1
|
Aguirre G, Billon L. Water-borne synthesis of multi-responsive and biodegradable chitosan-crosslinked microgels: Towards self-assembled films with adaptable properties. Carbohydr Polym 2023; 318:121099. [PMID: 37479432 DOI: 10.1016/j.carbpol.2023.121099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/09/2023] [Accepted: 06/05/2023] [Indexed: 07/23/2023]
Abstract
The present study aims in the synthesis of new biodegradable stimuli-responsive microgels with controllable microstructure and with the ability to form cohesive films. Such self-assembled films by water evaporation at ambient conditions without any chemicals but just physical entanglements between soft colloid shell, present adaptable mechanical, adhesive and mechano-electrical properties. For that, oligo(ethylene glycol)-based stimuli-responsive microgels have been synthesized using biodegradable chitosan-methacrylates (Chi-MAs) with different degree of substitution (DS) as unique cross-linking agents by precipitation polymerization in water, for the first time. In all the cases, the microgels present thermo-responsiveness with hysteresis between heating and cooling cycles. However, this behavior is tuned and controlled using different types and amounts of Chi-MAs. In addition, the type of Chi-MA used can control microgels' microstructure as well as their enzymatic biodegradation. In addition, spontaneous cohesive films formation from colloidal aqueous dispersion with sol-gel transition is demonstrated. The films present tunable mechanical and adhesive properties through microgels' microstructure and enhanced mechano-electrical properties triggered by simple finger pressure (10-15 N). As self-supported films are able to encapsulate different types of active molecules, this study paves the way for suitable self-assembled microgel films for skincare applications as transdermal delivery systems.
Collapse
Affiliation(s)
- Garbine Aguirre
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM-UMR 5254, 64000 Pau, France; Bio-Inspired Materials Group: Functionalities & Self-Assembly, Universite de Pau et des Pays de l'Adour, E2S UPPA, 64000 Pau, France.
| | - Laurent Billon
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM-UMR 5254, 64000 Pau, France; Bio-Inspired Materials Group: Functionalities & Self-Assembly, Universite de Pau et des Pays de l'Adour, E2S UPPA, 64000 Pau, France
| |
Collapse
|
2
|
Aguirre G, Marcasuzaa P, Billon L. Soft Self-Assembled Mechanoelectrical Transducer Films from Conductive Microgel Waterborne Dispersions. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37268429 DOI: 10.1021/acsami.3c04622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The present study aims in the developing of new soft transducers based on sophisticated stimuli-responsive microgels that exhibit spontaneous self-assembly forming cohesive films with conductive and mechanoelectrical properties. For that, oligo(ethylene glycol)-based stimuli-responsive microgels have been synthesized using bio-inspired catechol cross-linkers by one-step batch precipitation polymerization in aqueous media. Then, 3,4-ethylene dioxyyhiophene (EDOT) has been directly polymerized onto stimuli-responsive microgels using catechol groups as the unique dopant. PEDOT location is dependent on the cross-linking density of microgel particles and EDOT amount used. Moreover, the spontaneous cohesive film formation ability of the waterborne dispersion after evaporation at soft application temperature is demonstrated. The films obtained present conductivity and enhanced mechanoelectrical properties triggered by simple finger compression. Both properties are function of the cross-linking density of the microgel seed particles and PEDOT amount incorporated. In addition, to obtain maximum electrical potential generated and the possibility to amplify it, several films in series were demonstrated to be efficient. The present material can be a potential candidate for biomedical, cosmetic, and bioelectronic applications.
