1
|
Rao H, Bakker R, McLachlin S, Chandrashekar N. Computational study of extrinsic factors affecting ACL strain during single-leg jump landing. BMC Musculoskelet Disord 2024; 25:318. [PMID: 38654258 PMCID: PMC11036765 DOI: 10.1186/s12891-024-07372-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/21/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Non-contact anterior cruciate ligament (ACL) injuries are a major concern in sport-related activities due to dynamic knee movements. There is a paucity of finite element (FE) studies that have accurately replicated the knee geometry, kinematics, and muscle forces during dynamic activities. The objective of this study was to develop and validate a knee FE model and use it to quantify the relationships between sagittal plane knee kinematics, kinetics and the resulting ACL strain. METHODS 3D images of a cadaver knee specimen were segmented (bones, cartilage, and meniscus) and meshed to develop the FE model. Knee ligament insertion sites were defined in the FE model via experimental digitization of the specimen's ligaments. The response of the model was validated against multiple physiological knee movements using published experimental data. Single-leg jump landing motions were then simulated on the validated model with muscle forces and kinematic inputs derived from motion capture and rigid body modelling of ten participants. RESULTS The maximum ACL strain measured with the model during jump landing was 3.5 ± 2.2%, comparable to published experimental results. Bivariate analysis showed no significant correlation between body weight, ground reaction force and sagittal plane parameters (such as joint flexion angles, joint moments, muscle forces, and joint velocity) and ACL strain. Multivariate regression analysis showed increasing trunk, hip and ankle flexion angles decreases ACL strain (R2 = 90.04%, p < 0.05). CONCLUSIONS Soft landing decreases ACL strain and the relationship could be presented through an empirical equation. The model and the empirical relation developed in this study could be used to better predict ACL injury risk and prevention strategies during dynamic activities.
Collapse
Affiliation(s)
- Harish Rao
- Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Ryan Bakker
- Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Stewart McLachlin
- Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Naveen Chandrashekar
- Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
2
|
Gordon RJFH, Tillin NA, Diss CE, Tyler CJ. Voluntary torque production is unaffected by changes in local thermal sensation during normothermia and hyperthermia. Exp Physiol 2023; 108:607-620. [PMID: 36807433 PMCID: PMC10103871 DOI: 10.1113/ep090644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/03/2023] [Indexed: 02/23/2023]
Abstract
NEW FINDINGS What is the central question of this study? Hyperthermia reduces the human capacity to produce muscular force, which is associated with decreased neural drive: does mitigating a reduction in neural drive by altering localised thermal sensation help to preserve voluntary force output? What is the main finding and its importance? Altering thermal sensation by cooling and heating the head independent of core temperature did not change neural drive or benefit voluntary force production. Head cooling did slow the rate of rise in core temperature during heating, which may have practical applications in passive settings. ABSTRACT This study investigated altered local head and neck thermal sensation on maximal and rapid torque production during voluntary contractions. Nine participants completed four visits in two environmental conditions: at rectal temperatures ∼39.5°C in hot (HOT; ∼50°C, ∼39% relative humidity) and ∼37°C in thermoneutral (NEU; ∼22°C, ∼46% relative humidity) conditions. Local thermal sensation was manipulated by heating in thermoneutral conditions and cooling in hot conditions. Evoked twitches and octets were delivered at rest. Maximum voluntary torque (MVT), normalised surface electromyography (EMG) and voluntary activation (VA) were assessed during brief maximal isometric voluntary contractions of the knee extensors. Rate of torque development (RTD) and EMG were measured during rapid voluntary contractions. MVT (P = 0.463) and RTD (P = 0.061) were similar between environmental conditions despite reduced VA (-6%; P = 0.047) and EMG at MVT (-31%; P = 0.019). EMG in the rapid voluntary contractions was also lower in HOT versus NEU during the initial 100 ms (-24%; P = 0.035) and 150 ms (-26%; P = 0.035). Evoked twitch (+70%; P < 0.001) and octet (+27%; P < 0.001) RTD during the initial 50 ms were greater in the HOT compared to NEU conditions, in addition to a faster relaxation rate of the muscle (-33%; P < 0.001). In conclusion, hyperthermia reduced neural drive without affecting voluntary torque, likely due to the compensatory effects of improved intrinsic contractile function and faster contraction and relaxation rates of the knee extensors. Changes in local thermal perception of the head and neck whilst hyperthermic or normothermic did not affect voluntary torque.
