheelchair propulsion assessment, provided the limitations in precision are considered. The motion capture-model software bridge methodology could be applied in the future to any motion-capture system or specific application, broadening access to detailed kinematics while reducing assessment time and cost.
Collapse
Affiliation(s)
- Jacob Rammer
- Orthopaedic and Rehabilitation Engineering Center (OREC), Marquette University, Olin Engineering Suite 323, Milwaukee, WI, 53201-1881, USA. .,Department of Biomedical Engineering, Marquette University, Olin Engineering Suite 323, Milwaukee, WI, 53201-1881, USA. .,Department of Orthopaedic Surgery, Medical College of Wisconsin, Milwaukee, WI, 53201-1881, USA.
| | - Brooke Slavens
- University of Wisconsin-Milwaukee, 2400 E Hartford Ave, Rm. 983, Milwaukee, WI, 53211, USA
| | - Joseph Krzak
- Shriners Hospitals for Children, Chicago, IL, USA.,Midwestern University, Physical Therapy Program, 555 31st St., Alumni Hall 340C, Downers Grove, IL, 60515, USA
| | - Jack Winters
- Marquette University, Biomedical Engineering, Milwaukee, WI, 53201-1881, USA
| | - Susan Riedel
- Orthopaedic and Rehabilitation Engineering Center (OREC), Marquette University, Olin Engineering Suite 323, Milwaukee, WI, 53201-1881, USA.,Department of Biomedical Engineering, Marquette University, Olin Engineering Suite 323, Milwaukee, WI, 53201-1881, USA.,Department of Orthopaedic Surgery, Medical College of Wisconsin, Milwaukee, WI, 53201-1881, USA
| | - Gerald Harris
- Orthopaedic and Rehabilitation Engineering Center (OREC), Marquette University, Olin Engineering Suite 323, Milwaukee, WI, 53201-1881, USA.,Department of Biomedical Engineering, Marquette University, Olin Engineering Suite 323, Milwaukee, WI, 53201-1881, USA.,Department of Orthopaedic Surgery, Medical College of Wisconsin, Milwaukee, WI, 53201-1881, USA.,Shriners Hospitals for Children, Chicago, IL, USA
| |
Collapse
|
17
|
Odle B, Reinbolt J, Forrest G, Dyson-Hudson T. Construction and evaluation of a model for wheelchair propulsion in an individual with tetraplegia. Med Biol Eng Comput 2018; 57:519-532. [PMID: 30255235 DOI: 10.1007/s11517-018-1895-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 09/05/2018] [Indexed: 10/28/2022]
Abstract
Upper limb overuse injuries are common in manual wheelchair users with spinal cord injury. Patient-specific in silico models enhance experimental biomechanical analyses by estimating in vivo shoulder muscle and joint contact forces. Current models exclude deep shoulder muscles that have important roles in wheelchair propulsion. Freely accessible patient-specific models have not been generated for persons with tetraplegia, who have a greater risk for shoulder pain and injury. The objectives of this work were to (i) construct a freely accessible, in silico, musculoskeletal model capable of generating patient-specific dynamic simulations of wheelchair propulsion and (ii) establish proof-of-concept with data obtained from an individual with tetraplegia. Constructed with OpenSim, the model features muscles excluded in existing models. Shoulder muscle forces and activations were estimated via inverse dynamics. Mean absolute error of estimated muscle activations and fine-wire electromyography (EMG) recordings was computed. Mean muscle activation for five consecutive stroke cycles demonstrated good correlation (0.15-0.17) with fine-wire EMG. These findings, comparable to other studies, suggest that the model is capable of estimating shoulder muscle forces during wheelchair propulsion. The additional muscles may provide a greater understanding of shoulder muscle contribution to wheelchair propulsion. The model may ultimately serve as a powerful clinical tool. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Brooke Odle
- Department of Biomedical Engineering, New Jersey Institute of Technology, 323 Martin Luther King Blvd, Newark, NJ, 07102, USA. .,Kessler Foundation, 1199 Pleasant Valley Way, West Orange, NJ, 07052, USA. .,Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
| | - Jeffrey Reinbolt
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, 1512 Middle Drive, Knoxville, TN, 37996, USA
| | - Gail Forrest
- Kessler Foundation, 1199 Pleasant Valley Way, West Orange, NJ, 07052, USA.,Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, 07101, USA
| | - Trevor Dyson-Hudson
- Kessler Foundation, 1199 Pleasant Valley Way, West Orange, NJ, 07052, USA.,Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, 07101, USA
| |
Collapse
|
18
|
Liu K, Liu Y, Yan J, Sun Z. Nondestructive Estimation of Muscle Contributions to STS Training with Different Loadings Based on Wearable Sensor System. SENSORS (BASEL, SWITZERLAND) 2018; 18:E971. [PMID: 29587391 PMCID: PMC5948594 DOI: 10.3390/s18040971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 12/14/2022]
Abstract
Partial body weight support or loading sit-to-stand (STS) rehabilitation can be useful for persons with lower limb dysfunction to achieve movement again based on the internal residual muscle force and external assistance. To explicate how the muscles contribute to the kinetics and kinematics of STS performance by non-invasive in vitro detection and to nondestructively estimate the muscle contributions to STS training with different loadings, a wearable sensor system was developed with ground reaction force (GRF) platforms, motion capture inertial sensors and electromyography (EMG) sensors. To estimate the internal moments of hip, knee and ankle joints and quantify the contributions of individual muscle and gravity to STS movement, the inverse dynamics analysis on a simplified STS biomechanical model with external loading is proposed. The functional roles of the lower limb individual muscles (rectus femoris (RF), gluteus maximus (GM), vastus lateralis (VL), tibialis anterior (TA) and gastrocnemius (GAST)) during STS motion and the mechanism of the muscles' synergies to perform STS-specific subtasks were analyzed. The muscle contributions to the biomechanical STS subtasks of vertical propulsion, anteroposterior (AP) braking and propulsion for body balance in the sagittal plane were quantified by experimental studies with EMG, kinematic and kinetic data.
Collapse
Affiliation(s)
- Kun Liu
- School of Mechanical Science and Engineering, Jilin University, Changchun 130025, China.
| | - Yong Liu
- School of Mechanical Science and Engineering, Jilin University, Changchun 130025, China.
| | - Jianchao Yan
- School of Mechanical Science and Engineering, Jilin University, Changchun 130025, China.
| | - Zhenyuan Sun
- School of Mechanical Science and Engineering, Jilin University, Changchun 130025, China.
| |
Collapse
|
19
|
Evaluation and validation of musculoskeletal force feasible set indices: Application to manual wheelchair propulsion. J Biomech 2018; 68:70-77. [PMID: 29338847 DOI: 10.1016/j.jbiomech.2017.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 11/23/2022]
Abstract
The aim of this work was to assess handrim wheelchair propulsion effectiveness, related to the applied forces on the handrim, through the force feasible set. For a given posture of the upper-limb, it represents the set of isometric forces that can be applied on the handrim in any direction. The force feasible set was predicted from a musculoskeletal model of the upper-limb and trunk (10 degrees of freedom and 56 muscles). The aim of the first part of the study was to compare the force feasible set prediction and the force currently applied on the handrim. The second part proposes the creation of a new index called "Musculoskeletal Postural Performance Index" (MPPI) derived from the force feasible set and its comparison with the Mechanical Efficiency Force (MEF). These comparisons were conducted at 60, 80, 100, 120 and 140% of the Freely Chosen Frequency at submaximal and maximal conditions on 5 different phases of the push phase. The values of the MPPI were significantly correlated with those of the MEF. During the course of the push phase, the orientation of the force feasible set main axis approached that of the measured force and the force effectiveness evaluated through the MPPI increased.