Collapse
Affiliation(s)
- Garbine Aguirre
- E2S UPPA, CNRS, IPREM-UMR 5254, Universite de Pau et des Pays de l'Adour, 64000 Pau, France
- Bio-Inspired Materials Group: Functionalities & Self-Assembly, Universite de Pau et des Pays de l'Adour, E2S UPPA, 64000 Pau, France
| | - Pierre Marcasuzaa
- E2S UPPA, CNRS, IPREM-UMR 5254, Universite de Pau et des Pays de l'Adour, 64000 Pau, France
- Bio-Inspired Materials Group: Functionalities & Self-Assembly, Universite de Pau et des Pays de l'Adour, E2S UPPA, 64000 Pau, France
| | - Laurent Billon
- E2S UPPA, CNRS, IPREM-UMR 5254, Universite de Pau et des Pays de l'Adour, 64000 Pau, France
- Bio-Inspired Materials Group: Functionalities & Self-Assembly, Universite de Pau et des Pays de l'Adour, E2S UPPA, 64000 Pau, France
| |
Collapse
|
3
|
Shklyar TF, Orkhey EA, Safronov AP, Blyakhman FA. Biocompatible contactless electrically responsive hydrogel‐based force maker. POLYM INT 2020. [DOI: 10.1002/pi.6033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tatyana F Shklyar
- Institute of Natural Science and Mathematics Ural Federal University Yekaterinburg Russian Federation
- Department of Biomedical Physics and Engineering Ural State Medical University Yekaterinburg Russian Federation
| | - Ekaterina A Orkhey
- Institute of Natural Science and Mathematics Ural Federal University Yekaterinburg Russian Federation
- Department of Biomedical Physics and Engineering Ural State Medical University Yekaterinburg Russian Federation
| | - Alexander P Safronov
- Institute of Natural Science and Mathematics Ural Federal University Yekaterinburg Russian Federation
- Institute of Electrophysics UB RAS Yekaterinburg Russian Federation
| | - Felix A Blyakhman
- Institute of Natural Science and Mathematics Ural Federal University Yekaterinburg Russian Federation
- Department of Biomedical Physics and Engineering Ural State Medical University Yekaterinburg Russian Federation
| |
Collapse
|
4
|
BLYAKHMAN FA, SAFRONOV AP, MAKEYEV OG, MELEKHIN VV, SHKLYAR TF, ZUBAREV AY, MAKAROVA EB, SICHKAR DA, RUSINOVA MA, SOKOLOV SY, KURLYANDSKAYA GV. EFFECT OF THE POLYACRYLAMIDE FERROGEL ELASTICITY ON THE CELL ADHESIVENESS TO MAGNETIC COMPOSITE. J MECH MED BIOL 2018. [DOI: 10.1142/s0219519418500604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Biocompatible polyacrylamide gels are widely required for the development of mechanically “soft” magnetic material for the purposes of different biomedical applications. In this work, ferrogels were synthesized by radical polymerization of acrylamide in a stable aqueous suspension of magnetic maghemite [Formula: see text]-Fe[Formula: see text]O[Formula: see text] nanoparticles (MNPs) with the median value in diameter of 11.4[Formula: see text]nm fabricated by laser target evaporation. Gel network density was set to 1:100, the concentrations of embedded MNPs were fixed at 0.00%, 0.25%, 0.50%, 0.75% or 1.0% by weight. Ferrogels’ Young’s modulus and affinity to the human dermal fibroblasts adhesiveness were tested. To estimate the cells adhesive activity to gels, the adhesion index was calculated as the number of adhered cells divided by the number of cells sown and multiplied by 100%. The gradual increase of MNPs concentration in the gel network resulted in the significant increase of ferrogel’s Young’s modulus and cells adhesion activity. In particular, at the MNPs concentration of 0.25%, the modulus and the adhesion index were equal to [Formula: see text]30[Formula: see text]kPa and [Formula: see text]90%, correspondingly. The adhesion index at highest MNPs concentration of 1.0% was close to 100% and modulus to [Formula: see text]40[Formula: see text]kPa. The increase of cells adhesiveness rise with MNPs concentration closely correlated with the direct impact of MNPs on the gel stiffness.
