1
|
Jin C, Yu JM, Li R, Ye XJ. Regional biomechanical characterization of the spinal cord tissue: dynamic mechanical response. Front Bioeng Biotechnol 2024; 12:1439323. [PMID: 39219623 PMCID: PMC11361947 DOI: 10.3389/fbioe.2024.1439323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Characterizing the dynamic mechanical properties of spinal cord tissue is deemed important for developing a comprehensive knowledge of the mechanisms underlying spinal cord injury. However, complex viscoelastic properties are vastly underexplored due to the spinal cord shows heterogeneous properties. To investigate regional differences in the biomechanical properties of spinal cord, we provide a mechanical characterization method (i.e., dynamic mechanical analysis) that facilitates robust measurement of spinal cord ex vivo, at small deformations, in the dynamic regimes. Load-unload cycles were applied to the tissue surface at sinusoidal frequencies of 0.05, 0.10, 0.50 and 1.00 Hz ex vivo within 2 h post mortem. We report the main response features (e.g., nonlinearities, rate dependencies, hysteresis and conditioning) of spinal cord tissue dependent on anatomical origin, and quantify the viscoelastic properties through the measurement of peak force, moduli, and hysteresis and energy loss. For all three anatomical areas (cervical, thoracic, and lumbar spinal cord tissues), the compound, storage, and loss moduli responded similarly to increasing strain rates. Notably, the complex modulus values of ex vivo spinal cord tissue rose nonlinearly with rising test frequency. Additionally, at every strain rate, it was shown that the tissue in the thoracic spinal cord was significantly more rigid than the tissue in the cervical or lumbar spinal cord, with compound modulus values roughly 1.5-times that of the lumbar region. At strain rates between 0.05 and 0.50 Hz, tan δ values for thoracic (that is, 0.26, 0.25, 0.06, respectively) and lumbar (that is, 0.27, 0.25, 0.07, respectively) spinal cord regions were similar, respectively, which were higher than cervical (that is, 0.21, 0.21, 0.04, respectively) region. The conditioning effects tend to be greater at relative higher deformation rates. Interestingly, no marked difference of conditioning ratios is observed among all three anatomical regions, regardless of loading rate. These findings lay a foundation for further comparison between healthy and diseased spinal cord to the future development of spinal cord scaffold and helps to advance our knowledge of neuroscience.
Collapse
Affiliation(s)
- Chen Jin
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai, China
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang-ming Yu
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai, China
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ran Li
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiao-jian Ye
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai, China
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Stanners M, O'Riordan M, Theodosiou E, Souppez JBRG, Gardner A. The mechanical properties of the spinal cord: a systematic review. Spine J 2024; 24:1302-1312. [PMID: 38432298 DOI: 10.1016/j.spinee.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND CONTENT Spinal cord compression is a source of pathology routinely seen in clinical practice. However, there remain unanswered questions surrounding both the understanding of pathogenesis and the best method of treatment. This arises from limited real-life testing of the mechanical properties of the spinal cord, either through cadaveric human specimens or animal testing, both of which suffer from methodological, as well as ethical, issues. PURPOSE To conduct a review of the literature on the mechanical properties of the spinal cord. STUDY DESIGN/SETTING A systematic review of the literature on the mechanical properties of the spinal cord is undertaken. PATIENT SAMPLE All literature reporting the testing of the mechanical properties of the spinal cord. OUTCOME MEASURES Reported physiological mechanical properties of the spinal cord. METHODS The methodological quality of the studies has been assessed within the ARRIVE guidelines using the CAMARADES framework and SYRCLE's risk of bias tool. This paper details the methodologies and results of the reported testing. RESULTS We show that (1) the research quality of previous work does not follow published guidelines on animal treatment or risk of bias, (2) no standard protocol has been employed for sample preparation or mechanical testing, (3) this leads to a wide distribution of results for the tested mechanical properties, not applicable to the living human or animal, and (4) animal testing is not a good proxy for human application. CONCLUSIONS The findings summarize the sum of current knowledge inherent to the mechanical properties of the spinal cord and may contribute to the development of a physical model which is applicable to the living human for analysis and testing in a controlled and repeatable fashion. Such a model would be the basis for further clinical research to improve outcomes from spinal cord compression.
