1
|
Luizard P, Bailly L, Yousefi-Mashouf H, Girault R, Orgéas L, Henrich Bernardoni N. Flow-induced oscillations of vocal-fold replicas with tuned extensibility and material properties. Sci Rep 2023; 13:22658. [PMID: 38114547 PMCID: PMC10730560 DOI: 10.1038/s41598-023-48080-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
Human vocal folds are highly deformable non-linear oscillators. During phonation, they stretch up to 50% under the complex action of laryngeal muscles. Exploring the fluid/structure/acoustic interactions on a human-scale replica to study the role of the laryngeal muscles remains a challenge. For that purpose, we designed a novel in vitro testbed to control vocal-folds pre-phonatory deformation. The testbed was used to study the vibration and the sound production of vocal-fold replicas made of (i) silicone elastomers commonly used in voice research and (ii) a gelatin-based hydrogel we recently optimized to approximate the mechanics of vocal folds during finite strains under tension, compression and shear loadings. The geometrical and mechanical parameters measured during the experiments emphasized the effect of the vocal-fold material and pre-stretch on the vibration patterns and sounds. In particular, increasing the material stiffness increases glottal flow resistance, subglottal pressure required to sustain oscillations and vibratory fundamental frequency. In addition, although the hydrogel vocal folds only oscillate at low frequencies (close to 60 Hz), the subglottal pressure they require for that purpose is realistic (within the range 0.5-2 kPa), as well as their glottal opening and contact during a vibration cycle. The results also evidence the effect of adhesion forces on vibration and sound production.
Collapse
Affiliation(s)
- Paul Luizard
- Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, Grenoble, 38000, France
- CNRS, Centrale Marseille, Aix Marseille Univ, LMA UMR 7031, Marseille, France
- Audio Communication Group, Technische Universität Berlin, Einsteinufer 17c, Berlin, 10587, Germany
| | - Lucie Bailly
- Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR, Grenoble, 38000, France
| | - Hamid Yousefi-Mashouf
- Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, Grenoble, 38000, France
- Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR, Grenoble, 38000, France
| | - Raphaël Girault
- Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, Grenoble, 38000, France
| | - Laurent Orgéas
- Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR, Grenoble, 38000, France
| | | |
Collapse
|
2
|
Cochereau T, Bailly L, Orgéas L, Henrich Bernardoni N, Robert Y, Terrien M. Mechanics of human vocal folds layers during finite strains in tension, compression and shear. J Biomech 2020; 110:109956. [PMID: 32827774 DOI: 10.1016/j.jbiomech.2020.109956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/17/2022]
Abstract
During phonation, human vocal fold tissues are subjected to combined tension, compression and shear loading modes from small to large finite strains. Their mechanical behaviour is however still not well understood. Herein, we complete the existing mechanical database of these soft tissues, by characterising, for the first time, the cyclic and finite strains behaviour of the lamina propria and vocalis layers under these loading modes. To minimise the inter or intra-individual variability, particular attention was paid to subject each tissue sample successively to the three loadings. A non-linear mechanical behaviour is observed for all loading modes: a J-shape strain stiffening in longitudinal tension and transverse compression, albeit far less pronounced in shear, stress accommodation and stress hysteresis whatever the loading mode. In addition, recorded stress levels during longitudinal tension are much higher for the lamina propria than for the vocalis. Conversely, the responses of the lamina propria and the vocalis in transverse compression as well as transverse and longitudinal shears are of the same orders of magnitude. We also highlight the strain rate sensitivity of the tissues, as well as their anisotropic properties.