Collapse
Affiliation(s)
- Ralph Joseph Frederick Hills Gordon
- Department of School of Life and Health SciencesUniversity of RoehamptonLondonUK
- School of Sport Science and Physical ActivityUniversity of BedfordshireBedfordUK
- Faculty of Science and Engineering, School of Psychology and Sport ScienceAnglia Ruskin UniversityCambridgeUK
| | - Neale Anthony Tillin
- Department of School of Life and Health SciencesUniversity of RoehamptonLondonUK
| | - Ceri Elen Diss
- Department of School of Life and Health SciencesUniversity of RoehamptonLondonUK
| | | |
Collapse
|
3
|
Englander ZA, Foody JN, Cutcliffe HC, Wittstein JR, Spritzer CE, DeFrate LE. Use of a Novel Multimodal Imaging Technique to Model In Vivo Quadriceps Force and ACL Strain During Dynamic Activity. Am J Sports Med 2022; 50:2688-2697. [PMID: 35853157 PMCID: PMC9875882 DOI: 10.1177/03635465221107085] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Quadriceps loading of the anterior cruciate ligament (ACL) may play a role in the noncontact mechanism of ACL injury. Musculoskeletal modeling techniques are used to estimate the intrinsic force of the quadriceps acting at the knee joint. PURPOSE/HYPOTHESIS The purpose of this paper was to develop a novel musculoskeletal model of in vivo quadriceps force during dynamic activity. We used the model to estimate quadriceps force in relation to ACL strain during a single-leg jump. We hypothesized that quadriceps loading of the ACL would reach a local maximum before initial ground contact with the knee positioned in extension. STUDY DESIGN Descriptive laboratory study. METHODS Six male participants underwent magnetic resonance imaging in addition to high-speed biplanar radiography during a single-leg jump. Three-dimensional models of the knee joint, including the femur, tibia, patellofemoral cartilage surfaces, and attachment-site footprints of the patellar tendon, quadriceps tendon, and ACL, were created from the magnetic resonance imaging scans. The bone models were registered to the biplanar radiographs, thereby reproducing the positions of the knee joint at the time of radiographic imaging. The magnitude of quadriceps force was determined for each knee position based on a 3-dimensional balance of the forces and moments of the patellar tendon and the patellofemoral cartilage contact acting on the patella. Knee kinematics and ACL strain were determined for each knee position. RESULTS A local maximum in average quadriceps force of approximately 6500 N (8.4× body weight) occurred before initial ground contact. ACL strain increased concurrently with quadriceps force when the knee was positioned in extension. CONCLUSION This novel participant-specific modeling technique provides estimates of in vivo quadriceps force during physiologic dynamic loading. A local maximum in quadriceps force before initial ground contact may tension the ACL when the knee is positioned in extension. CLINICAL RELEVANCE These data contribute to understanding noncontact ACL injury mechanisms and the potential role of quadriceps activation in these injuries.
Collapse
Affiliation(s)
- Zoë A. Englander
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Jacqueline N. Foody
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.,Department of Orthopaedic Surgery, Duke University, Durham, North Carolina, USA
| | - Hattie C. Cutcliffe
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.,Department of Orthopaedic Surgery, Duke University, Durham, North Carolina, USA
| | | | | | - Louis E. DeFrate
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.,Department of Orthopaedic Surgery, Duke University, Durham, North Carolina, USA.,Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA.,Address correspondence to Louis E. DeFrate, ScD, Duke University Medical Center, Room 379, Medical Sciences Research Bldg, Box 3093, Durham, NC 27710, USA ()
| |
Collapse
|
4
|
Heinrich D, Van den Bogert AJ, Nachbauer W. Estimation of Joint Moments During Turning Maneuvers in Alpine Skiing Using a Three Dimensional Musculoskeletal Skier Model and a Forward Dynamics Optimization Framework. Front Bioeng Biotechnol 2022; 10:894568. [PMID: 35814020 PMCID: PMC9269104 DOI: 10.3389/fbioe.2022.894568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
In alpine skiing, estimation of the joint moments acting onto the skier is essential to quantify the loading of the skier during turning maneuvers. In the present study, a novel forward dynamics optimization framework is presented to estimate the joint moments acting onto the skier incorporating a three dimensional musculoskeletal model (53 kinematic degrees of freedom, 94 muscles). Kinematic data of a professional skier performing a turning maneuver were captured and used as input data to the optimization framework. In the optimization framework, the musculoskeletal model of the skier was applied to track the experimental data of a skier and to estimate the underlying joint moments of the skier at the hip, knee and ankle joints of the outside and inside leg as well as the lumbar joint. During the turning maneuver the speed of the skier was about 14 m/s with a minimum turn radius of about 16 m. The highest joint moments were observed at the lumbar joint with a maximum of 1.88 Nm/kg for lumbar extension. At the outside leg, the highest joint moments corresponded to the hip extension moment with 1.27 Nm/kg, the knee extension moment with 1.02 Nm/kg and the ankle plantarflexion moment with 0.85 Nm/kg. Compared to the classical inverse dynamics analysis, the present framework has four major advantages. First, using a forward dynamic optimization framework the underlying kinematics of the skier as well as the corresponding ground reaction forces are dynamically consistent. Second, the present framework can cope with incomplete data (i.e., without ground reaction force data). Third, the computation of the joint moments is less sensitive to errors in the measurement data. Fourth, the computed joint moments are constrained to stay within the physiological limits defined by the musculoskeletal model.
Collapse
Affiliation(s)
- Dieter Heinrich
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
- *Correspondence: Dieter Heinrich,
| | | | - Werner Nachbauer
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
5
|
Ueno R, Navacchia A, Schilaty ND, Myer GD, Hewett TE, Bates NA. Hamstrings Contraction Regulates the Magnitude and Timing of the Peak ACL Loading During the Drop Vertical Jump in Female Athletes. Orthop J Sports Med 2021; 9:23259671211034487. [PMID: 34604430 PMCID: PMC8485303 DOI: 10.1177/23259671211034487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/30/2021] [Indexed: 01/14/2023] Open
Abstract
Background Anterior cruciate ligament (ACL) injury reduction training has focused on lower body strengthening and landing stabilization. In vitro studies have shown that quadriceps forces increase ACL strain, and hamstring forces decrease ACL strain. However, the magnitude of the effect of the quadriceps and hamstrings forces on ACL loading and its timing during in vivo landings remains unclear. Purpose To investigate the effect and timing of knee muscle forces on ACL loading during landing. Study Design Descriptive laboratory study. Methods A total of 13 young female athletes performed drop vertical jump trials, and their movements were recorded with 3-dimensional motion capture. Lower limb joint motion and muscle forces were estimated with OpenSim and applied to a musculoskeletal finite element (FE) model to estimate ACL loading during landings. The FE simulations were performed with 5 different conditions that included/excluded kinematics, ground-reaction force (GRF), and muscle forces. Results Simulation of landing kinematics without GRF or muscle forces yielded an estimated median ACL strain and force of 5.1% and 282.6 N. Addition of GRF to kinematic simulations increased ACL strain and force to 6.8% and 418.4 N (P < .05). Addition of quadriceps force to kinematics + GRF simulations nonsignificantly increased ACL strain and force to 7.2% and 478.5 N. Addition of hamstrings force to kinematics + GRF simulations decreased ACL strain and force to 2.6% and 171.4 N (P < .001). Addition of all muscles to kinematics + GRF simulations decreased ACL strain and force to 3.3% and 195.1 N (P < .001). With hamstrings force, ACL loading decreased from initial contact (time of peak: 1-18 milliseconds) while ACL loading without hamstrings force peaked at 47 to 98 milliseconds after initial contact (P = .024-.001). The knee flexion angle increased from 20.9° to 73.1° within 100 milliseconds after initial contact. Conclusion Hamstrings activation had greater effect relative to GRF and quadriceps activation on ACL loading, which significantly decreased and regulated the magnitude and timing of ACL loading during in vivo landings. Clinical Relevance Clinical training should focus on strategies that influence increased hamstrings activation during landing to reduce ACL loads.
