1
|
Sun YD, Wu SQ, Wang Z, Zhao ZM, An Y. A Safe Technique for Excising the Perpendicular Plate of the Ethmoid Bone in Patients with Crooked Nose: A Finite Element Analysis. Aesthetic Plast Surg 2024; 48:1084-1093. [PMID: 37932507 DOI: 10.1007/s00266-023-03712-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Correction of the crooked nose, especially the perpendicular plate of the ethmoid bone, has the potential to cause skull base injury. At present, the safe and effective method for perpendicular plate resection has not been clearly defined through biomechanics. METHOD CT scan data of 48 patients with crooked nose and deviated nasal septum were divided into C-type, angular deformity-type, and S-type based on the morphology of the 3D model. Different types of finite element models of the nasal bony septum and skull base were established. The osteotomy depth, angle, and force mode of the PPE resection were simulated by assembling different working conditions for the models. The von Mises stress of the anterior cranial fossa was observed. RESULTS When the osteotomy line length was 0.5 cm, the angle was at 30° to the Frankfurt plane, and 50 N·mm torque was applied, the von Mises stress of the skull base was minimal in the four models, showing 0.049 MPa (C-type), 0.082 MPa (S-type), 0.128 MPa (angular deformity-type), and 0.021 MPa (control model). The maximum von Mises stress values were found at the skull base when the osteotomy line was 1.5 cm, the angle was 50°, and the force was 10 N along the X-axis, showing 0.349 MPa (C-type), 0.698 MPa (S-type), 0.451 MPa (angular deformity-type), and 0.149 MPa (control model). CONCLUSION The use of smaller resection angle with the Frankfurt plane, conservative resection depth, and torsion force can better reduce the stress value at the skull base and reduce the risk of basicranial fracture. It is a safe and effective technique for perpendicular plate resection of the ethmoid bone in the correction of crooked nose. LEVEL OF EVIDENCE IV This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Yi-Dan Sun
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Si-Qiao Wu
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Zheng Wang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Zhen-Min Zhao
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China.
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
2
|
Breakthrough of extracellular vesicles in pathogenesis, diagnosis and treatment of osteoarthritis. Bioact Mater 2022; 22:423-452. [PMID: 36311050 PMCID: PMC9588998 DOI: 10.1016/j.bioactmat.2022.10.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoarthritis (OA) is a highly prevalent whole-joint disease that causes disability and pain and affects a patient's quality of life. However, currently, there is a lack of effective early diagnosis and treatment. Although stem cells can promote cartilage repair and treat OA, problems such as immune rejection and tumorigenicity persist. Extracellular vesicles (EVs) can transmit genetic information from donor cells and mediate intercellular communication, which is considered a functional paracrine factor of stem cells. Increasing evidences suggest that EVs may play an essential and complex role in the pathogenesis, diagnosis, and treatment of OA. Here, we introduced the role of EVs in OA progression by influencing inflammation, metabolism, and aging. Next, we discussed EVs from the blood, synovial fluid, and joint-related cells for diagnosis. Moreover, we outlined the potential of modified and unmodified EVs and their combination with biomaterials for OA therapy. Finally, we discuss the deficiencies and put forward the prospects and challenges related to the application of EVs in the field of OA.
Collapse
|
3
|
Baddam P, Bayona-Rodriguez F, Campbell SM, El-Hakim H, Graf D. Properties of the Nasal Cartilage, from Development to Adulthood: A Scoping Review. Cartilage 2022; 13:19476035221087696. [PMID: 35345900 PMCID: PMC9137313 DOI: 10.1177/19476035221087696] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/29/2022] [Accepted: 01/21/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE Nasal septum cartilage is a hyaline cartilage that provides structural support to the nasal cavity and midface. Currently, information on its cellular and mechanical properties is widely dispersed and has often been inferred from studies conducted on other cartilage types such as the knee. A detailed understanding of nasal cartilage properties is important for several biological, clinical, and engineering disciplines. The objectives of this scoping review are to (1) consolidate actual existing knowledge on nasal cartilage properties and (2) identify gaps of knowledge and research questions requiring future investigations. DESIGN This scoping review incorporated articles identified using PROSPERO, Cochrane Library (CDSR and Central), WOS BIOSIS, WOS Core Collection, and ProQuest Dissertations and Theses Global databases. Following the screening process, 86 articles were considered. Articles were categorized into three groups: growth, extracellular matrix, and mechanical properties. RESULTS Most articles investigated growth properties followed by extracellular matrix and mechanical properties. NSC cartilage is not uniform. Nasal cartilage growth varies with age and location. Similarly, extracellular matrix composition and mechanical properties are location-specific within the NSC. Moreover, most articles included in the review investigate these properties in isolation and only very few articles demonstrate the interrelationship between multiple cartilage properties. CONCLUSIONS This scoping review presents a first comprehensive description of research on NSC properties with a focus on NSC growth, extracellular matrix and mechanical properties. It additionally identifies the needs (1) to understand how these various cartilage properties intersect and (2) for more granular, standardized assessment protocols to describe NSC.