Collapse
|
20
|
Abstract
The shoulder achieves a wide spectrum of motion, and in a subset of patients, including those who use manual wheelchairs and upper extremity walking aids, the shoulder also serves as the primary weight-bearing joint. Because the weight-bearing shoulder is subject to considerable joint reaction forces and overuse, a broad spectrum of pathology can affect the joint. The combination of muscle imbalance and repetitive trauma presents most commonly as subacromial impingement syndrome but can progress to other pathology. Patients with high-level spinal cord injury, leading to quadriplegia and motor deficits, have an increased incidence of shoulder pain. Understanding the needs of patients who use manual wheelchairs or walking aids can help the physician to better comprehend the pathology of and better manage the weight-bearing shoulder.
Collapse
|
21
|
Molik B, Kosmol A, Morgulec-Adamowicz N, Lencse-Mucha J, Mróz A, Gryko K, Marszałek J. Comparison of Aerobic Performance Testing Protocols in Elite Male Wheelchair Basketball Players. J Hum Kinet 2017; 60:243-254. [PMID: 29340005 PMCID: PMC5765805 DOI: 10.1515/hukin-2017-0140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In wheelchair sports, aerobic performance is commonly assessed with the use of an arm crank ergometer (ACE), a wheelchair ergometer (WCE) or a wheelchair treadmill (WCT). There are different protocols to identify peak oxygen uptake in wheelchair sports; however, only a few protocols have been applied to evaluate these conditions in wheelchair basketball players. The purpose of this study was to compare physiological responses during maximal exercise testing with the use of ACE and WCT in wheelchair basketball players. Twelve elite male wheelchair basketball players participated in this study. The research was performed during a training camp of the Polish National Wheelchair Basketball Team. The study participants were divided into two functional categories: A (players with class 1.0 - 2.5) and B (players with class 3.0 - 4.5). Two main maximal exercise tests, i.e. wheelchair treadmill stress test (WCT test) and arm crank ergometer stress test (ACE test) were used to evaluate aerobic performance of the players. There were no statistically significant differences in aerobic tests between the players from both groups. The comparison of results achieved in two aerobic tests performed on WCT and ACE did not reveal any significant differences between the analyzed variables (peak heart rate (HRpeak), peak oxygen uptake (VO2peak), minute ventilation (VE), anaerobic threshold (AT), lactate concentration (LApeak), and a drop in lactate concentration (%LA)). Strong correlations between results achieved in WCT and ACE tests were found for VO2peak, VE and LApeak. The main conclusion of the study is that both WCT and ACE tests may be useful when determining aerobic capacity of wheelchair basketball players. Moreover, both protocols can be used by athletes regardless of their functional capabilities and types of impairment.
Collapse
Affiliation(s)
- Bartosz Molik
- Faculty of Rehabilitation, Jozef Pilsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Andrzej Kosmol
- Faculty of Rehabilitation, Jozef Pilsudski University of Physical Education in Warsaw, Warsaw, Poland
| | | | - Judit Lencse-Mucha
- Faculty of Rehabilitation, Jozef Pilsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Anna Mróz
- Faculty of Physical Education, Jozef Pilsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Karol Gryko
- Faculty of Physical Education, Jozef Pilsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Jolanta Marszałek
- Faculty of Rehabilitation, Jozef Pilsudski University of Physical Education in Warsaw, Warsaw, Poland
| |
Collapse
|
22
|
Harper NG, Wilken JM, Neptune RR. Muscle Function and Coordination of Stair Ascent. J Biomech Eng 2017; 140:2653364. [DOI: 10.1115/1.4037791] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Indexed: 11/08/2022]
Abstract
Stair ascent is an activity of daily living and necessary for maintaining independence in community environments. One challenge to improving an individual's ability to ascend stairs is a limited understanding of how lower-limb muscles work in synergy to perform stair ascent. Through dynamic coupling, muscles can perform multiple functions and require contributions from other muscles to perform a task successfully. The purpose of this study was to identify the functional roles of individual muscles during stair ascent and the mechanisms by which muscles work together to perform specific subtasks. A three-dimensional (3D) muscle-actuated simulation of stair ascent was generated to identify individual muscle contributions to the biomechanical subtasks of vertical propulsion, anteroposterior (AP) braking and propulsion, mediolateral control and leg swing. The vasti and plantarflexors were the primary contributors to vertical propulsion during the first and second halves of stance, respectively, while gluteus maximus and hamstrings were the primary contributors to forward propulsion during the first and second halves of stance, respectively. The anterior and posterior components of gluteus medius were the primary contributors to medial control, while vasti and hamstrings were the primary contributors to lateral control during the first and second halves of stance, respectively. To control leg swing, antagonistic muscles spanning the hip, knee, and ankle joints distributed power from the leg to the remaining body segments. These results compliment previous studies analyzing stair ascent and provide further rationale for developing targeted rehabilitation strategies to address patient-specific deficits in stair ascent.
Collapse
Affiliation(s)
- Nicole G. Harper
- Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton Street, Stop C2200, Austin, TX 78712 e-mail:
| | - Jason M. Wilken
- Department of Orthopaedics and Rehabilitation, Center for the Intrepid, Brooke Army Medical Center, Ft. Sam Houston, TX 78234 e-mail:
| | - Richard R. Neptune
- Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton Street, Stop C2200, Austin, TX 78712 e-mail:
| |
Collapse
|
23
|
Rankin JW, Rubenson J, Hutchinson JR. Inferring muscle functional roles of the ostrich pelvic limb during walking and running using computer optimization. J R Soc Interface 2017; 13:rsif.2016.0035. [PMID: 27146688 PMCID: PMC4892259 DOI: 10.1098/rsif.2016.0035] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/07/2016] [Indexed: 11/12/2022] Open
Abstract
Owing to their cursorial background, ostriches (Struthio camelus) walk and run with high metabolic economy, can reach very fast running speeds and quickly execute cutting manoeuvres. These capabilities are believed to be a result of their ability to coordinate muscles to take advantage of specialized passive limb structures. This study aimed to infer the functional roles of ostrich pelvic limb muscles during gait. Existing gait data were combined with a newly developed musculoskeletal model to generate simulations of ostrich walking and running that predict muscle excitations, force and mechanical work. Consistent with previous avian electromyography studies, predicted excitation patterns showed that individual muscles tended to be excited primarily during only stance or swing. Work and force estimates show that ostrich gaits are partially hip-driven with the bi-articular hip–knee muscles driving stance mechanics. Conversely, the knee extensors acted as brakes, absorbing energy. The digital extensors generated large amounts of both negative and positive mechanical work, with increased magnitudes during running, providing further evidence that ostriches make extensive use of tendinous elastic energy storage to improve economy. The simulations also highlight the need to carefully consider non-muscular soft tissues that may play a role in ostrich gait.