Collapse
Affiliation(s)
- Ryo Ueno
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA.,Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Alessandro Navacchia
- Smith & Nephew, San Clemente, California, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Nathan D Schilaty
- Smith & Nephew, San Clemente, California, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA.,Department of Physical Medicine & Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - Gregory D Myer
- Emory Sport Performance and Research Center, Flowery Branch, Georgia, USA.,Emory Sports Medicine Center, Atlanta, Georgia, USA.,Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA.,The Micheli Center for Sports Injury Prevention, Waltham, Massachusetts, USA
| | - Timothy E Hewett
- Hewett Global Consulting, Rochester, Minnesota, USA.,The Rocky Mountain Consortium for Sports Research, Edwards, Colorado, USA
| | - Nathaniel A Bates
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
6
|
Sex differences in muscle activation patterns associated with anterior cruciate ligament injury during landing and cutting tasks: A systematic review. J Electromyogr Kinesiol 2021; 60:102583. [PMID: 34392010 DOI: 10.1016/j.jelekin.2021.102583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 06/22/2021] [Accepted: 07/24/2021] [Indexed: 01/13/2023] Open
Abstract
Neuromuscular control is critical for maintaining dynamic joint stability and mitigating the risk of anterior cruciate ligament (ACL) injury. Given the increased risk of ACL injury in females, sex-based differential muscle activation strategies are often associated with this risk. For example, the quadriceps-dominant muscle activation strategy sometimes observed in females has been discussed as a cause of their increased risk of ACL injury. However, there has been no synthesised knowledge on sex differences in muscle activation patterns associated with ACL injuries. Therefore, the purpose of this review was to synthesise sex differences in muscle activation patterns in movements associated with ACL injuries in both adult and adolescent populations. A systematic electronic database search was conducted. Thirty studies were included in the review. Females demonstrated higher pre- and post-landing activation of the quadriceps and lower activation of the hamstrings in 15 studies. Females also had higher quadriceps-to-hamstring co-contraction ratios during pre- and post-landing phases compared to their male counterparts in 4 of 9 studies that considered co-contraction. While some studies supported the quadriceps-dominant activation strategies in females, no consensus can be drawn due to methodological inconsistencies and limitations. Also, despite the importance of ACL injury prevention in children and adolescents, the evidence on sex difference in muscle activation patterns in this population is insufficient to draw meaningful conclusions.
Collapse
|
7
|
Tillin NA, Hessel AL, Ang SXT. Rate of torque development scaled to maximum torque available is velocity dependent. J Biomech 2020; 114:110144. [PMID: 33278768 DOI: 10.1016/j.jbiomech.2020.110144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/09/2020] [Accepted: 11/12/2020] [Indexed: 10/22/2022]
Abstract
The influence of angular velocity on rate of torque development (RTD) is unknown, despite the inverse, curvilinear torque-velocity relationship for angle- and velocity-specific maximum available torque (Tmax) being well-established. This study investigated the relationship between angular velocity and RTD scaled to Tmax. In 17 participants, tetanic contractions (100-Hz) of the knee extensors were evoked as the knee was passively extended at different iso-velocities between 0° s-1 and 200° s-1. Each condition consisted of evoking 0.25-s contractions without pre-activation (for measuring RTD) commencing as the knee passed 95° of extension, and 1.25-s contractions with pre-activation (for measuring Tmax), commencing 1 s prior to the knee reaching 95°. Torque at 100 ms after torque onset (T100) and peak RTD (RTDpeak) in the contractions without pre-activation were normalised to Tmax. The torque-velocity relationship for T100 was flat in comparison to an inverse, curvilinear relationship for Tmax, resulting in linear increases in normalised T100 and RTDpeak with increased velocity. Results also showed normalised T100 and RTDpeak were likely overestimated due to shortening-induced force depression (FD) which would be greater in contractions with- than without- pre-activation. However, these effects of FD cannot explain the faster normalised RTD with increased velocity, as the relative difference in work done (a proxy for FD) between contractions with and without pre-activation decreased - and thus the overestimation of normalised RTD metrics likely decreased - with increased velocity. In conclusion, RTD scaled to Tmax increases with increased velocity, which appears to be an intrinsic contractile property independent of the effects of force depression.