Collapse
Affiliation(s)
- Pranidhi Baddam
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
| | | | - Sandra M. Campbell
- John W. Scott Health Sciences Library, University of Alberta, Edmonton, AB, Canada
| | - Hamdy El-Hakim
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Daniel Graf
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
4
|
Liao Q, Li BJ, Li Y, Xiao Y, Zeng H, Liu JM, Yuan LX, Liu G. Low-intensity pulsed ultrasound promotes osteoarthritic cartilage regeneration by BMSC-derived exosomes via modulating the NF-κB signaling pathway. Int Immunopharmacol 2021; 97:107824. [PMID: 34102487 DOI: 10.1016/j.intimp.2021.107824] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022]
Abstract
Osteoarthritis is the most common disabling joint disease throughout the world, and the effect of therapy on its course is still unsatisfactory in clinical practice. Recent studies have shown that mesenchymal stem cell (MSC)-derived exosomes can promote cartilage repair and regeneration in osteoarthritis, indicating that these exosomes could be a novel and promising strategy for treating osteoarthritis. This study investigated whether low-intensity pulsed ultrasound (LIPUS) enhances the effects of bone marrow MSC (BMSC)-derived exosomes on cartilage regeneration in osteoarthritis and examined the underlying mechanism. Our results revealed that BMSC-derived exosomes display the typical morphological features of exosomes. LIPUS-mediated BMSC-derived exosomes promoted cartilage regeneration, increased chondrocyte proliferation and extracellular matrix synthesis, suppressed inflammation, and inhibited the interleukin (IL)-1β-induced activation of the nuclear factor kappa B (NF-κB) pathway. In brief, LIPUS enhances the promoting effects of BMSC-derived exosomes on osteoarthritic cartilage regeneration, mainly by strengthening the inhibition of inflammation and further enhancing chondrocyte proliferation and cartilage matrix synthesis. The underlying mechanism could be related to the inhibition of the IL-1β-induced activation of the NF-κB pathway.
Collapse
Affiliation(s)
- Qing Liao
- Department of Rehabilitation Medicine, the Third Affiliated Hospital of Southern Medical University, Guangzhou 510000, China; Department of Rehabilitation Medicine, Shunde Hospital of Southern Medical University, Foshan 528000, China
| | - Bao Jian Li
- Department of Rehabilitation Medicine, the Third Affiliated Hospital of Southern Medical University, Guangzhou 510000, China
| | - Yang Li
- Department of Rehabilitation Medicine, the Third Affiliated Hospital of Southern Medical University, Guangzhou 510000, China
| | - Yu Xiao
- Department of Rehabilitation Medicine, the Third Affiliated Hospital of Southern Medical University, Guangzhou 510000, China
| | - Hui Zeng
- Department of Rehabilitation Medicine, the Third Affiliated Hospital of Southern Medical University, Guangzhou 510000, China
| | - Jie Mei Liu
- Department of Rehabilitation Medicine, Shunde Hospital of Southern Medical University, Foshan 528000, China
| | - Li Xia Yuan
- Southern Medical University, Guangzhou 510000, China.
| | - Gang Liu
- Department of Rehabilitation Medicine, Shunde Hospital of Southern Medical University, Foshan 528000, China; Department of Rehabilitation Medicine, Nanfang Hospital of Southern Medical University, Guangzhou 510000, China.
| |
Collapse
|
5
|
Functional morphology of the jaw adductor muscles in the Canidae. Anat Rec (Hoboken) 2020; 303:2878-2903. [DOI: 10.1002/ar.24391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/18/2020] [Accepted: 01/25/2020] [Indexed: 12/17/2022]
|
6
|
Chang B, Reighard C, Flanagan C, Hollister S, Zopf D. Evaluation of human nasal cartilage nonlinear and rate dependent mechanical properties. J Biomech 2019; 100:109549. [PMID: 31926590 DOI: 10.1016/j.jbiomech.2019.109549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 11/25/2022]
Abstract
Nasal reconstruction frequently requires donor cartilage and tissue, and ideally, donor tissue will closely emulate native nasal cartilage mechanics. Tissue engineering scaffolds, especially 3D printed scaffolds, have been proposed for nasal reconstruction, and the success of these constructs may depend on how well scaffolds reflect native nasal cartilage mechanical properties. Therefore, consistent and comprehensive characterization of native nasal cartilage mechanical properties is a foundation for nasal cartilage tissue engineering and reconstruction in general by providing design targets for reconstructive materials. Our group has previously shown the feasibility of producing scaffolds with porous architecture permitting chondrocyte growth and cartilage production. In this study, we determined the nonlinear and stress relaxation behavior of human nasal cartilage under unconfined compression. We then fit this experimental data to nonlinear elastic, nonlinear viscoelastic and nonlinear biphasic constitutive models. The resulting coefficients will provide design targets for nasal reconstruction and scaffold design as well as outcome measures for assessment of tissue engineered nasal cartilage.