Collapse
Affiliation(s)
- Jeffery W Rankin
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, Hatfield, Herts, UK
| | - Jonas Rubenson
- Department of Kinesiology, Pennsylvania State University, University Park, PA, USA School of Sport Science, Exercise and Health, The University of Western Australia, Perth, Western Australia, Australia
| | - John R Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, Hatfield, Herts, UK
| |
Collapse
|
24
|
Loslever P, Schiro J, Gabrielli F, Pudlo P. Comparing multiple correspondence and principal component analyses with biomechanical signals. Example with turning the steering wheel. Comput Methods Biomech Biomed Engin 2017; 20:1038-1047. [PMID: 28562073 DOI: 10.1080/10255842.2017.1331341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The purpose of this article is to compare Principal Component Analysis (PCA) and a much less used method, i.e. MCA (Multiple Correspondence Analysis) with data being first changed into membership values to fuzzy space windows. For such a comparison, data from an experimental study about turning the steering wheel is used. In a didactic perspective, this article only considers one multidimensional signal with 5 components: 3 linked to the steering wheel angle and hand positions and 2 to hand effort variables. A discussion weighs out the pros and the cons of both methods with criteria such as the possibility to show complex relational phenomena, the analysis/computing time or the information loss inherent to the averaging stage (in the perspective to analyze several hundreds of large multidimensional signals).
Collapse
Affiliation(s)
- P Loslever
- a Laboratory of Industrial and Human Automation Control, Mechanical Engineering and Computer Sciences , University of Valenciennes , Valenciennes , France
| | - J Schiro
- a Laboratory of Industrial and Human Automation Control, Mechanical Engineering and Computer Sciences , University of Valenciennes , Valenciennes , France
| | - F Gabrielli
- a Laboratory of Industrial and Human Automation Control, Mechanical Engineering and Computer Sciences , University of Valenciennes , Valenciennes , France
| | - P Pudlo
- a Laboratory of Industrial and Human Automation Control, Mechanical Engineering and Computer Sciences , University of Valenciennes , Valenciennes , France
| |
Collapse
|
25
|
Akınoğlu B, Kocahan T. Characteristics of upper extremity's muscle strength in Turkish national wheelchair basketball players team. J Exerc Rehabil 2017; 13:62-67. [PMID: 28349035 PMCID: PMC5332001 DOI: 10.12965/jer.1732868.434] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/01/2017] [Indexed: 11/22/2022] Open
Abstract
The objective of this study was to reveal characteristics of muscle strength of upper extremities of wheelchair (WC) basketball players and to ensure more-specific training program preparation. Isokinetic muscle strength of 12 WC basketball players were assessed by ISOMED 2000 device. The assessment protocol was evaluated at 60°/sec velocity with 5 times repeated force and at 240°/sec with 15 times repeated force. This protocol was carried out individually for shoulder flexion-extension and wrist flexion-extension movements at the right and left extremities. The flexion/extension ratio was determined to be outside of the ratios accepted as normal for primarily shoulder joint and for wrist joint. The extension movement was stronger than flexion movement in the shoulders at both velocities and the flexion movement was stronger than ex-tension movement in the wrist. The repeat times where the peak torque occurred were 2–3 repeats at 60°/sec velocity during flexion and extension movements for the wrist and shoulders, and the peak torque occurred at an average of 5–6 repeats in the shoulders at 240°/sec velocity and it occurred at 3–4 repeats in the wrist. The angles where the peak torque of the shoulder flexion and extension occurred varied between 80°–115° at both velocities, and it varied between 5°–30° angles for the wrist. As this study revealed, determination of muscle strength characteristics of WC athletes and especially using objective isokinetic devices will guide the planning of the appropriate training and exercise programs and preventing sports injuries in long term.
Collapse
Affiliation(s)
- Bihter Akınoğlu
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Tuğba Kocahan
- Department of Health Services, The Ministry of Youth and Sports, Sports General Directorship, Center of Athlete Training and Health Research, Ankara, Turkey
| |
Collapse
|
26
|
Brogioli M, Schneider S, Popp WL, Albisser U, Brust AK, Velstra IM, Gassert R, Curt A, Starkey ML. Monitoring Upper Limb Recovery after Cervical Spinal Cord Injury: Insights beyond Assessment Scores. Front Neurol 2016; 7:142. [PMID: 27630612 PMCID: PMC5005421 DOI: 10.3389/fneur.2016.00142] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/18/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Preclinical investigations in animal models demonstrate that enhanced upper limb (UL) activity during rehabilitation promotes motor recovery following spinal cord injury (SCI). Despite this, following SCI in humans, no commonly applied training protocols exist, and therefore, activity-based rehabilitative therapies (ABRT) vary in frequency, duration, and intensity. Quantification of UL recovery is limited to subjective questionnaires or scattered measures of muscle function and movement tasks. OBJECTIVE To objectively measure changes in UL activity during acute SCI rehabilitation and to assess the value of wearable sensors as novel measurement tools that are complimentary to standard clinical assessments tools. METHODS The overall amount of UL activity and kinematics of wheeling were measured longitudinally with wearable sensors in 12 thoracic and 19 cervical acute SCI patients (complete and incomplete). The measurements were performed for up to seven consecutive days, and simultaneously, SCI-specific assessments were made during rehabilitation sessions 1, 3, and 6 months after injury. Changes in UL activity and function over time were analyzed using linear mixed models. RESULTS During acute rehabilitation, the overall amount of UL activity and the active distance wheeled significantly increased in tetraplegic patients, but remained constant in paraplegic patients. The same tendency was shown in clinical scores with the exception of those for independence, which showed improvements at the beginning of the rehabilitation period, even in paraplegic subjects. In the later stages of acute rehabilitation, the quantity of UL activity in tetraplegic individuals matched that of their paraplegic counterparts, despite their greater motor impairments. Both subject groups showed higher UL activity during therapy time compared to the time outside of therapy time. CONCLUSION Tracking day-to-day UL activity is necessary to gain insights into the real impact of a patient's impairments on their UL movements during therapy and during their leisure time. In the future, this novel methodology may be used to reliably control and adjust ABRT and to evaluate the progress of UL rehabilitation in clinical trials.