Collapse
Affiliation(s)
- Neale A Tillin
- Department of Life Sciences, Roehampton University, London, UK.
| | | | - Shaun X T Ang
- Department of Life Sciences, Roehampton University, London, UK; National Junior College, Singapore
| |
Collapse
|
8
|
Barfod KW, Feller JA, Clark R, Hartwig T, Devitt BM, Webster KE. Strength Testing After Anterior Cruciate Ligament Reconstruction: A Prospective Cohort Study Investigating Overlap of Tests. J Strength Cond Res 2019; 33:3145-3150. [DOI: 10.1519/jsc.0000000000002491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Behan FP, Pain MTG, Folland JP. Explosive voluntary torque is related to whole-body response to unexpected perturbations. J Biomech 2018; 81:86-92. [PMID: 30268357 DOI: 10.1016/j.jbiomech.2018.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/03/2018] [Accepted: 09/15/2018] [Indexed: 11/19/2022]
Abstract
Explosive torque has been demonstrated to relate to static balance. However, sports injuries occur dynamically and unpredictably, yet the relationship between explosive torque and balance response to dynamic perturbations is unknown. This study investigated the relationship between explosive torque of the plantar flexors and knee extensors and the centre of mass (COM) response to unexpected perturbations. Thirty-three healthy subjects (17 females, 16 males) were assessed for maximal and explosive isometric knee extension (KE) and plantar flexion (PF) torque and COM response (velocity (COMV), displacement (COMD)) to unexpected platform translations. Relationships between explosive torque and balance measures were investigated using Pearson's correlation and multiple regression. A negative relationship between PF explosive torque at 50, 100, and 150 ms and COMV at 300, 400, and 500 ms (r = -0.363 to -0.508, p ≤ 0.049), and COMD at 400 and 500 ms (r = -0.349 to -0.416, p ≤ 0.046) was revealed. A negative relationship between KE explosive torque at 50, 100, and 150 ms and COMV at 400 ms (r = -0.381 to -0.411, p ≤ 0.029) but not COMD was also revealed. Multiple regression found PF 100 ms predicted 17.3% of variability in COMD at 500 ms and 25.8% of variability in COMV at 400 ms. These results suggest that producing torque rapidly may improve COM response to unexpected perturbation.
Collapse
Affiliation(s)
- Fearghal P Behan
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Loughborough University, Leicestershire, UK; School of Sport, Exercise, and Health Sciences, Loughborough University, Leicestershire, UK; Research Department, Aspetar Sports Medicine Hospital, Doha, Qatar.
| | - Matt T G Pain
- School of Sport, Exercise, and Health Sciences, Loughborough University, Leicestershire, UK
| | - Jonathan P Folland
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Loughborough University, Leicestershire, UK; School of Sport, Exercise, and Health Sciences, Loughborough University, Leicestershire, UK
| |
Collapse
|
10
|
Mokhtarzadeh H, Yeow CH, Goh JCH, Oetomo D, Ewing K, Lee PVS. Antagonist muscle co-contraction during a double-leg landing maneuver at two heights. Comput Methods Biomech Biomed Engin 2017; 20:1382-1393. [DOI: 10.1080/10255842.2017.1366992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hossein Mokhtarzadeh
- Department of Mechanical Engineering, University of Melbourne, Victoria, Australia
- Department of Orthopedic Surgery, Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Chen Hua Yeow
- Division of Bioengineering, National University of Singapore, Singapore, Singapore
| | - James Cho Hong Goh
- Division of Bioengineering, National University of Singapore, Singapore, Singapore
| | - Denny Oetomo
- Department of Mechanical Engineering, University of Melbourne, Victoria, Australia
| | - Katie Ewing
- Department of Mechanical Engineering, University of Melbourne, Victoria, Australia
| | - Peter Vee Sin Lee
- Department of Mechanical Engineering, University of Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Carter JC, Sturnick DR, Vacek PM, DeSarno MJ, Argentieri EC, Slauterbeck JR, Johnson RJ, Beynnon BD. Relationship between geometry of the extensor mechanism of the knee and risk of anterior cruciate ligament injury. J Orthop Res 2017; 35:965-973. [PMID: 27882612 DOI: 10.1002/jor.23366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/02/2016] [Indexed: 02/04/2023]
Abstract
The complex inter-segmental forces that are developed across an extended knee by body weight and contraction of the quadriceps muscle group transmits an anteriorly directed force on the tibia that strain the anterior cruciate ligament (ACL). We hypothesized that a relationship exists between geometry of the knees extensor mechanism and the risk of sustaining a non-contact ACL injury. Geometry of the extensor mechanism was characterized using MRI scans of the knees of 88 subjects that suffered their first non-contact ACL injury and 88 matched control subjects with normal knees that were on the same team. The orientation of the patellar tendon axis was measured relative to the femoral flexion-extension axis to determine the extensor moment arm (EMA), and relative to tibial long axis to measure coronal patellar tendon angle (CPTA) and sagittal patellar tendon angle (SPTA). Associations between these parameters and ACL injury risk were tested with and without adjustment for flexion and internal rotation position of the tibia relative to the femur during MRI data acquisition. After adjustment for internal rotation position of the tibia relative to the femur there were no associations between EMA, CPTA, and SPTA and risk of suffering an ACL injury. However, increased internal rotation position of the tibia relative to the femur was significantly associated with increased risk of ACL injury in female athletes both in univariate analysis (Odds Ratio = 1.16 per degree of internal rotation of the tibia, p = 0.002), as well as after adjustment for EMA, CPTA, and SPTA.: © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:965-973, 2017.