Collapse
Affiliation(s)
- Megan Stanners
- Aston Medical School, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | | | - Eirini Theodosiou
- Department of Chemical Engineering and Applied Chemistry, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Jean-Baptiste R G Souppez
- Department of Mechanical, Biomedical and Design Engineering, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Adrian Gardner
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK; The Royal Orthopaedic Hospital NHS Foundation Trust, Bristol Road South, Northfield, Birmingham, B31 2AP, UK.
| |
Collapse
|
3
|
Stanners M, O'Riordan M, Hartley L, Theodosiou E, Souppez JB, Gardner A. The mechanical properties of the spinal cord: a protocol for a systematic review of previous testing procedures and results. Syst Rev 2024; 13:56. [PMID: 38326889 PMCID: PMC10848440 DOI: 10.1186/s13643-023-02417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 12/05/2023] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Spinal cord compression is a pathology seen in routine clinical practice. However, there remain a number of unanswered questions around both the understanding of the pathogenesis and the best method of treatment of the condition. This is partly due to the issues of the real-life testing of the physical properties of the spinal cord, either through the use of cadaveric human specimens or through animal testing, both of which have methodological, as well as ethical, issues. DESIGN AND METHODS This paper details a protocol for a systematic review of the literature on the mechanical properties of the spinal cord. We will conduct a literature search of a number of electronic databases, along with the grey literature, as a single-stage search. All literature will be screened for appropriate studies which will then be reviewed fully to extract relevant information on the methodology and mechanics of the reported testing along with the results. Two reviewers will separately screen and extract the data, with a comparison of results to ensure concordance. Conflicts will be resolved through discussion and independent arbitration as required. The methodological quality of the studies will be assessed within the ARRIVE guidelines using the CAMARADES framework and SYRCLE risk of bias tool. A narrative synthesis will be created with the appropriate tables to describe the demographics and findings of the included studies. DISCUSSION The systematic review described here will form the basis of an understanding of the current literature around the physical properties of the spinal cord. This will allow future work to develop a physical model of the spinal cord, which is translatable to patients for analysis and testing in a controlled and repeatable fashion. Such a model would be the basis for further clinical research to improve outcomes from this condition. TRIAL REGISTRATION Prospero registration number: CRD42022361933.
Collapse
Affiliation(s)
| | | | - Laura Hartley
- The Royal Orthopaedic Hospital NHS Foundation Trust, Bristol Road South, Northfield, Birmingham, B31 2AP, UK
| | | | | | - Adrian Gardner
- Aston University, Aston Street, Birmingham, B4 7ET, UK.
- The Royal Orthopaedic Hospital NHS Foundation Trust, Bristol Road South, Northfield, Birmingham, B31 2AP, UK.
| |
Collapse
|
4
|
Dynamic changes in mechanical properties of the adult rat spinal cord after injury. Acta Biomater 2023; 155:436-448. [PMID: 36435440 DOI: 10.1016/j.actbio.2022.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/06/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Spinal cord injury (SCI), a debilitating medical condition that can cause irreversible loss of neurons and permanent paralysis, currently has no cure. However, regenerative medicine may offer a promising treatment. Given that numerous regenerative strategies aim to deliver cells and materials in the form of tissue-engineered therapies, understanding and characterising the mechanical properties of the spinal cord tissue is very important. In this study, we have systematically characterised the spatiotemporal changes in elastic stiffness (elastic modulus, Pa) and viscosity (drop in peak force, %) of injured rat thoracic spinal cord tissues at distinct time points after crush injury using the indentation technique. Our results demonstrate that in comparison with uninjured spinal cord tissue, the injured tissues exhibited lower stiffness (median 3281 Pa versus 9632 Pa; P < 0.001) but demonstrated elevated viscosity (median 80% versus 57%; P < 0.001) at 3 days postinjury. Between 4 and 6 weeks after SCI, the overall viscoelastic properties of injured tissues returned to baseline values. At 12 weeks after SCI, in comparison with uninjured tissue, the injured spinal cord tissues displayed a significant increase in both elasticity (median 13698 Pa versus 9920 Pa; P < 0.001) and viscosity (median 64% versus 58%; P < 0.001). This work constitutes the first quantitative mapping of spatiotemporal changes in spinal cord tissue elasticity and viscosity in injured rats, providing a mechanical basis of the tissue for future studies on the development of biomaterials for SCI repair. STATEMENT OF SIGNIFICANCE: Spinal cord injury (SCI) is a devastating disease often leading to permanent paralysis. While enormous progress in understanding the molecular pathomechanisms of SCI has been made, the mechanical properties of injured spinal cord tissue have received considerably less attention. This study provides systematic characterization of the biomechanical evolution of rat spinal cord tissue after SCI using a microindentation test method. We find spinal cord tissue behaves significantly softer but more viscous immediately postinjury. As time passes, the lesion site gradually returns to baseline values and then displays pronounced increased viscoelastic properties. As host tissue mechanical properties are a crucial consideration for any biomaterial implanted into central nervous system, our results may have important implications for further studies of SCI repair.