Collapse
Affiliation(s)
- Michael Brogioli
- Spinal Cord Injury Center, Balgrist University Hospital , Zurich , Switzerland
| | - Sophie Schneider
- Spinal Cord Injury Center, Balgrist University Hospital , Zurich , Switzerland
| | - Werner L Popp
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland; Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Urs Albisser
- Spinal Cord Injury Center, Balgrist University Hospital , Zurich , Switzerland
| | - Anne K Brust
- Clinical Trial Unit, Swiss Paraplegic Centre , Nottwil , Switzerland
| | | | - Roger Gassert
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich , Zurich , Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital , Zurich , Switzerland
| | - Michelle L Starkey
- Spinal Cord Injury Center, Balgrist University Hospital , Zurich , Switzerland
| |
Collapse
|
27
|
Effects of Seated Postural Stability and Trunk and Upper Extremity Strength on Performance during Manual Wheelchair Propulsion Tests in Individuals with Spinal Cord Injury: An Exploratory Study. Rehabil Res Pract 2016; 2016:6842324. [PMID: 27635262 PMCID: PMC5007374 DOI: 10.1155/2016/6842324] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/17/2016] [Accepted: 06/23/2016] [Indexed: 11/17/2022] Open
Abstract
Objectives. To quantify the association between performance-based manual wheelchair propulsion tests (20 m propulsion test, slalom test, and 6 min propulsion test), trunk and upper extremity (U/E) strength, and seated reaching capability and to establish which ones of these variables best predict performance at these tests. Methods. 15 individuals with a spinal cord injury (SCI) performed the three wheelchair propulsion tests prior to discharge from inpatient SCI rehabilitation. Trunk and U/E strength and seated reaching capability with unilateral hand support were also measured. Bivariate correlation and multiple linear regression analyses allowed determining the best determinants and predictors, respectively. Results. The performance at the three tests was moderately or strongly correlated with anterior and lateral flexion trunk strength, anterior seated reaching distance, and the shoulder, elbow, and handgrip strength measures. Shoulder adductor strength-weakest side explained 53% of the variance on the 20-meter propulsion test-maximum velocity. Shoulder adductor strength-strongest side and forward seated reaching distance explained 71% of the variance on the slalom test. Handgrip strength explained 52% of the variance on the 6-minute propulsion test. Conclusion. Performance at the manual wheelchair propulsion tests is explained by a combination of factors that should be considered in rehabilitation.
Collapse
|
28
|
Imran A, Yi BJ. Impulse Modeling and New Impulse Measure for Human-Like Closed-Chain Manipulator. IEEE Robot Autom Lett 2016. [DOI: 10.1109/lra.2016.2525730] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
29
|
Slowik JS, Requejo PS, Mulroy SJ, Neptune RR. The influence of wheelchair propulsion hand pattern on upper extremity muscle power and stress. J Biomech 2016; 49:1554-1561. [PMID: 27062591 DOI: 10.1016/j.jbiomech.2016.03.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 10/22/2022]
Abstract
The hand pattern (i.e., full-cycle hand path) used during manual wheelchair propulsion is frequently classified as one of four distinct hand pattern types: arc, single loop, double loop or semicircular. Current clinical guidelines recommend the use of the semicircular pattern, which is based on advantageous levels of broad biomechanical metrics implicitly related to the demand placed on the upper extremity (e.g., lower cadence). However, an understanding of the influence of hand pattern on specific measures of upper extremity muscle demand (e.g., muscle power and stress) is needed to help make such recommendations, but these quantities are difficult and impractical to measure experimentally. The purpose of this study was to use musculoskeletal modeling and forward dynamics simulations to investigate the influence of the hand pattern used on specific measures of upper extremity muscle demand. The simulation results suggest that the double loop and semicircular patterns produce the most favorable levels of overall muscle stress and total muscle power. The double loop pattern had the lowest full-cycle and recovery-phase upper extremity demand but required high levels of muscle power during the relatively short contact phase. The semicircular pattern had the second-lowest full-cycle levels of overall muscle stress and total muscle power, and demand was more evenly distributed between the contact and recovery phases. These results suggest that in order to decrease upper extremity demand, manual wheelchair users should consider using either the double loop or semicircular pattern when propelling their wheelchairs at a self-selected speed on level ground.
Collapse
Affiliation(s)
- Jonathan S Slowik
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Philip S Requejo
- Pathokinesiology Laboratory, Rancho Los Amigos National Rehabilitation Center, Downey, CA, USA; Rehabilitation Engineering, Rancho Los Amigos National Rehabilitation Center, Downey, CA, USA
| | - Sara J Mulroy
- Pathokinesiology Laboratory, Rancho Los Amigos National Rehabilitation Center, Downey, CA, USA
| | - Richard R Neptune
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
30
|
Slowik JS, McNitt-Gray JL, Requejo PS, Mulroy SJ, Neptune RR. Compensatory strategies during manual wheelchair propulsion in response to weakness in individual muscle groups: A simulation study. Clin Biomech (Bristol, Avon) 2016; 33:34-41. [PMID: 26945719 PMCID: PMC4821704 DOI: 10.1016/j.clinbiomech.2016.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 02/06/2016] [Accepted: 02/11/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND The considerable physical demand placed on the upper extremity during manual wheelchair propulsion is distributed among individual muscles. The strategy used to distribute the workload is likely influenced by the relative force-generating capacities of individual muscles, and some strategies may be associated with a higher injury risk than others. The objective of this study was to use forward dynamics simulations of manual wheelchair propulsion to identify compensatory strategies that can be used to overcome weakness in individual muscle groups and identify specific strategies that may increase injury risk. Identifying these strategies can provide rationale for the design of targeted rehabilitation programs aimed at preventing the development of pain and injury in manual wheelchair users. METHODS Muscle-actuated forward dynamics simulations of manual wheelchair propulsion were analyzed to identify compensatory strategies in response to individual muscle group weakness using individual muscle mechanical power and stress as measures of upper extremity demand. FINDINGS The simulation analyses found the upper extremity to be robust to weakness in any single muscle group as the remaining groups were able to compensate and restore normal propulsion mechanics. The rotator cuff muscles experienced relatively high muscle stress levels and exhibited compensatory relationships with the deltoid muscles. INTERPRETATION These results underline the importance of strengthening the rotator cuff muscles and supporting muscles whose contributions do not increase the potential for impingement (i.e., the thoracohumeral depressors) and minimize the risk of upper extremity injury in manual wheelchair users.