Collapse
Affiliation(s)
- Josh C Carter
- McClure Musculoskeletal Research Center, Department of Orthopedics and Rehabilitation, College of Medicine, University of Vermont, Burlington, Vermont
| | - Daniel R Sturnick
- Hospital for Special Surgery, Department of Biomechanics, New York, New York
| | - Pamela M Vacek
- Department of Medical Biostatistics, University of Vermont, Burlington, Vermont
| | - Michael J DeSarno
- Department of Medical Biostatistics, University of Vermont, Burlington, Vermont
| | - Erin C Argentieri
- McClure Musculoskeletal Research Center, Department of Orthopedics and Rehabilitation, College of Medicine, University of Vermont, Burlington, Vermont
| | - James R Slauterbeck
- McClure Musculoskeletal Research Center, Department of Orthopedics and Rehabilitation, College of Medicine, University of Vermont, Burlington, Vermont
| | - Robert J Johnson
- McClure Musculoskeletal Research Center, Department of Orthopedics and Rehabilitation, College of Medicine, University of Vermont, Burlington, Vermont
| | - Bruce D Beynnon
- McClure Musculoskeletal Research Center, Department of Orthopedics and Rehabilitation, College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
12
|
Shimokochi Y, Ambegaonkar JP, Meyer EG. Changing Sagittal-Plane Landing Styles to Modulate Impact and Tibiofemoral Force Magnitude and Directions Relative to the Tibia. J Athl Train 2016; 51:669-681. [PMID: 27723362 DOI: 10.4085/1062-6050-51.10.15] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
CONTEXT Ground reaction force (GRF) and tibiofemoral force magnitudes and directions have been shown to affect anterior cruciate ligament loading during landing. However, the kinematic and kinetic factors modifying these 2 forces during landing are unknown. OBJECTIVE To clarify the intersegmental kinematic and kinetic links underlying the alteration of the GRF and tibiofemoral force vectors secondary to changes in the sagittal-plane body position during single-legged landing. DESIGN Crossover study. SETTING Laboratory. PATIENTS OR OTHER PARTICIPANTS Twenty recreationally active participants (age = 23.4 ± 3.6 years, height = 171.0 ± 9.4 cm, mass = 73.3 ± 12.7 kg). INTERVENTION(S) Participants performed single-legged landings using 3 landing styles: self-selected landing (SSL), body leaning forward and landing on the toes (LFL), and body upright with flat-footed landing (URL). Three-dimensional kinetics and kinematics were recorded. MAIN OUTCOME MEASURE(S) Sagittal-plane tibial inclination and knee-flexion angles, GRF magnitude and inclination angles relative to the tibia, and proximal tibial forces at peak tibial axial forces. RESULTS The URL resulted in less time to peak tibial axial forces, smaller knee-flexion angles, and greater magnitude and a more anteriorly inclined GRF vector relative to the tibia than did the SSL. These changes led to the greatest peak tibial axial and anterior shear forces in the URL among the 3 landing styles. Conversely, the LFL resulted in longer time to peak tibial axial forces, greater knee-flexion angles, and reduced magnitude and a more posteriorly inclined GRF vector relative to the tibia than the SSL. These changes in LFL resulted in the lowest peak tibial axial and largest posterior shear forces among the 3 landing styles. CONCLUSIONS Sagittal-plane intersegmental kinematic and kinetic links strongly affected the magnitude and direction of GRF and tibiofemoral forces during the impact phase of single-legged landing. Therefore, improving sagittal-plane landing mechanics is important in reducing harmful magnitudes and directions of impact forces on the anterior cruciate ligament.
Collapse
Affiliation(s)
- Yohei Shimokochi
- Sport Medicine and Science Research Laboratory, Department of Health and Sport Management, Osaka University of Health and Sport Sciences, Japan
| | - Jatin P Ambegaonkar
- Sports Medicine Assessment Research and Testing Laboratory, George Mason University, Manassas, VA
| | - Eric G Meyer
- Experimental Biomechanics Laboratory, Lawrence Technological University, Southfield, MI
| |
Collapse
|
13
|
Dotan R, Jenkins G, O'Brien TD, Hansen S, Falk B. Torque-onset determination: Unintended consequences of the threshold method. J Electromyogr Kinesiol 2016; 31:7-13. [PMID: 27620399 DOI: 10.1016/j.jelekin.2016.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/02/2016] [Accepted: 08/31/2016] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Compared with visual torque-onset-detection (TOD), threshold-based TOD produces onset bias, which increases with lower torques or rates of torque development (RTD). PURPOSE To compare the effects of differential TOD-bias on common contractile parameters in two torque-disparate groups. METHODS Fifteen boys and 12 men performed maximal, explosive, isometric knee-extensions. Torque and EMG were recorded for each contraction. Best contractions were selected by peak torque (MVC) and peak RTD. Visual-TOD-based torque-time traces, electromechanical delays (EMD), and times to peak RTD (tRTD) were compared with corresponding data derived from fixed 4-Nm- and relative 5%MVC-thresholds. RESULTS The 5%MVC TOD-biases were similar for boys and men, but the corresponding 4-Nm-based biases were markedly different (40.3±14.1 vs. 18.4±7.1ms, respectively; p<0.001). Boys-men EMD differences were most affected, increasing from 5.0ms (visual) to 26.9ms (4Nm; p<0.01). Men's visually-based torque kinetics tended to be faster than the boys' (NS), but the 4-Nm-based kinetics erroneously depicted the boys as being much faster to any given %MVC (p<0.001). CONCLUSIONS When comparing contractile properties of dissimilar groups, e.g., children vs. adults, threshold-based TOD methods can misrepresent reality and lead to erroneous conclusions. Relative-thresholds (e.g., 5% MVC) still introduce error, but group-comparisons are not confounded.