Collapse
Affiliation(s)
- Thibaud Cochereau
- Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR, 38000 Grenoble, France; Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, 38000 Grenoble, France
| | - Lucie Bailly
- Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR, 38000 Grenoble, France.
| | - Laurent Orgéas
- Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR, 38000 Grenoble, France
| | | | - Yohann Robert
- Univ. Grenoble Alpes, CHU Grenoble Alpes, LADAF, 38000 Grenoble, France
| | - Maxime Terrien
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LGP2, 38000 Grenoble, France
| |
Collapse
|
3
|
Svistushkin MV, Kotova SL, Shekhter AB, Svistushkin VM, Akovantseva AA, Frolova AA, Fayzullin AL, Starostina SV, Bezrukov EA, Sukhanov RB, Timashev SF, Butnaru DV, Timashev PS. Collagen fibrillar structures in vocal fold scarring and repair using stem cell therapy: a detailed histological, immunohistochemical and atomic force microscopy study. J Microsc 2019; 274:55-68. [PMID: 30740689 DOI: 10.1111/jmi.12784] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/15/2019] [Accepted: 01/24/2019] [Indexed: 12/11/2022]
Abstract
Regenerative medicine opens new opportunities in the repair of cicatricial lesions of the vocal folds. Here, we present a thorough morphological study, with the focus on the collagen structures in the mucosa of the vocal folds, dedicated to the effects of stem cells on the vocal folds repair after cicatricial lesions. We used a conventional experimental model of a mature scar of the rabbit vocal folds, which was surgically excised with a simultaneous implantation of autologous bone marrow-derived mesenchymal stem cells (MSC) into the defect. The restoration of the vocal folds was studied 3 months postimplantation of stem cells and 6 months after the first surgery. The collagen structure assessment included histology, immunohistochemistry and atomic force microscopy (AFM) studies. According to the data of optical microscopy and AFM, as well as to immunohistochemical analysis, MSC implantation into the vocal fold defect leads not only to the general reduction of scarring, normal ratio of collagens type I and type III, but also to a more complete restoration of architecture and ultrastructure of collagen fibres in the mucosa, as compared to the control. The collagen structures in the scar tissue in the vocal folds with implanted MSC are more similar to those in the normal mucosa of the vocal folds than to those of the untreated scars. AFM has proven to be an instrumental technique in the assessment of the ultrastructure restoration in such studies. LAY DESCRIPTION: Regenerative medicine opens new opportunities in the repair of the vocal fold scars. Because collagen is a main component in the vocal fold mucosa responsible for the scar formation and repair, we focus on the collagen structures in the mucosa of the vocal folds, using a thorough morphological study based on histology and atomic force microscopy (AFM). Atomic force microscopy is a scanning microscopic technique which allows revealing the internal structure of a tissue with a resolution up to nanometres. We used a conventional experimental model of a mature scar of the rabbit vocal folds, surgically excised and treated with a mesenchymal stem cells transplant. Our morphological study, primarily AFM, explicitly shows that the collagen structures in the scarred vocal folds almost completely restore after the stem cell treatment. Thus, the modern microscopic methods, and especially AFM are instrumental tools for monitoring the repair of the vocal folds scars.
Collapse
Affiliation(s)
| | - Svetlana L Kotova
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,N.N. Semenov Institute of Chemical Physics, Moscow, Russia
| | - Anatoly B Shekhter
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | | | - Anastasia A Akovantseva
- Institute of Photonic Technologies, Research Center 'Crystallography and Photonics', Moscow, Russia
| | | | - Alexey L Fayzullin
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | | | | | | | - Sergey F Timashev
- N.N. Semenov Institute of Chemical Physics, Moscow, Russia.,National Research Nuclear University MEPhI, Moscow, Russia
| | - Denis V Butnaru
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Peter S Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,N.N. Semenov Institute of Chemical Physics, Moscow, Russia.,Institute of Photonic Technologies, Research Center 'Crystallography and Photonics', Moscow, Russia
| |
Collapse
|
4
|
Gómez P, Schützenberger A, Kniesburges S, Bohr C, Döllinger M. Physical parameter estimation from porcine ex vivo vocal fold dynamics in an inverse problem framework. Biomech Model Mechanobiol 2017; 17:777-792. [DOI: 10.1007/s10237-017-0992-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/30/2017] [Indexed: 11/28/2022]
|
5
|
Düring DN, Knörlein BJ, Elemans CPH. In situ vocal fold properties and pitch prediction by dynamic actuation of the songbird syrinx. Sci Rep 2017; 7:11296. [PMID: 28900151 PMCID: PMC5595934 DOI: 10.1038/s41598-017-11258-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/21/2017] [Indexed: 11/09/2022] Open
Abstract
The biomechanics of sound production forms an integral part of the neuromechanical control loop of avian vocal motor control. However, we critically lack quantification of basic biomechanical parameters describing the vocal organ, the syrinx, such as material properties of syringeal elements, forces and torques exerted on, and motion of the syringeal skeleton during song. Here, we present a novel marker-based 3D stereoscopic imaging technique to reconstruct 3D motion of servo-controlled actuation of syringeal muscle insertions sites in vitro and focus on two muscles controlling sound pitch. We furthermore combine kinematic analysis with force measurements to quantify elastic properties of sound producing medial labia (ML). The elastic modulus of the zebra finch ML is 18 kPa at 5% strain, which is comparable to elastic moduli of mammalian vocal folds. Additionally ML lengthening due to musculus syringealis ventralis (VS) shortening is intrinsically constraint at maximally 12% strain. Using these values we predict sound pitch to range from 350–800 Hz by VS modulation, corresponding well to previous observations. The presented methodology allows for quantification of syringeal skeleton motion and forces, acoustic effects of muscle recruitment, and calibration of computational birdsong models, enabling experimental access to the entire neuromechanical control loop of vocal motor control.