Collapse
Affiliation(s)
- Jonathan S. Slowik
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Jill L. McNitt-Gray
- Department of Biomedical Engineering, The University of Southern California, Los Angeles, CA, USA,Department of Biological Sciences, The University of Southern California, Los Angeles, CA, USA
| | - Philip S. Requejo
- Pathokinesiology Laboratory, Rancho Los Amigos National Rehabilitation Center, Downey, CA, USA,Rehabilitation Engineering, Rancho Los Amigos National Rehabilitation Center, Downey, CA, USA
| | - Sara J. Mulroy
- Pathokinesiology Laboratory, Rancho Los Amigos National Rehabilitation Center, Downey, CA, USA
| | - Richard R. Neptune
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
31
|
Jayaraman C, Beck CL, Sosnoff JJ. Shoulder pain and jerk during recovery phase of manual wheelchair propulsion. J Biomech 2015; 48:3937-44. [PMID: 26472307 PMCID: PMC4655152 DOI: 10.1016/j.jbiomech.2015.09.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 09/21/2015] [Accepted: 09/24/2015] [Indexed: 11/24/2022]
Abstract
UNLABELLED Repetitive loading of the upper limb due to wheelchair propulsion plays a leading role in the development of shoulder pain in manual wheelchair users (mWCUs). There has been minimal inquiry on understanding wheelchair propulsion kinematics from a human movement ergonomics perspective. This investigation employs an ergonomic metric, jerk, to characterize the recovery phase kinematics of two recommended manual wheelchair propulsion patterns: semi-circular and the double loop. Further it examines if jerk is related to shoulder pain in mWCUs. Data from 22 experienced adult mWCUs was analyzed for this study (semi-circular: n=12 (pain/without-pain:6/6); double-loop: n=10 (pain/without-pain:4/6)). Participants propelled their own wheelchair fitted with SMARTWheels on a roller dynamometer at 1.1 m/s for 3 min. Kinematic and kinetic data of the upper limbs were recorded. Three dimensional absolute jerk experienced at the shoulder, elbow and wrist joint during the recovery phase of wheelchair propulsion were computed. Two-way ANOVAs were conducted with the recovery pattern type and shoulder pain as between group factors. FINDINGS (1) Individuals using a semi-circular pattern experienced lower jerk at their arm joints than those using a double loop pattern (P<0.05, η(2)=0.32)wrist;(P=0.05, η(2)=0.19)elbow;(P<0.05, η(2)=0.34)shoulder and (2) individuals with shoulder pain had lower peak jerk magnitude during the recovery phase (P≤0.05, η(2)=0.36)wrist;(P≤0.05, η(2)=0.30)elbow;(P≤0.05, η(2)=0.31)shoulder. CONCLUSIONS Jerk during wheelchair propulsion was able to distinguish between pattern types (semi-circular and double loop) and the presence of shoulder pain. Jerk provides novel insights into wheelchair propulsion kinematics and in the future it may be beneficial to incorporate jerk based metric into rehabilitation practice.
Collapse
Affiliation(s)
- Chandrasekaran Jayaraman
- Department of Industrial and Enterprise Systems Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Carolyn L Beck
- Department of Industrial and Enterprise Systems Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jacob J Sosnoff
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
32
|
Kim SJ, Park SH, Lee CR. Comparison of neck and upper-limb muscle activities between able-bodied and paraplegic individuals during wheelchair propulsion on the ground. J Phys Ther Sci 2015; 27:1473-5. [PMID: 26157243 PMCID: PMC4483421 DOI: 10.1589/jpts.27.1473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/17/2015] [Indexed: 11/24/2022] Open
Abstract
[Purpose] This study compared the muscle activities of the neck and upper-limb muscles between able-bodied individuals and persons with paraplegia during wheelchair propulsion on the ground. [Subjects and Methods] The muscle activities of the neck and upper-limb muscles of 8 normal individuals and 8 individuals with paraplegia were analyzed during wheelchair propulsion. The activities of the latissimus dorsi, pectoralis major, anterior/posterior deltoids, triceps brachii, extensor carpi radialis, and sternocleidomastoid muscles were assessed. [Results] The paraplegic group showed significantly higher sternocleidomastoid activity than the normal group. Latissimus dorsi activity was also higher in the paraplegia group than in the normal group, but the difference was not significant. There were no significant differences in the other muscle activities between groups. [Conclusion] Paraplegic patients tend to use the sternocleidomastoid and latissimus dorsi muscles with greater degrees of activity. Therefore, physiotherapists should not overlook the treatment of these muscles for paraplegic patients who are long-term wheelchair users.
Collapse
Affiliation(s)
- Sang Jin Kim
- Department of Physical Therapy, Gyeongsan University,
Republic of Korea
| | - So Hyun Park
- Department of Physical Therapy, Youngsan University,
Republic of Korea
| | - Chang-Ryeol Lee
- Department of Physical Therapy, Korea Nazarene University, Republic of Korea
| |
Collapse
|
33
|
Vegter RJK, Hartog J, de Groot S, Lamoth CJ, Bekker MJ, van der Scheer JW, van der Woude LHV, Veeger DHEJ. Early motor learning changes in upper-limb dynamics and shoulder complex loading during handrim wheelchair propulsion. J Neuroeng Rehabil 2015; 12:26. [PMID: 25889389 PMCID: PMC4367846 DOI: 10.1186/s12984-015-0017-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/19/2015] [Indexed: 01/08/2023] Open
Abstract
Background To propel in an energy-efficient manner, handrim wheelchair users must learn to control the bimanually applied forces onto the rims, preserving both speed and direction of locomotion. Previous studies have found an increase in mechanical efficiency due to motor learning associated with changes in propulsion technique, but it is unclear in what way the propulsion technique impacts the load on the shoulder complex. The purpose of this study was to evaluate mechanical efficiency, propulsion technique and load on the shoulder complex during the initial stage of motor learning. Methods 15 naive able-bodied participants received 12-minutes uninstructed wheelchair practice on a motor driven treadmill, consisting of three 4-minute blocks separated by two minutes rest. Practice was performed at a fixed belt speed (v = 1.1 m/s) and constant low-intensity power output (0.2 W/kg). Energy consumption, kinematics and kinetics of propulsion technique were continuously measured. The Delft Shoulder Model was used to calculate net joint moments, muscle activity and glenohumeral reaction force. Results With practice mechanical efficiency increased and propulsion technique changed, reflected by a reduced push frequency and increased work per push, performed over a larger contact angle, with more tangentially applied force and reduced power losses before and after each push. Contrary to our expectations, the above mentioned propulsion technique changes were found together with an increased load on the shoulder complex reflected by higher net moments, a higher total muscle power and higher peak and mean glenohumeral reaction forces. Conclusions It appears that the early stages of motor learning in handrim wheelchair propulsion are indeed associated with improved technique and efficiency due to optimization of the kinematics and dynamics of the upper extremity. This process goes at the cost of an increased muscular effort and mechanical loading of the shoulder complex. This seems to be associated with an unchanged stable function of the trunk and could be due to the early learning phase where participants still have to learn to effectively use the full movement amplitude available within the wheelchair-user combination. Apparently whole body energy efficiency has priority over mechanical loading in the early stages of learning to propel a handrim wheelchair.