Collapse
|
5
|
Kampanis V, Tolou-Dabbaghian B, Zhou L, Roth W, Puttagunta R. Cyclic Stretch of Either PNS or CNS Located Nerves Can Stimulate Neurite Outgrowth. Cells 2020; 10:cells10010032. [PMID: 33379276 PMCID: PMC7824691 DOI: 10.3390/cells10010032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
The central nervous system (CNS) does not recover from traumatic axonal injury, but the peripheral nervous system (PNS) does. We hypothesize that this fundamental difference in regenerative capacity may be based upon the absence of stimulatory mechanical forces in the CNS due to the protective rigidity of the vertebral column and skull. We developed a bioreactor to apply low-strain cyclic axonal stretch to adult rat dorsal root ganglia (DRG) connected to either the peripheral or central nerves in an explant model for inducing axonal growth. In response, larger diameter DRG neurons, mechanoreceptors and proprioceptors showed enhanced neurite outgrowth as well as increased Activating Transcription Factor 3 (ATF3).
Collapse
Affiliation(s)
- Vasileios Kampanis
- Laboratory for Experimental Neuroregeneration, Spinal Cord Injury Center, Heidelberg University Hospital, 69118 Heidelberg, Germany; (V.K.); (B.T.-D.)
| | - Bahardokht Tolou-Dabbaghian
- Laboratory for Experimental Neuroregeneration, Spinal Cord Injury Center, Heidelberg University Hospital, 69118 Heidelberg, Germany; (V.K.); (B.T.-D.)
| | - Luming Zhou
- Laboratory of NeuroRegeneration and Repair, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany;
| | - Wolfgang Roth
- Laboratory for Experimental Neurorehabilitation, Heidelberg University Hospital, 69118 Heidelberg, Germany;
| | - Radhika Puttagunta
- Laboratory for Experimental Neuroregeneration, Spinal Cord Injury Center, Heidelberg University Hospital, 69118 Heidelberg, Germany; (V.K.); (B.T.-D.)
- Correspondence:
| |
Collapse
|
6
|
Bartlett RD, Choi D, Phillips JB. Biomechanical properties of the spinal cord: implications for tissue engineering and clinical translation. Regen Med 2016; 11:659-73. [DOI: 10.2217/rme-2016-0065] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Spinal cord injury is a severely debilitating condition which can leave individuals paralyzed and suffering from autonomic dysfunction. Regenerative medicine may offer a promising solution to this problem. Previous research has focused primarily on exploring the cellular and biological aspects of the spinal cord, yet relatively little remains known about the biomechanical properties of spinal cord tissue. Given that a number of regenerative strategies aim to deliver cells and materials in the form of tissue-engineered therapies, understanding the biomechanical properties of host spinal cord tissue is important. We review the relevant biomechanical properties of spinal cord tissue and provide the baseline knowledge required to apply these important physical concepts to spinal cord tissue engineering.
Collapse
Affiliation(s)
- Richard D Bartlett
- Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
- Brain Repair & Rehabilitation, Institute of Neurology, University College London, London, UK
| | - David Choi
- Brain Repair & Rehabilitation, Institute of Neurology, University College London, London, UK
| | - James B Phillips
- Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| |
Collapse
|
7
|
Jannesar S, Nadler B, Sparrey CJ. The Transverse Isotropy of Spinal Cord White Matter Under Dynamic Load. J Biomech Eng 2016; 138:2536524. [DOI: 10.1115/1.4034171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Indexed: 01/31/2023]
Abstract
The rostral-caudally aligned fiber-reinforced structure of spinal cord white matter (WM) gives rise to transverse isotropy in the material. Stress and strain patterns generated in the spinal cord parenchyma following spinal cord injury (SCI) are multidirectional and dependent on the mechanism of the injury. Our objective was to develop a WM constitutive model that captures the material transverse isotropy under dynamic loading. The WM mechanical behavior was extracted from the published tensile and compressive experiments. Combinations of isotropic and fiber-reinforcing models were examined in a conditional quasi-linear viscoelastic (QLV) formulation to capture the WM mechanical behavior. The effect of WM transverse isotropy on SCI model outcomes was evaluated by simulating a nonhuman primate (NHP) contusion injury experiment. A second-order reduced polynomial hyperelastic energy potential conditionally combined with a quadratic reinforcing function in a four-term Prony series QLV model best captured the WM mechanical behavior (0.89 < R2 < 0.99). WM isotropic and transversely isotropic material models combined with discrete modeling of the pia mater resulted in peak impact forces that matched the experimental outcomes. The transversely isotropic WM with discrete pia mater resulted in maximum principal strain (MPS) distributions which effectively captured the combination of ipsilateral peripheral WM sparing, ipsilateral injury and contralateral sparing, and the rostral/caudal spread of damage observed in in vivo injuries. The results suggest that the WM transverse isotropy could have an important role in correlating tissue damage with mechanical measures and explaining the directional sensitivity of the spinal cord to injury.