Collapse
Affiliation(s)
- Raffy Dotan
- Faculty of Applied Health Sciences, Brock University, St Catharines, ON, Canada.
| | - Glenn Jenkins
- Faculty of Applied Health Sciences, Brock University, St Catharines, ON, Canada
| | - Thomas D O'Brien
- Research Institute for Sport and Exercise Sciences, Faculty of Science, Liverpool John Moores University, Liverpool, UK
| | - Steve Hansen
- Physical & Health Education, Schulich School of Education, Nipissing University, North Bay, ON, Canada
| | - Bareket Falk
- Faculty of Applied Health Sciences, Brock University, St Catharines, ON, Canada
| |
Collapse
|
14
|
Maffiuletti NA, Aagaard P, Blazevich AJ, Folland J, Tillin N, Duchateau J. Rate of force development: physiological and methodological considerations. Eur J Appl Physiol 2016; 116:1091-116. [PMID: 26941023 PMCID: PMC4875063 DOI: 10.1007/s00421-016-3346-6] [Citation(s) in RCA: 778] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/17/2016] [Indexed: 11/26/2022]
Abstract
The evaluation of rate of force development during rapid contractions has recently become quite popular for characterising explosive strength of athletes, elderly individuals and patients. The main aims of this narrative review are to describe the neuromuscular determinants of rate of force development and to discuss various methodological considerations inherent to its evaluation for research and clinical purposes. Rate of force development (1) seems to be mainly determined by the capacity to produce maximal voluntary activation in the early phase of an explosive contraction (first 50–75 ms), particularly as a result of increased motor unit discharge rate; (2) can be improved by both explosive-type and heavy-resistance strength training in different subject populations, mainly through an improvement in rapid muscle activation; (3) is quite difficult to evaluate in a valid and reliable way. Therefore, we provide evidence-based practical recommendations for rational quantification of rate of force development in both laboratory and clinical settings.
Collapse
Affiliation(s)
- Nicola A Maffiuletti
- Human Performance Lab, Schulthess Clinic, Lengghalde 6, 8008, Zurich, Switzerland.
| | - Per Aagaard
- Department of Sports Science and Clinical Biomechanics, SDU Muscle Research Cluster (SMRC), University of Southern Denmark, Odense, Denmark
| | - Anthony J Blazevich
- Centre for Exercise and Sports Science Research (CESSR), School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Jonathan Folland
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Neale Tillin
- Department of Life Sciences, University of Roehampton, London, UK
| | - Jacques Duchateau
- Laboratory of Applied Biology, ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
15
|
The anteromedial tibial rim sign: an indicator of patellotibial impaction in acute anterior cruciate ligament tears. J Comput Assist Tomogr 2015; 39:57-63. [PMID: 25319603 DOI: 10.1097/rct.0000000000000160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE We have encountered unexplained anteromedial tibial rim edema in acute anterior cruciate ligament (ACL) tears. Our goal was to determine the incidence, internal derangements, and mechanism of injury in patients with anteromedial tibial rim edema (rim sign). MATERIALS AND METHODS A retrospective review of ACL tears diagnosed by magnetic resonance imaging over 7 years was performed. Patients were dichotomized into those with and without a rim sign. RESULTS There were 132 acute ACL tears. Individuals with a rim sign (31, 23%) had more contusions, fractures, ligament tears (P < 0.001), posterolateral corner injuries (P = 0.001), and posterior horn lateral meniscus tears (P = 0.042) than those without. Five individuals demonstrated edema in the inferior patella, consistent with patellotibial impaction. CONCLUSIONS The rim sign is common in ACL tears, indicating greater internal derangement. The rim sign represents patellotibial impaction with edema rarely present in the patella.
Collapse
|
16
|
McLean SG, Mallett KF, Arruda EM. Deconstructing the Anterior Cruciate Ligament: What We Know and Do Not Know About Function, Material Properties, and Injury Mechanics. J Biomech Eng 2015; 137:020906. [DOI: 10.1115/1.4029278] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Indexed: 12/20/2022]
Abstract
Anterior cruciate ligament (ACL) injury is a common and potentially catastrophic knee joint injury, afflicting a large number of males and particularly females annually. Apart from the obvious acute injury events, it also presents with significant long-term morbidities, in which osteoarthritis (OA) is a frequent and debilitative outcome. With these facts in mind, a vast amount of research has been undertaken over the past five decades geared toward characterizing the structural and mechanical behaviors of the native ACL tissue under various external load applications. While these efforts have afforded important insights, both in terms of understanding treating and rehabilitating ACL injuries; injury rates, their well-established sex-based disparity, and long-term sequelae have endured. In reviewing the expanse of literature conducted to date in this area, this paper identifies important knowledge gaps that contribute directly to this long-standing clinical dilemma. In particular, the following limitations remain. First, minimal data exist that accurately describe native ACL mechanics under the extreme loading rates synonymous with actual injury. Second, current ACL mechanical data are typically derived from isolated and oversimplified strain estimates that fail to adequately capture the true 3D mechanical response of this anatomically complex structure. Third, graft tissues commonly chosen to reconstruct the ruptured ACL are mechanically suboptimal, being overdesigned for stiffness compared to the native tissue. The net result is an increased risk of rerupture and a modified and potentially hazardous habitual joint contact profile. These major limitations appear to warrant explicit research attention moving forward in order to successfully maintain/restore optimal knee joint function and long-term life quality in a large number of otherwise healthy individuals.