Collapse
Affiliation(s)
- Riemer J K Vegter
- University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, Groningen, The Netherlands.
| | - Johanneke Hartog
- University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, Groningen, The Netherlands.
| | - Sonja de Groot
- University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, Groningen, The Netherlands. .,Amsterdam Rehabilitation Research Center Reade, Amsterdam, The Netherlands.
| | - Claudine J Lamoth
- University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, Groningen, The Netherlands.
| | - Michel J Bekker
- University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, Groningen, The Netherlands. .,Swiss Paraplegic Research, Nottwil, Switzerland.
| | - Jan W van der Scheer
- University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, Groningen, The Netherlands.
| | - Lucas H V van der Woude
- University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, Groningen, The Netherlands. .,University of Groningen, University Medical Center Groningen, Center for Rehabilitation, Groningen, The Netherlands.
| | - Dirkjan H E J Veeger
- Faculty of Human Movement Sciences, Research Institute MOVE, Vrije Universiteit, Amsterdam, The Netherlands. .,Faculty of Mechanical, Maritime and Materials Engineering, Section Biomechatronics & Biorobotics, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
34
|
Morrow MM, Rankin JW, Neptune RR, Kaufman KR. A comparison of static and dynamic optimization muscle force predictions during wheelchair propulsion. J Biomech 2014; 47:3459-65. [PMID: 25282075 DOI: 10.1016/j.jbiomech.2014.09.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 09/05/2014] [Accepted: 09/14/2014] [Indexed: 12/01/2022]
Abstract
The primary purpose of this study was to compare static and dynamic optimization muscle force and work predictions during the push phase of wheelchair propulsion. A secondary purpose was to compare the differences in predicted shoulder and elbow kinetics and kinematics and handrim forces. The forward dynamics simulation minimized differences between simulated and experimental data (obtained from 10 manual wheelchair users) and muscle co-contraction. For direct comparison between models, the shoulder and elbow muscle moment arms and net joint moments from the dynamic optimization were used as inputs into the static optimization routine. RMS errors between model predictions were calculated to quantify model agreement. There was a wide range of individual muscle force agreement that spanned from poor (26.4% Fmax error in the middle deltoid) to good (6.4% Fmax error in the anterior deltoid) in the prime movers of the shoulder. The predicted muscle forces from the static optimization were sufficient to create the appropriate motion and joint moments at the shoulder for the push phase of wheelchair propulsion, but showed deviations in the elbow moment, pronation-supination motion and hand rim forces. These results suggest the static approach does not produce results similar enough to be a replacement for forward dynamics simulations, and care should be taken in choosing the appropriate method for a specific task and set of constraints. Dynamic optimization modeling approaches may be required for motions that are greatly influenced by muscle activation dynamics or that require significant co-contraction.
Collapse
|
35
|
Saul KR, Hu X, Goehler CM, Vidt ME, Daly M, Velisar A, Murray WM. Benchmarking of dynamic simulation predictions in two software platforms using an upper limb musculoskeletal model. Comput Methods Biomech Biomed Engin 2014; 18:1445-58. [PMID: 24995410 DOI: 10.1080/10255842.2014.916698] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Several opensource or commercially available software platforms are widely used to develop dynamic simulations of movement. While computational approaches are conceptually similar across platforms, technical differences in implementation may influence output. We present a new upper limb dynamic model as a tool to evaluate potential differences in predictive behavior between platforms. We evaluated to what extent differences in technical implementations in popular simulation software environments result in differences in kinematic predictions for single and multijoint movements using EMG- and optimization-based approaches for deriving control signals. We illustrate the benchmarking comparison using SIMM-Dynamics Pipeline-SD/Fast and OpenSim platforms. The most substantial divergence results from differences in muscle model and actuator paths. This model is a valuable resource and is available for download by other researchers. The model, data, and simulation results presented here can be used by future researchers to benchmark other software platforms and software upgrades for these two platforms.
Collapse
Affiliation(s)
- Katherine R Saul
- a Mechanical and Aerospace Engineering Department , North Carolina State University , Raleigh , NC 27695 , USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Biological variability in biomechanical engineering research: Significance and meta-analysis of current modeling practices. J Biomech 2014; 47:1241-50. [DOI: 10.1016/j.jbiomech.2014.01.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/21/2014] [Accepted: 01/22/2014] [Indexed: 11/19/2022]
|
37
|
Jayaraman C, Moon Y, Rice IM, Hsiao Wecksler ET, Beck CL, Sosnoff JJ. Shoulder pain and cycle to cycle kinematic spatial variability during recovery phase in manual wheelchair users: a pilot investigation. PLoS One 2014; 9:e89794. [PMID: 24614232 PMCID: PMC3948626 DOI: 10.1371/journal.pone.0089794] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 01/24/2014] [Indexed: 11/19/2022] Open
Abstract
UNLABELLED Wheelchair propulsion plays a significant role in the development of shoulder pain in manual wheelchair users (MWU). However wheelchair propulsion metrics related to shoulder pain are not clearly understood. This investigation examined intra-individual kinematic spatial variability during semi-circular wheelchair propulsion as a function of shoulder pain in MWU. Data from 10 experienced adult MWU with spinal cord injury (5 with shoulder pain; 5 without shoulder pain) were analyzed in this study. Participants propelled their own wheelchairs on a dynamometer at 3 distinct speeds (self-selected, 0.7 m/s, 1.1 m/s) for 3 minutes at each speed. Motion capture data of the upper limbs were recorded. Intra-individual kinematic spatial variability of the steady state wrist motion during the recovery phase was determined using principal component analysis (PCA). The kinematic spatial variability was calculated at every 10% intervals (i.e at 11 interval points, from 0% to 100%) along the wrist recovery path. RESULTS Overall, spatial variability was found to be highest at the start and end of the recovery phase and lowest during the middle of the recovery path. Individuals with shoulder pain displayed significantly higher kinematic spatial variability than individuals without shoulder pain at the start (at 10% interval) of the recovery phase (p<.004). CONCLUSIONS Analysis of intra-individual kinematic spatial variability during the recovery phase of manual wheelchair propulsion distinguished between those with and without shoulder pain. Variability analysis of wheelchair propulsion may offer a new approach to monitor the development and rehabilitation of shoulder pain.