Collapse
Affiliation(s)
- Shervin Jannesar
- Department of Mechatronic Systems Engineering, Simon Fraser University, 250-13450 102 Avenue, Surrey, BC V3T 0A3, Canada e-mail:
| | - Ben Nadler
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada e-mail:
| | - Carolyn J. Sparrey
- Department of Mechatronic Systems Engineering, Simon Fraser University, 250-13450 102 Avenue, Surrey, BC V3T 0A3, Canada
- International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada e-mail:
| |
Collapse
|
8
|
Koser DE, Moeendarbary E, Hanne J, Kuerten S, Franze K. CNS cell distribution and axon orientation determine local spinal cord mechanical properties. Biophys J 2016; 108:2137-47. [PMID: 25954872 PMCID: PMC4423070 DOI: 10.1016/j.bpj.2015.03.039] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/03/2015] [Accepted: 03/10/2015] [Indexed: 11/10/2022] Open
Abstract
Mechanical signaling plays an important role in cell physiology and pathology. Many cell types, including neurons and glial cells, respond to the mechanical properties of their environment. Yet, for spinal cord tissue, data on tissue stiffness are sparse. To investigate the regional and direction-dependent mechanical properties of spinal cord tissue at a spatial resolution relevant to individual cells, we conducted atomic force microscopy (AFM) indentation and tensile measurements on acutely isolated mouse spinal cord tissue sectioned along the three major anatomical planes, and correlated local mechanical properties with the underlying cellular structures. Stiffness maps revealed that gray matter is significantly stiffer than white matter irrespective of directionality (transverse, coronal, and sagittal planes) and force direction (compression or tension) (Kg= ∼130 Pa vs. Kw= ∼70 Pa); both matters stiffened with increasing strain. When all data were pooled for each plane, gray matter behaved like an isotropic material under compression; however, subregions of the gray matter were rather heterogeneous and anisotropic. For example, in sagittal sections the dorsal horn was significantly stiffer than the ventral horn. In contrast, white matter behaved transversely isotropic, with the elastic stiffness along the craniocaudal (i.e., longitudinal) axis being lower than perpendicular to it. The stiffness distributions we found under compression strongly correlated with the orientation of axons, the areas of cell nuclei, and cellular in plane proximity. Based on these morphological parameters, we developed a phenomenological model to estimate local mechanical properties of central nervous system (CNS) tissue. Our study may thus ultimately help predicting local tissue stiffness, and hence cell behavior in response to mechanical signaling under physiological and pathological conditions, purely based on histological data.
Collapse
Affiliation(s)
- David E Koser
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; Department of Anatomy I, University of Cologne, Cologne, Germany
| | - Emad Moeendarbary
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Janina Hanne
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Stefanie Kuerten
- Department of Anatomy I, University of Cologne, Cologne, Germany; Department of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
9
|
Bober BG, Shah SB. Paclitaxel alters sensory nerve biomechanical properties. J Biomech 2015; 48:3559-67. [PMID: 26321364 DOI: 10.1016/j.jbiomech.2015.07.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/14/2015] [Accepted: 07/18/2015] [Indexed: 11/16/2022]
Abstract
Paclitaxel is an effective chemotherapeutic that, despite its common use, frequently causes debilitating peripheral sensory neuropathy. Paclitaxel binds to and stabilizes microtubules, and through unknown mechanisms, causes abnormal microtubule aggregation. Given that microtubules contribute to the mechanical properties of cells, we tested the hypothesis that paclitaxel treatment would alter the stiffness of sensory nerves. Rat sural nerves were excised and soaked in Ringer's solution with or without paclitaxel. Nerves were secured between a force transducer and actuator, and linearly strained. Stress-strain curves were generated, from which elastic moduli were calculated. Paclitaxel treated nerves exhibited significantly higher moduli in both linear and transition regions of the curve. A composite-tissue model was then generated to estimate the stiffness increase in the cellular fraction of the nerve following paclitaxel treatment. This model was supported experimentally by data on mechanical properties of sural nerves stripped of their epineurium, and area fractions of the cellular and connective tissue components of the rat sural nerve, calculated from immunohistochemical images. Model results revealed that the cellular components of the nerve must stiffen 12x to 115x, depending on the initial axonal modulus assumed, in order to achieve the observed tissue level mechanical changes. Consistent with such an increase, electron microscopy showed increased microtubule aggregation and cytoskeletal packing, suggestive of a more cross-linked cytoskeleton. Overall, our data suggests that paclitaxel treatment induces increased microtubule bundling in axons, which leads to alterations in tissue-level mechanical properties.
Collapse
Affiliation(s)
- Brian G Bober
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Sameer B Shah
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA; Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|