Collapse
Affiliation(s)
- F. A. BLYAKHMAN
- Ural State Medical University, Yekaterinburg 620028, Russia
- Ural Federal University, Yekaterinburg 620002, Russia
| | - A. P. SAFRONOV
- Ural Federal University, Yekaterinburg 620002, Russia
- Institute of Electrophysics, Ural Division, RAS, Yekaterinburg 620016, Russia
| | - O. G. MAKEYEV
- Ural State Medical University, Yekaterinburg 620028, Russia
| | - V. V. MELEKHIN
- Ural State Medical University, Yekaterinburg 620028, Russia
| | - T. F. SHKLYAR
- Ural State Medical University, Yekaterinburg 620028, Russia
- Ural Federal University, Yekaterinburg 620002, Russia
| | - A. Y. ZUBAREV
- Ural Federal University, Yekaterinburg 620002, Russia
- M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian, Academy of Sciences, Yekaterinburg 620108, Russia
| | - E. B. MAKAROVA
- Ural State Medical University, Yekaterinburg 620028, Russia
- Ural Institute of Traumatology and Orthopedics, Yekaterinburg 620000, Russia
| | - D. A. SICHKAR
- Ural State Medical University, Yekaterinburg 620028, Russia
| | - M. A. RUSINOVA
- Ural State Medical University, Yekaterinburg 620028, Russia
- Ural Federal University, Yekaterinburg 620002, Russia
| | - S. Y. SOKOLOV
- Ural State Medical University, Yekaterinburg 620028, Russia
- Ural Federal University, Yekaterinburg 620002, Russia
| | | |
Collapse
|
5
|
Dobreikina A, Shklyar T, Safronov A, Blyakhman F. Biomimetic gels with chemical and physical interpenetrating networks. POLYM INT 2018. [DOI: 10.1002/pi.5608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Anastasia Dobreikina
- Institute of Natural Science and Mathematics; Ural Federal University; Yekaterinburg Russia
- Department of Biomedical Physics and Engineering; Ural State Medical University; Yekaterinburg Russia
| | - Tatyana Shklyar
- Institute of Natural Science and Mathematics; Ural Federal University; Yekaterinburg Russia
- Department of Biomedical Physics and Engineering; Ural State Medical University; Yekaterinburg Russia
| | - Alexander Safronov
- Institute of Natural Science and Mathematics; Ural Federal University; Yekaterinburg Russia
| | - Felix Blyakhman
- Institute of Natural Science and Mathematics; Ural Federal University; Yekaterinburg Russia
- Department of Biomedical Physics and Engineering; Ural State Medical University; Yekaterinburg Russia
| |
Collapse
|
6
|
Blyakhman FA, Buznikov NA, Sklyar TF, Safronov AP, Golubeva EV, Svalov AV, Sokolov SY, Melnikov GY, Orue I, Kurlyandskaya GV. Mechanical, Electrical and Magnetic Properties of Ferrogels with Embedded Iron Oxide Nanoparticles Obtained by Laser Target Evaporation: Focus on Multifunctional Biosensor Applications. SENSORS 2018; 18:s18030872. [PMID: 29543746 PMCID: PMC5877372 DOI: 10.3390/s18030872] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 03/07/2018] [Accepted: 03/13/2018] [Indexed: 12/27/2022]
Abstract
Hydrogels are biomimetic materials widely used in the area of biomedical engineering and biosensing. Ferrogels (FG) are magnetic composites capable of functioning as magnetic field sensitive transformers and field assisted drug deliverers. FG can be prepared by incorporating magnetic nanoparticles (MNPs) into chemically crosslinked hydrogels. The properties of biomimetic ferrogels for multifunctional biosensor applications can be set up by synthesis. The properties of these biomimetic ferrogels can be thoroughly controlled in a physical experiment environment which is much less demanding than biotests. Two series of ferrogels (soft and dense) based on polyacrylamide (PAAm) with different chemical network densities were synthesized by free-radical polymerization in aqueous solution with N,N’-methylene-diacrylamide as a cross-linker and maghemite Fe2O3 MNPs fabricated by laser target evaporation as a filler. Their mechanical, electrical and magnetic properties were comparatively analyzed. We developed a giant magnetoimpedance (MI) sensor prototype with multilayered FeNi-based sensitive elements deposited onto glass or polymer substrates adapted for FG studies. The MI measurements in the initial state and in the presence of FG with different concentrations of MNPs at a frequency range of 1–300 MHz allowed a precise characterization of the stray fields of the MNPs present in the FG. We proposed an electrodynamic model to describe the MI in multilayered film with a FG layer based on the solution of linearized Maxwell equations for the electromagnetic fields coupled with the Landau-Lifshitz equation for the magnetization dynamics.