Collapse
Affiliation(s)
- Daniel N Düring
- Department of Biology, University of Southern Denmark, Odense, Denmark.,Institute of Neuroinformatics, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Benjamin J Knörlein
- Center for Computation and Visualization, Brown University, Providence, RI, USA
| | - Coen P H Elemans
- Department of Biology, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
6
|
Bhattacharya P, Siegmund T. Computational modeling of vibration-induced systemic hydration of vocal folds over a range of phonation conditions. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2014; 30:1019-1043. [PMID: 24760548 DOI: 10.1002/cnm.2642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 02/05/2014] [Accepted: 03/22/2014] [Indexed: 06/03/2023]
Abstract
Predicting phonation conditions that are benign to voice health remains a biomechanically relevant problem. Our objective is to provide insight into vocal fold (VF) hydration based on continuum-based VF models that are able to compute VF stresses during phonation and a scheme for the extraction and generalization of such computational data based on the principle of linear superposition. Because VF tissue is poroelastic, spatial gradients of VF hydrostatic stresses computed for a given phonation condition determine VF interstitial fluid flow. The present approach transforms, based on linear superposition principles, the computed interstitial fluid velocities at the particular phonation to those at an arbitrary phonation condition. Intersititial fluid flow characteristics for a range of phonation conditions are compared. For phonation conditions with no or moderate collision, no dehydration per vibration cycle is predicted throughout the VF. For more severe collision conditions, tissue dehydration is restricted to a region close to the glottal surface. Interstitial fluid displacement in the VF is found to be heterogeneous and strongly dependent on the phonation condition. A phonation condition is found to exist for which dehydration peaks. The proposed method significantly expands the scope and relevance of conducting isolated numerical simulations of VF vibration.
Collapse
Affiliation(s)
- Pinaki Bhattacharya
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
7
|
Qian K, Traylor K, Lee SW, Ellis B, Weiss J, Kamper D. Mechanical properties vary for different regions of the finger extensor apparatus. J Biomech 2014; 47:3094-9. [PMID: 25042330 DOI: 10.1016/j.jbiomech.2014.06.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 05/03/2014] [Accepted: 06/21/2014] [Indexed: 10/25/2022]
Abstract
The extensor apparatus, an aponeurosis that covers the dorsal side of each finger, transmits force from a number of musculotendons to the phalanges. Multiple tendons integrate directly into the structure at different sites and the extensor apparatus attaches to the phalanges at multiple points. Thus, prediction of the force distribution within the extensor apparatus, or hood, and the transmission to the phalanges is challenging, especially as knowledge of the underlying mechanical properties of the tissue is limited. We undertook quantification of some of these properties through material testing of cadaver specimens. We punched samples at specified locations from 19 extensor hood specimens. Material testing was performed to failure for each sample with a custom material testing device. Testing revealed significant differences in ultimate load, ultimate strain, thickness, and tangent modulus along the length of the extensor hood. Specifically, thickness, ultimate load, and ultimate strain were greater in the more proximal sections of the extensor hood, while the tangent modulus was greater in the more distal sections. The variations in mechanical properties within the hood may impact prediction of force transmission and, thus, should be considered when modeling the action of the extensor apparatus. Across the extensor hood, tangent modulus values were substantially smaller than values reported for other soft tissues, such as the Achilles tendon and knee ligaments, while ultimate strains were much greater. Thus, the tissue in the extensor apparatus seems to have greater elasticity, which should be modeled accordingly.