Collapse
Affiliation(s)
- Chandrasekaran Jayaraman
- Department of Industrial and Enterprise Systems Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Yaejin Moon
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Ian M. Rice
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Elizabeth T. Hsiao Wecksler
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Carolyn L. Beck
- Department of Industrial and Enterprise Systems Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jacob J. Sosnoff
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
38
|
Crouch DL, Plate JF, Li Z, Saul KR. Computational sensitivity analysis to identify muscles that can mechanically contribute to shoulder deformity following brachial plexus birth palsy. J Hand Surg Am 2014; 39:303-11. [PMID: 24342260 DOI: 10.1016/j.jhsa.2013.10.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 02/02/2023]
Abstract
PURPOSE Two mechanisms, strength imbalance or impaired longitudinal muscle growth, potentially cause osseous and postural shoulder deformity in children with brachial plexus birth palsy. Our objective was to determine which muscles, via either deformity mechanism, were mechanically capable of producing forces that could promote shoulder deformity. METHODS In an upper limb computational musculoskeletal model, we simulated strength imbalance by allowing each muscle crossing the shoulder to produce 30% of its maximum force. To simulate impaired longitudinal muscle growth, the functional length of each muscle crossing the shoulder was reduced by 30%. We performed a sensitivity analysis to identify muscles that, through either simulated deformity mechanism, increased the posteriorly directed, compressive glenohumeral joint force consistent with osseous deformity or reduced the shoulder external rotation or abduction range of motion consistent with postural deformity. RESULTS Most of the increase in the posterior glenohumeral joint force by the strength imbalance mechanism was caused by the subscapularis, latissimus dorsi, and infraspinatus. Posterior glenohumeral joint force increased the most owing to impaired growth of the infraspinatus, subscapularis, and long head of biceps. Through the strength imbalance mechanism, the subscapularis, anterior deltoid, and pectoralis major muscles reduced external shoulder rotation by 28°, 17°, and 10°, respectively. Shoulder motion was reduced by 40° to 56° owing to impaired growth of the anterior deltoid, subscapularis, and long head of triceps. CONCLUSIONS The infraspinatus, subscapularis, latissimus dorsi, long head of biceps, anterior deltoid, pectoralis major, and long head of triceps were identified in this computational study as being the most capable of producing shoulder forces that may contribute to shoulder deformity following brachial plexus birth palsy. CLINICAL RELEVANCE The muscles mechanically capable of producing deforming shoulder forces should be the focus of experimental studies investigating the musculoskeletal consequences of brachial plexus birth palsy and are potentially critical targets for treating shoulder deformity.
Collapse
Affiliation(s)
- Dustin L Crouch
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences; the Department of Biomedical Engineering and the Department of Orthopaedic Surgery, Wake Forest School of Medicine; the Neuroscience Program, Wake Forest Graduate School of Arts and Sciences, Winston-Salem; and the Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina
| | - Johannes F Plate
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences; the Department of Biomedical Engineering and the Department of Orthopaedic Surgery, Wake Forest School of Medicine; the Neuroscience Program, Wake Forest Graduate School of Arts and Sciences, Winston-Salem; and the Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina
| | - Zhongyu Li
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences; the Department of Biomedical Engineering and the Department of Orthopaedic Surgery, Wake Forest School of Medicine; the Neuroscience Program, Wake Forest Graduate School of Arts and Sciences, Winston-Salem; and the Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina.
| | - Katherine R Saul
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences; the Department of Biomedical Engineering and the Department of Orthopaedic Surgery, Wake Forest School of Medicine; the Neuroscience Program, Wake Forest Graduate School of Arts and Sciences, Winston-Salem; and the Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
39
|
Moon HB, Park SJ, Kim AC, Jang JH. Characteristics of upper limb muscular strength in male wheelchair tennis players. J Exerc Rehabil 2013; 9:375-80. [PMID: 24278887 PMCID: PMC3836528 DOI: 10.12965/jer.130051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 05/09/2013] [Accepted: 05/16/2013] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to identify the characteristics of muscular strength in upper limb and to present the preliminary information for development of sports injury prevention program and exercise rehabilitation program in wheelchair tennis players. Participants were 12 male wheelchair tennis players. Muscular strength was measured in shoulder and elbow joints with isokinetic dynamometer. Ipsilateral (IR) and bilateral (BR) balance ratio were calculated with isokinetic strength at 60°/sec. As a result, extension strength (ES) was significantly higher than flexion strength (FS) (P< 0.001), and IR in both sides and BR in ES were maintained within normal range whereas BR in FS was lower than normal range in shoulder joint. In elbow joint FS was significantly higher than ES (P< 0.05), and IR and BR were lower than normal range. Consequently, the different tendency in IR between shoulder and elbow joints and lower IR and BR in elbow joints could be the characteristics in male wheelchair tennis players. It is suggested that flexor strengthening program in nondominant shoulder joint, extensor strengthening program in both elbow joint, and flexor strengthening program in non-dominant elbow joint should be introduced for male wheelchair tennis players.
Collapse
|
40
|
Dellabiancia F, Porcellini G, Merolla G. Instruments and techniques for the analysis of wheelchair propulsion and upper extremity involvement in patients with spinal cord injuries: current concept review. Muscles Ligaments Tendons J 2013; 3:150-156. [PMID: 24367774 PMCID: PMC3838323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The correct functionality of the upper limbs is an essential condition for the autonomy of people with disabilities, especially for those in wheelchair. In this review we focused on the biomechanics of wheelchair propulsion and we described the instrumental analysis of techniques for the acquisition of wheelchair propulsion.
Collapse
Affiliation(s)
- Fabio Dellabiancia
- Biomechanics Laboratory “Marco Simoncelli”, D. Cervesi Hospital, Cattolica, Rimini, Italy
| | - Giuseppe Porcellini
- Unit of Shoulder and Elbow Surgery, D. Cervesi Hospital, Cattolica, Rimini, Italy
| | - Giovanni Merolla
- Biomechanics Laboratory “Marco Simoncelli”, D. Cervesi Hospital, Cattolica, Rimini, Italy
- Unit of Shoulder and Elbow Surgery, D. Cervesi Hospital, Cattolica, Rimini, Italy
| |
Collapse
|
41
|
Qi L, Wakeling J, Grange S, Ferguson-Pell M. Patterns of shoulder muscle coordination vary between wheelchair propulsion techniques. IEEE Trans Neural Syst Rehabil Eng 2013; 22:559-66. [PMID: 23797282 DOI: 10.1109/tnsre.2013.2266136] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This study investigated changes in the coordination patterns of shoulder muscles and wheelchair kinetics with different propulsion techniques by comparing wheelchair users' self-selected propulsion patterns with a semicircular pattern adopted after instruction. Wheelchair kinetics data were recorded by Smart(Wheel) on an ergometer, while EMG activity of seven muscles was recorded with surface electrodes on 15 able-bodied inexperienced participants. The performance data in two sessions, first using a self-selected and then the learned semicircular pattern, were compared with a paired t-test. Muscle coordination patterns across seven muscles were analyzed by principal component analysis. The semicircular pattern was characterized by significantly lower push frequency, significantly longer push length, push duration and push distance (p < 0.05, all cases) without a significant increase in push force, when compared with the self-selected pattern. In addition, our results show that in the semicircular propulsion technique, synergistic muscles were recruited in distinct phases and displayed a clearer separation between activities in the push phase and recovery phase muscles. An instruction session in semicircular propulsion technique is recommended for the initial use of a wheelchair after an injury.