Collapse
Affiliation(s)
- Felix A Blyakhman
- Ural State Medical University, Yekaterinburg 620028, Russia.
- Institute of Natural Sciences and Mathematics Ural Federal University, Yekaterinburg 620002, Russia.
| | - Nikita A Buznikov
- Scientific and Research Institute of Natural Gases and Gas Technologies-Gazprom VNIIGAZ, Razvilka Leninsky District, Moscow Region 142717, Russia.
| | - Tatyana F Sklyar
- Ural State Medical University, Yekaterinburg 620028, Russia.
- Institute of Natural Sciences and Mathematics Ural Federal University, Yekaterinburg 620002, Russia.
| | - Alexander P Safronov
- Institute of Natural Sciences and Mathematics Ural Federal University, Yekaterinburg 620002, Russia.
- Institute of Electrophysics, Ural Division RAS, Yekaterinburg 620016, Russia.
| | - Elizaveta V Golubeva
- Institute of Natural Sciences and Mathematics Ural Federal University, Yekaterinburg 620002, Russia.
| | - Andrey V Svalov
- Institute of Natural Sciences and Mathematics Ural Federal University, Yekaterinburg 620002, Russia.
| | - Sergey Yu Sokolov
- Ural State Medical University, Yekaterinburg 620028, Russia.
- Institute of Natural Sciences and Mathematics Ural Federal University, Yekaterinburg 620002, Russia.
| | - Grigory Yu Melnikov
- Institute of Natural Sciences and Mathematics Ural Federal University, Yekaterinburg 620002, Russia.
| | - Iñaki Orue
- Advanced Research Facilities (SGIKER), Universidad del País Vasco UPV-EHU, 48080 Bilbao, Spain.
| | - Galina V Kurlyandskaya
- Institute of Natural Sciences and Mathematics Ural Federal University, Yekaterinburg 620002, Russia.
- Departamento de Electricidad y Electrónica and BCMaterials, Universidad del País Vasco UPV/EHU, 48080 Bilbao, Spain.
| |
Collapse
|
7
|
Why Hydrogels Don't Dribble Water. Gels 2017; 3:gels3040043. [PMID: 30920538 PMCID: PMC6318654 DOI: 10.3390/gels3040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/05/2017] [Accepted: 11/14/2017] [Indexed: 11/16/2022] Open
Abstract
Hydrogels contain ample amounts of water, with the water-to-solid ratio sometimes reaching tens of thousands of times. How can so much water remain securely lodged within the gel? New findings imply a simple mechanism. Next to hydrophilic surfaces, water transitions into an extensive gel-like phase in which molecules become ordered. This “fourth phase” of water sticks securely to the solid gel matrix, ensuring that the water does not leak out.