Collapse
Affiliation(s)
- Scott G. McLean
- Human Performance Innovation Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI 48109 e-mail:
| | - Kaitlyn F. Mallett
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 e-mail:
| | - Ellen M. Arruda
- Department of Mechanical Engineering, Department of Biomedical Engineering, Program in Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109 e-mail:
| |
Collapse
|
17
|
Abstract
OBJECTIVE Patellotibial contusions are a recently described contusion pattern in anterior cruciate ligament (ACL) tears. The purposes or our study were to determine if patellotibial contusions are specific to ACL injuries, determine the internal derangements in patients demonstrating this contusion, and suggest a mechanism of injury. MATERIALS AND METHODS We conducted a retrospective search of radiology reports over a 6-year period to identify patients with patellar edema described on magnetic resonance (MR) imaging. Only individuals with patellar and tibial edema were included in the study group. These MR examinations were then reviewed for associated internal derangements. RESULTS From March 2007 to June 2013, 1914 MR examinations of the knee were performed. Two hundred seventy-one reports described patellar edema. Seven individuals had edema of both the inferior pole of the patella and the anterior tibial plateau. Three individuals were involved in motor vehicle accidents (MVAs); 4 patients had a history of an axial load or sports-related injury. All 3 patients involved in MVAs had posterior cruciate ligament tears consistent with posterior translation of the tibia. The non-MVA individuals had tears of the ACL with internal derangements similar to other ACL deficient knees, however, with more widespread osseous contusions. CONCLUSIONS Patellotibial contusions are high-energy injuries resulting in cruciate ligament tears. These contusions occur exclusively in patients with ACL tears when individuals with a history of direct impaction to the knee are excluded. Axial loading of the extended knee may be an important mechanism of injury in these individuals.
Collapse
|
18
|
Lipps DB, Oh YK, Ashton-Miller JA, Wojtys EM. Effect of increased quadriceps tensile stiffness on peak anterior cruciate ligament strain during a simulated pivot landing. J Orthop Res 2014; 32:423-30. [PMID: 24302388 PMCID: PMC6380487 DOI: 10.1002/jor.22531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 11/05/2013] [Indexed: 02/04/2023]
Abstract
ACL injury prevention programs often involve strengthening the knee muscles. We posit that an unrecognized benefit of such training is the associated increase in the tensile stiffness of the hypertrophied muscle. We tested the hypothesis that an increased quadriceps tensile stiffness would reduce peak anteromedial bundle (AM-)ACL relative strain in female knees. Twelve female cadaver knees were subjected to compound impulsive two-times body weight loads in compression, flexion, and internal tibial torque beginning at 15° flexion. Knees were equipped with modifiable custom springs to represent the nonlinear rapid stretch behavior of a normal and increased stiffness female quadriceps (i.e., 33% greater stiffness). Peak AM-ACL relative strain was measured using an in situ transducer while muscle forces and tibiofemoral kinematics and kinetics were recorded. A 3D ADAMS™ dynamic biomechanical knee model was used in silico to interpret the experimental results which were analyzed using a repeated-measures Wilcoxon test. Female knees exhibited a 16% reduction in peak AM-ACL relative strain and 21% reduction in change in flexion when quadriceps tensile stiffness was increased by 33% (mean (SD) difference: 0.97% (0.65%), p = 0.003). We conclude that increased quadriceps tensile stiffness reduces peak ACL strain during a controlled study simulating a pivot landing.
Collapse
Affiliation(s)
- David B. Lipps
- Department of Biomedical Engineering, University of Michigan - Ann Arbor, Ann Arbor, MI, USA
| | - Youkeun K. Oh
- Department of Mechanical Engineering, University of Michigan - Ann Arbor, Ann Arbor, MI, USA
| | - James A. Ashton-Miller
- Department of Biomedical Engineering, University of Michigan - Ann Arbor, Ann Arbor, MI, USA,Department of Mechanical Engineering, University of Michigan - Ann Arbor, Ann Arbor, MI, USA,Bone and Joint Injury Prevention and Rehabilitation Center, University of Michigan - Ann Arbor, Ann Arbor, MI, USA
| | - Edward M. Wojtys
- Bone and Joint Injury Prevention and Rehabilitation Center, University of Michigan - Ann Arbor, Ann Arbor, MI, USA,Department of Orthopaedic Surgery and MedSport, University of Michigan - Ann Arbor, Ann Arbor, MI, USA
| |
Collapse
|
19
|
Patellotibial contusions in anterior cruciate ligament tears. Skeletal Radiol 2014; 43:247-50. [PMID: 24037484 DOI: 10.1007/s00256-013-1721-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 08/22/2013] [Accepted: 08/23/2013] [Indexed: 02/02/2023]
Abstract
Bone contusions are an important ancillary finding of many knee injuries. Not only are they a source of pain, they may suggest a mechanism of injury or a specific derangement of the knee joint. We have encountered a small number of patients being evaluated for anterior cruciate ligament (ACL) tears with unexplained patellar and tibial edema at magnetic resonance (MR) imaging. We present three individuals with contusions of the inferior patella with a corresponding contusion of the anteromedial tibial plateau. Internal derangements in these patients were similar to other individuals with acute ACL tears, however osseous contusions were more widespread. In conclusion, patellotibial contusions are rare and may indicate an injury with forces greater than usually encountered in most ACL tears. A careful search for uncommon associated injuries is prudent in these high-energy knee injuries.