Collapse
Affiliation(s)
- Kai Qian
- Department of Biomedical Engineering, Illinois Institute of Technology, Wishnick Hall, Suite 314, 3255 S Dearborn St, Chicago, IL 60616, United States
| | - Kay Traylor
- Department of Biomedical Engineering, Illinois Institute of Technology, Wishnick Hall, Suite 314, 3255 S Dearborn St, Chicago, IL 60616, United States
| | - Sang Wook Lee
- Department of Biomedical Engineering, Catholic University of America, Washington, DC 20064, United States; Center for Applied Biomechanics and Rehabilitation Research, National Rehabilitation Hospital, Washington, DC 20010, United States
| | - Benjamin Ellis
- Department of Bioengineering, and Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, United States
| | - Jeffrey Weiss
- Department of Bioengineering, and Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, United States; Department of Orthopedics, University of Utah, Salt Lake City, UT 84108, United States
| | - Derek Kamper
- Department of Biomedical Engineering, Illinois Institute of Technology, Wishnick Hall, Suite 314, 3255 S Dearborn St, Chicago, IL 60616, United States; Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL 60611, United States.
| |
Collapse
|
8
|
Erdoğan S, Sağsöz H, Paulsen F. Functional Anatomy of the Syrinx of the Chukar Partridge (Galliformes:Alectoris chukar) as a Model for Phonation Research. Anat Rec (Hoboken) 2014; 298:602-17. [DOI: 10.1002/ar.23044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/04/2014] [Accepted: 07/30/2014] [Indexed: 01/16/2023]
Affiliation(s)
- Serkan Erdoğan
- Department of Anatomy, Faculty of Veterinary Medicine; Dicle University; Diyarbakir Turkey
| | - Hakan Sağsöz
- Department of Histology and Embryology, Faculty of Veterinary Medicine; Dicle University; Diyarbakir Turkey
| | - Friedrich Paulsen
- Department of Anatomy II; Friedrich Alexander University of Erlangen-Nuremberg; Erlangen Germany
| |
Collapse
|
9
|
Schmidt B, Leugering G, Stingl M, Hüttner B, Agaimy A, Döllinger M. Material and shape optimization for multi-layered vocal fold models using transient loadings. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 134:1261-1270. [PMID: 23927124 DOI: 10.1121/1.4812253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Commonly applied models to study vocal fold vibrations in combination with air flow distributions are self-sustained physical models of the larynx consisting of artificial silicone vocal folds. Choosing appropriate mechanical parameters and layer geometries for these vocal fold models while considering simplifications due to manufacturing restrictions is difficult but crucial for achieving realistic behavior. In earlier work by Schmidt et al. [J. Acoust. Soc. Am. 129, 2168-2180 (2011)], the authors presented an approach in which material parameters of a static numerical vocal fold model were optimized to achieve an agreement of the displacement field with data retrieved from hemilarynx experiments. This method is now generalized to a fully transient setting. Moreover in addition to the material parameters, the extended approach is capable of finding optimized layer geometries. Depending on chosen material restriction, significant modifications of the reference geometry are predicted. The additional flexibility in the design space leads to a significantly more realistic deformation behavior. At the same time, the predicted biomechanical and geometrical results are still feasible for manufacturing physical vocal fold models consisting of several silicone layers. As a consequence, the proposed combined experimental and numerical method is suited to guide the construction of physical vocal fold models.