Collapse
|
8
|
Kurlyandskaya GV, Portnov DS, Beketov IV, Larrañaga A, Safronov AP, Orue I, Medvedev AI, Chlenova AA, Sanchez-Ilarduya MB, Martinez-Amesti A, Svalov AV. Nanostructured materials for magnetic biosensing. Biochim Biophys Acta Gen Subj 2017; 1861:1494-1506. [DOI: 10.1016/j.bbagen.2016.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/12/2016] [Accepted: 12/01/2016] [Indexed: 12/21/2022]
|
9
|
Resistance to anticancer drugs permanently alters electrophoretic mobility of cancer cell lines. Electrophoresis 2017; 38:1201-1205. [DOI: 10.1002/elps.201600494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 12/13/2022]
|
10
|
Guo H, Kurokawa T, Takahata M, Hong W, Katsuyama Y, Luo F, Ahmed J, Nakajima T, Nonoyama T, Gong JP. Quantitative Observation of Electric Potential Distribution of Brittle Polyelectrolyte Hydrogels Using Microelectrode Technique. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00037] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Honglei Guo
- Graduate
School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Takayuki Kurokawa
- Faculty
of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan
- Global
Station for Soft Matter, Global Institution for Collaborative Research
and Education, Hokkaido University, Sapporo, Japan
| | | | - Wei Hong
- Global
Station for Soft Matter, Global Institution for Collaborative Research
and Education, Hokkaido University, Sapporo, Japan
- Department
of Aerospace Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Yoshinori Katsuyama
- Faculty
of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Feng Luo
- Faculty
of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Jamil Ahmed
- Graduate
School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Tasuku Nakajima
- Faculty
of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan
- Global
Station for Soft Matter, Global Institution for Collaborative Research
and Education, Hokkaido University, Sapporo, Japan
| | - Takayuki Nonoyama
- Faculty
of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan
- Global
Station for Soft Matter, Global Institution for Collaborative Research
and Education, Hokkaido University, Sapporo, Japan
| | - Jian Ping Gong
- Faculty
of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan
- Global
Station for Soft Matter, Global Institution for Collaborative Research
and Education, Hokkaido University, Sapporo, Japan
| |
Collapse
|
11
|
Ateshian GA, Maas S, Weiss JA. Multiphasic finite element framework for modeling hydrated mixtures with multiple neutral and charged solutes. J Biomech Eng 2014; 135:111001. [PMID: 23775399 DOI: 10.1115/1.4024823] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 06/17/2013] [Indexed: 11/08/2022]
Abstract
Computational tools are often needed to model the complex behavior of biological tissues and cells when they are represented as mixtures of multiple neutral or charged constituents. This study presents the formulation of a finite element modeling framework for describing multiphasic materials in the open-source finite element software febio.1 Multiphasic materials may consist of a charged porous solid matrix, a solvent, and any number of neutral or charged solutes. This formulation proposes novel approaches for addressing several challenges posed by the finite element analysis of such complex materials: The exclusion of solutes from a fraction of the pore space due to steric volume and short-range electrostatic effects is modeled by a solubility factor, whose dependence on solid matrix deformation and solute concentrations may be described by user-defined constitutive relations. These solute exclusion mechanisms combine with long-range electrostatic interactions into a partition coefficient for each solute whose value is dependent upon the evaluation of the electric potential from the electroneutrality condition. It is shown that this electroneutrality condition reduces to a polynomial equation with only one valid root for the electric potential, regardless of the number and valence of charged solutes in the mixture. The equation of charge conservation is enforced as a constraint within the equation of mass balance for each solute, producing a natural boundary condition for solute fluxes that facilitates the prescription of electric current density on a boundary. It is also shown that electrical grounding is necessary to produce numerical stability in analyses where all the boundaries of a multiphasic material are impermeable to ions. Several verification problems are presented that demonstrate the ability of the code to reproduce known or newly derived solutions: (1) the Kedem-Katchalsky model for osmotic loading of a cell; (2) Donnan osmotic swelling of a charged hydrated tissue; and (3) current flow in an electrolyte. Furthermore, the code is used to generate novel theoretical predictions of known experimental findings in biological tissues: (1) current-generated stress in articular cartilage and (2) the influence of salt cation charge number on the cartilage creep response. This generalized finite element framework for multiphasic materials makes it possible to model the mechanoelectrochemical behavior of biological tissues and cells and sets the stage for the future analysis of reactive mixtures to account for growth and remodeling.
Collapse
|