Collapse
|
42
|
A theoretical analysis of the influence of wheelchair seat position on upper extremity demand. Clin Biomech (Bristol, Avon) 2013; 28:378-85. [PMID: 23608478 DOI: 10.1016/j.clinbiomech.2013.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/16/2013] [Accepted: 03/13/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND The high physical demands placed on the upper extremity during manual wheelchair propulsion can lead to pain and overuse injuries that further reduce user independence and quality of life. Seat position is an adjustable parameter that can influence the mechanical loads placed on the upper extremity. The purpose of this study was to use a musculoskeletal model and forward dynamics simulations of wheelchair propulsion to identify the optimal seat position that minimizes various measures of upper extremity demand including muscle stress, co-contraction and metabolic cost. METHODS Forward dynamics simulations of wheelchair propulsion were generated across a range of feasible seat positions by minimizing the change in handrim forces and muscle-produced joint moments. Resulting muscle stress, co-contraction and metabolic cost were examined to determine the optimal seat position that minimized these values. FINDINGS Muscle stress and metabolic cost were near minimal values at superior/inferior positions corresponding to top-dead-center elbow angles between 110 and 120° while at an anterior/posterior position with a hub-shoulder angle between -10 and -2.5°. This coincided with a reduction in the level of muscle co-contraction, primarily at the glenohumeral joint. INTERPRETATION Deviations from this position lead to increased co-contraction to maintain a stable, smooth propulsive stroke, which consequentially increases upper extremity demand. These results agree with previous clinical guidelines for positioning the seat to reduce upper extremity overuse injuries and pain for wheelchair users.
Collapse
|
43
|
Crouch DL, Plate JF, Li Z, Saul KR. Biomechanical contributions of posterior deltoid and teres minor in the context of axillary nerve injury: a computational study. J Hand Surg Am 2013; 38:241-9. [PMID: 23294649 PMCID: PMC3607282 DOI: 10.1016/j.jhsa.2012.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 11/02/2012] [Accepted: 11/25/2012] [Indexed: 02/02/2023]
Abstract
PURPOSE To determine whether transfer to only the anterior branch of the axillary nerve will restore useful function after axillary nerve injury with persistent posterior deltoid and teres minor paralysis. METHODS We used a computational musculoskeletal model of the upper limb to determine the relative contributions of posterior deltoid and teres minor to maximum joint moment generated during a simulated static strength assessment and to joint moments during 3 submaximal shoulder movements. Movement simulations were performed with and without simulated posterior deltoid and teres minor paralysis to identify muscles that may compensate for their paralysis. RESULTS In the unimpaired limb model, teres minor and posterior deltoid accounted for 16% and 14% of the total isometric shoulder extension and external rotation joint moments, respectively. During the 3 movement simulations, posterior deltoid produced as much as 20% of the mean shoulder extension moment, whereas teres minor accounted for less than 5% of the mean joint moment in all directions of movement. When we paralyzed posterior deltoid and teres minor, the mean extension moments generated by the supraspinatus, long head of triceps, latissimus dorsi, and middle deltoid increased to compensate. Compensatory muscles were not fully activated during movement simulations when posterior deltoid and teres minor were paralyzed. CONCLUSIONS Reconstruction of the anterior branch of the axillary nerve only is an appropriate technique for restoring shoulder abduction strength after isolated axillary nerve injury. When shoulder extension strength is compromised by extensive neuromuscular shoulder injury, reconstruction of both the anterior and posterior branches of the axillary nerve should be considered. CLINICAL RELEVANCE By quantifying the biomechanical role of muscles during submaximal movement, in addition to quantifying muscle contributions to maximal shoulder strength, we can inform preoperative planning and permit more accurate predictions of functional outcomes.
Collapse
Affiliation(s)
- Dustin L. Crouch
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem, NC, 27157,Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC, 27157
| | - Johannes F. Plate
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, 27157,Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, NC, 27157
| | - Zhongyu Li
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, 27157
| | - Katherine R. Saul
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem, NC, 27157,Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC, 27157
| |
Collapse
|
44
|
Abstract
Most musculoskeletal models used to analyze human movement utilize Hill-type muscle models that account for state dependent intrinsic muscle properties (e.g., force-length-velocity relationships), but rarely do these models include history dependent effects (e.g., force depression or enhancement). While the relationship between muscle shortening and force depression can be well characterized by muscle mechanical work, the relationship between muscle stretch and force enhancement is more complex. Further, it is not well known how these properties influence dynamic movements. Therefore, the goal of this study was to develop a modified Hill-type muscle model that incorporated stretch-induced force enhancement into a previously described model that included shortening-induced force depression. The modified muscle model was based on experimental data from isolated cat soleus muscles. Simulations of in situ muscle experiments were used to validate the model and simulations of a simple human movement task (counter-movement jumping) were used to examine the interactions of the history dependent effects. The phenomenological model of stretch-induced force enhancement was dependent on both the magnitude of stretch and relative length of the muscle fiber. Simulations of the in situ muscle experiments showed that the model could accurately reproduce force enhancement and force depression, as well as the complex additive relationship between these effects. Simulations of counter-movement jumping showed that a similar jump pattern could be achieved with and without history dependent effects and that a relatively minor change in muscle activation could mitigate the impact of these effects.
Collapse
|
45
|
The influence of wheelchair propulsion technique on upper extremity muscle demand: a simulation study. Clin Biomech (Bristol, Avon) 2012; 27:879-86. [PMID: 22835860 PMCID: PMC3444526 DOI: 10.1016/j.clinbiomech.2012.07.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 05/16/2012] [Accepted: 07/05/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND The majority of manual wheelchair users will experience upper extremity injuries or pain, in part due to the high force requirements, repetitive motion and extreme joint postures associated with wheelchair propulsion. Recent studies have identified cadence, contact angle and peak force as important factors for reducing upper extremity demand during propulsion. However, studies often make comparisons between populations (e.g., able-bodied vs. paraplegic) or do not investigate specific measures of upper extremity demand. The purpose of this study was to use a musculoskeletal model and forward dynamics simulations of wheelchair propulsion to investigate how altering cadence, peak force and contact angle influence individual muscle demand. METHODS Forward dynamics simulations of wheelchair propulsion were generated to emulate group-averaged experimental data during four conditions: 1) self-selected propulsion technique, and while 2) minimizing cadence, 3) maximizing contact angle, and 4) minimizing peak force using biofeedback. Simulations were used to determine individual muscle mechanical power and stress as measures of muscle demand. RESULTS Minimizing peak force and cadence had the lowest muscle power requirements. However, minimizing peak force increased cadence and recovery power, while minimizing cadence increased average muscle stress. Maximizing contact angle increased muscle stress and had the highest muscle power requirements. INTERPRETATION Minimizing cadence appears to have the most potential for reducing muscle demand and fatigue, which could decrease upper extremity injuries and pain. However, altering any of these variables to extreme values appears to be less effective; instead small to moderate changes may better reduce overall muscle demand.
Collapse
|
46
|
Bibliography Current World Literature. CURRENT ORTHOPAEDIC PRACTICE 2012. [DOI: 10.1097/bco.0b013e3182434f58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|