Collapse
Affiliation(s)
- Bastian Schmidt
- Department Mathematics, Applied Mathematics II, University of Erlangen, Cauerstrasse 11, 91058 Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|
10
|
Kelleher JE, Siegmund T, Du M, Naseri E, Chan RW. The anisotropic hyperelastic biomechanical response of the vocal ligament and implications for frequency regulation: a case study. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 133:1625-36. [PMID: 23464032 PMCID: PMC3606228 DOI: 10.1121/1.4776204] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
One of the primary mechanisms to vary one's vocal frequency is through vocal fold length changes. As stress and deformation are linked to each other, it is hypothesized that the anisotropy in the biomechanical properties of the vocal fold tissue would affect the phonation characteristics. A biomechanical model of vibrational frequency rise during vocal fold elongation is developed which combines an advanced biomechanical characterization protocol of the vocal fold tissue with continuum beam models. Biomechanical response of the tissue is related to a microstructurally informed, anisotropic, nonlinear hyperelastic constitutive model. A microstructural characteristic (the dispersion of collagen) was represented through a statistical orientation function acquired from a second harmonic generation image of the vocal ligament. Continuum models of vibration were constructed based upon Euler-Bernoulli and Timoshenko beam theories, and applied to the study of the vibration of a vocal ligament specimen. From the natural frequency predictions in dependence of elongation, two competing processes in frequency control emerged, i.e., the applied tension raises the frequency while simultaneously shear deformation lowers the frequency. Shear becomes much more substantial at higher modes of vibration and for highly anisotropic tissues. The analysis was developed as a case study based on a human vocal ligament specimen.
Collapse
Affiliation(s)
- Jordan E Kelleher
- Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
11
|
Bhattacharya P, Siegmund TH. A canonical biomechanical vocal fold model. J Voice 2012; 26:535-47. [PMID: 22209063 PMCID: PMC3338879 DOI: 10.1016/j.jvoice.2011.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 09/06/2011] [Indexed: 11/28/2022]
Abstract
The present article aimed at constructing a canonical geometry of the human vocal fold (VF) from subject-specific image slice data. A computer-aided design approach automated the model construction. A subject-specific geometry available in literature, three abstractions (which successively diminished in geometric detail) derived from it, and a widely used quasi two-dimensional VF model geometry were used to create computational models. The first three natural frequencies of the models were used to characterize their mechanical response. These frequencies were determined for a representative range of tissue biomechanical properties, accounting for underlying VF histology. Compared with the subject-specific geometry model (baseline), a higher degree of abstraction was found to always correspond to a larger deviation in model frequency (up to 50% in the relevant range of tissue biomechanical properties). The model we deemed canonical was optimally abstracted, in that it significantly simplified the VF geometry compared with the baseline geometry but can be recalibrated in a consistent manner to match the baseline response. Models providing only a marginally higher degree of abstraction were found to have significant deviation in predicted frequency response. The quasi two-dimensional model presented an extreme situation: it could not be recalibrated for its frequency response to match the subject-specific model. This deficiency was attributed to complex support conditions at anterior-posterior extremities of the VFs, accentuated by further issues introduced through the tissue biomechanical properties. In creating canonical models by leveraging advances in clinical imaging techniques, the automated design procedure makes VF modeling based on subject-specific geometry more realizable.
Collapse
Affiliation(s)
- Pinaki Bhattacharya
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
12
|
Weiß S, Thomson SL, Lerch R, Döllinger M, Sutor A. Pipette aspiration applied to the characterization of nonhomogeneous, transversely isotropic materials used for vocal fold modeling. J Mech Behav Biomed Mater 2012; 17:137-51. [PMID: 23127628 DOI: 10.1016/j.jmbbm.2012.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 08/10/2012] [Accepted: 08/20/2012] [Indexed: 11/19/2022]
Abstract
The etiology and treatment of voice disorders are still not completely understood. Since the vibratory characteristics of vocal folds are strongly influenced by both anatomy and mechanical material properties, measurement methods to analyze the material behavior of vocal fold tissue are required. Due to the limited life time of real tissue in the laboratory, synthetic models are often used to study vocal fold vibrations. In this paper we focus on two topics related to synthetic and real vocal fold materials. First, because certain tissues within the human vocal folds are transversely isotropic, a fabrication process for introducing this characteristic in commonly used vocal fold modeling materials is presented. Second, the pipette aspiration technique is applied to the characterization of these materials. By measuring the displacement profiles of stretched specimens that exhibit varying degrees of transverse isotropy, it is shown that local anisotropy can be quantified using a parameter describing the deviation from an axisymmetric profile. The potential for this technique to characterize homogeneous, anisotropic materials, including soft biological tissues such as those found in the human vocal folds, is supplemented by a computational study.