Collapse
|
20
|
Maximal and explosive strength training elicit distinct neuromuscular adaptations, specific to the training stimulus. Eur J Appl Physiol 2013; 114:365-74. [DOI: 10.1007/s00421-013-2781-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 11/20/2013] [Indexed: 10/26/2022]
|
21
|
Tillin NA, Pain MT, Folland JP. Identification of contraction onset during explosive contractions. Response to Thompson et al. “Consistency of rapid muscle force characteristics: Influence of muscle contraction onset detection methodology” [J Electromyogr Kinesiol 2012;22(6):893–900]. J Electromyogr Kinesiol 2013; 23:991-4. [DOI: 10.1016/j.jelekin.2013.04.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 04/16/2013] [Accepted: 04/29/2013] [Indexed: 10/26/2022] Open
|
22
|
Kim S, Endres NK, Johnson RJ, Ettlinger CF, Shealy JE. Snowboarding injuries: trends over time and comparisons with alpine skiing injuries. Am J Sports Med 2012; 40:770-6. [PMID: 22268231 DOI: 10.1177/0363546511433279] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Participation in snowboarding as a winter sport is comparable to alpine skiing concerning the demographics of the participants, risk of injury, and variation in types of injuries sustained. PURPOSE To examine the types of snowboarding injuries and changes in injury patterns over time. We also sought to highlight important differences in injury patterns between snowboarders and alpine skiers as affected by age, experience, and sex. STUDY DESIGN Case control; Level of evidence, 3. METHODS Data were collected on injured snowboarders and skiers in a base-lodge clinic of a ski resort in Vermont over 18 seasons (1988-2006) and included extensive information about injury patterns, demographics, and experience. Control data were also obtained during this time period to provide information about the population at risk. RESULTS The injury rates were assessed as mean days between injuries (MDBI). The average MDBI for all injuries among snowboarders was 345 as compared with 400 for skiers (the lower the number, the higher the injury rate). The most common type of injury for snowboarders was a wrist injury (MDBI, 1258), while for skiers, it was an anterior cruciate ligament (ACL) sprain (MDBI, 2332). Wrist injuries accounted for 27.6% of all snowboard injuries and 2.8% of skiing injuries, and ACL injuries composed 1.7% of all snowboard injuries and 17.2% of skiing injuries. Among snowboarders, more wrist injuries, shoulder soft tissue injuries, ankle injuries, concussions, and clavicle fractures were seen, while skiers had more ACL sprains, medial collateral ligament (MCL) sprains of the knee, lateral collateral ligament (LCL) sprains of the knee, lower extremity contusions, and tibia fractures. The trend analysis revealed an increased incidence of clavicle fractures (P < .01) and a decrease in MCL injuries (P < .01) and ankle injuries (P < .025) among snowboarders over time. Skiers had a decrease in thumb metacarpophalangeal-ulnar collateral ligament (MCP-UCL) injuries (P < .001) and MCL injuries of the knee (P < .001) over time. We found the highest rate of injury among young, inexperienced, female snowboarders. When examining the location of injury, 21.8% of snowboard injuries occurred in the terrain park compared with 6.5% of ski injuries. CONCLUSION Injury rates in snowboarders have fluctuated over time but currently remain higher than in skiers. Wrist, shoulder, and ankle injuries are more common among snowboarders, while knee ligament injuries are more common in skiers. Injured snowboarders were significantly younger, less experienced, and more likely to be female than injured skiers or snowboard control participants. We did not find any evidence that those who spend time in terrain parks are overrepresented in the injury population.
Collapse
Affiliation(s)
- Suezie Kim
- Department of Orthopaedics and Rehabilitation, University of Vermont College of Medicine, Burlington, Vermont, USA.
| | | | | | | | | |
Collapse
|
23
|
Sex-dimorphic landing mechanics and their role within the noncontact ACL injury mechanism: evidence, limitations and directions. Sports Med Arthrosc Rehabil Ther Technol 2012; 4:10. [PMID: 22420302 PMCID: PMC3320528 DOI: 10.1186/1758-2555-4-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Accepted: 03/15/2012] [Indexed: 01/12/2023]
Abstract
Anterior cruciate ligament (ACL) injuries continue to present in epidemic-like proportions, carrying significant short- and longer-term debilitative effects. With females suffering these injuries at a higher rate than males, an abundance of research focuses on delineating the sex-specific nature of the underlying injury mechanism. Examinations of sex-dimorphic lower-limb landing mechanics are common since such factors are readily screenable and modifiable. The purpose of this paper was to critically review the published literature that currently exists in this area to gain greater insight into the aetiology of ACL injuries in females and males. Using strict search criteria, 31 articles investigating sex-based differences in explicit knee and/or hip landing biomechanical variables exhibited during vertical landings were selected and subsequently examined. Study outcomes did not support the generally accepted view that significant sex-based differences exist in lower-limb landing mechanics. In fact, a lack of agreement was evident in the literature for the majority of variables examined, with no sex differences evident when consensus was reached. The one exception was that women were typically found to land with greater peak knee abduction angles than males. Considering knee abduction increases ACL loading and prospectively predicts female ACL injury risk, its contribution to sex-specific injury mechanisms and resultant injury rates seems plausible. As for the lack of consensus observed for most variables, it may arise from study-based variations in test populations and landing tasks, in conjunction with the limited ability to accurately measure lower-limb mechanics via standard motion capture methods. Regardless, laboratory-based comparisons of male and female landing mechanics do not appear sufficient to elucidate causes of injury and their potential sex-specificity. Sex-specific in vivo joint mechanical data, if collected accurately, may be more beneficial when used to drive models (e.g., cadaveric and computational) that can additionally quantify the resultant ACL load response. Without these steps, sex-dimorphic landing mechanics data will play a limited role in identifying the aetiology of ACL injuries in women and men.
Collapse
|