Collapse
Affiliation(s)
- S Weiß
- Sensor Technology, Graduate School in Advanced Optical Technologies, Friedrich-Alexander University, and Department of Phoniatrics and Paediatric Audiology, University Hospital Erlangen, Erlangen, Germany.
| | | | | | | | | |
Collapse
|
13
|
Kelleher JE, Siegmund T, Du M, Naseri E, Chan RW. Empirical measurements of biomechanical anisotropy of the human vocal fold lamina propria. Biomech Model Mechanobiol 2012; 12:555-67. [PMID: 22886592 DOI: 10.1007/s10237-012-0425-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 07/28/2012] [Indexed: 12/01/2022]
Abstract
The vocal folds are known to be mechanically anisotropic due to the microstructural arrangement of fibrous proteins such as collagen and elastin in the lamina propria. Even though this has been known for many years, the biomechanical anisotropic properties have rarely been experimentally studied. We propose that an indentation procedure can be used with uniaxial tension in order to obtain an estimate of the biomechanical anisotropy within a single specimen. Experiments were performed on the lamina propria of three male and three female human vocal folds dissected from excised larynges. Two experiments were conducted: each specimen was subjected to cyclic uniaxial tensile loading in the longitudinal (i.e., anterior-posterior) direction, and then to cyclic indentation loading in the transverse (i.e., medial-lateral) direction. The indentation experiment was modeled as contact on a transversely isotropic half-space using the Barnett-Lothe tensors. The longitudinal elastic modulus E(L) was computed from the tensile test, and the transverse elastic modulus E(T) and longitudinal shear modulus G(L) were obtained by inverse analysis of the indentation force-displacement response. It was discovered that the average of E(L) /E(T) was 14 for the vocal ligament and 39 for the vocal fold cover specimens. Also, the average of E(L)/G(L), a parameter important for models of phonation, was 28 for the vocal ligament and 54 for the vocal fold cover specimens. These measurements of anisotropy could contribute to more accurate models of fundamental frequency regulation and provide potentially better insights into the mechanics of vocal fold vibration.
Collapse
Affiliation(s)
- Jordan E Kelleher
- Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
14
|
Kelleher JE, Siegmund T, Chan RW. Could spatial heterogeneity in human vocal fold elastic properties improve the quality of phonation? Ann Biomed Eng 2012; 40:2708-18. [PMID: 22707177 DOI: 10.1007/s10439-012-0609-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 06/08/2012] [Indexed: 11/24/2022]
Abstract
The physical mechanisms leading to the acoustic and perceptual qualities of voice are not well understood. This study examines the spatial distribution of biomechanical properties in human vocal folds and explores the consequences of these properties on phonation. Vocal fold lamina propria specimens isolated from nine excised human male larynges were tested in uniaxial tension (six from non-smokers, three from smokers). An optical method was employed to determine the local stretch, from which the elastic modulus of three segments in the anterior-posterior direction was calculated. Several specimens exhibited a significant heterogeneity in the modulus with the middle segment stiffer than the other segments. It was concluded that such modulus gradients are stronger in specimens from non-smokers than smokers. To understand the functional implications of a modulus gradient, the first eigenmode of vibration was calculated with a finite element model. With a modulus gradient, the vocal fold's eigenmode deflection was spread along the anterior-posterior length, whereas for a homogeneous modulus distribution, the deflection was more focused around the mid-coronal plane. Consequently, the strong modulus gradient may enable more complete glottal closure, which is important for normal phonation, while a more homogeneous modulus may be responsible for poor glottal closure and a perceived "breathy" voice.
Collapse
Affiliation(s)
- Jordan E Kelleher
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|