Collapse
Affiliation(s)
- Brian Chang
- University of Michigan Medical School, 1500 East Hospital Drive, Ann Arbor, MI 48109, USA
| | - Chelsea Reighard
- University of Michigan Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, 1000 Wall Street, Ann Arbor, MI 48105, USA
| | - Colleen Flanagan
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd., Ann Arbor, MI 48109, USA
| | - Scott Hollister
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, GA 30332, USA.
| | - David Zopf
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd., Ann Arbor, MI 48109, USA; Department of Otolaryngology - Head and Neck Surgery, CS Mott Children's Hospital, 1540 East Hospital Drive, Ann Arbor, MI 48109, USA.
| |
Collapse
|
7
|
Danso EK, Julkunen P, Korhonen RK. Poisson's ratio of bovine meniscus determined combining unconfined and confined compression. J Biomech 2018; 77:233-237. [PMID: 30055840 DOI: 10.1016/j.jbiomech.2018.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 11/18/2022]
Abstract
Poisson's ratio has not been experimentally measured earlier for meniscus in compression. It is however an important intrinsic material property needed in biomechanical analysis and computational models. In this study, equilibrium Poisson's ratio of bovine meniscus (n = 6) was determined experimentally by combining stress-relaxation measurements in unconfined and confined compression geometries. The average Young's modulus, aggregate modulus and Poisson's ratio were 0.182 ± 0.086 MPa, 0.252 ± 0.089 MPa and 0.316 ± 0.040, respectively. These moduli are consistent with previously determined values, but the Poisson's ratio is higher than determined earlier for meniscus in compression through biomechanical modelling analysis. This new experimentally determined Poisson's ratio value could be used in the analysis of biomechanical data as well as in computational finite element analysis when the Poisson's ratio is needed as an input for the analysis.
Collapse
Affiliation(s)
- E K Danso
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA; Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211 Kuopio, Finland.
| | - P Julkunen
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211 Kuopio, Finland; Department of Clinical Neurophysiology, Kuopio University Hospital, POB 100, FI-70029, KYS, Kuopio, Finland
| | - R K Korhonen
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
8
|
Jones MEH, Gröning F, Dutel H, Sharp A, Fagan MJ, Evans SE. The biomechanical role of the chondrocranium and sutures in a lizard cranium. J R Soc Interface 2017; 14:20170637. [PMID: 29263126 PMCID: PMC5746569 DOI: 10.1098/rsif.2017.0637] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/28/2017] [Indexed: 11/30/2022] Open
Abstract
The role of soft tissues in skull biomechanics remains poorly understood. Not least, the chondrocranium, the portion of the braincase which persists as cartilage with varying degrees of mineralization. It also remains commonplace to overlook the biomechanical role of sutures despite evidence that they alter strain distribution. Here, we examine the role of both the sutures and the chondrocranium in the South American tegu lizard Salvator merianae We use multi-body dynamics analysis (MDA) to provide realistic loading conditions for anterior and posterior unilateral biting and a detailed finite element model to examine strain magnitude and distribution. We find that strains within the chondrocranium are greatest during anterior biting and are primarily tensile; also that strain within the cranium is not greatly reduced by the presence of the chondrocranium unless it is given the same material properties as bone. This result contradicts previous suggestions that the anterior portion (the nasal septum) acts as a supporting structure. Inclusion of sutures to the cranium model not only increases overall strain magnitudes but also leads to a more complex distribution of tension and compression rather than that of a beam under sagittal bending.
Collapse
Affiliation(s)
- Marc E H Jones
- School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
- South Australian Museum, North Terrace, Adelaide, South Australia 5001, Australia
| | - Flora Gröning
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Hugo Dutel
- School of Engineering and Computer Science, Medical and Biological Engineering Research Group, University of Hull, Hull HU6 7RX, UK
| | - Alana Sharp
- Research Department of Cell and Developmental Biology, UCL, University College London, Anatomy Building, Gower Street, London WCIE 6BT, UK
| | - Michael J Fagan
- School of Engineering and Computer Science, Medical and Biological Engineering Research Group, University of Hull, Hull HU6 7RX, UK
| | - Susan E Evans
- Research Department of Cell and Developmental Biology, UCL, University College London, Anatomy Building, Gower Street, London WCIE 6BT, UK
| |
Collapse
|
9
|
Salgado M, Rodríguez-Rojo S, Reis RL, Cocero MJ, Duarte ARC. Preparation of barley and yeast β-glucan scaffolds by hydrogel foaming: Evaluation of dexamethasone release. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2017.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Chondro-protective effects of low intensity pulsed ultrasound. Osteoarthritis Cartilage 2016; 24:1989-1998. [PMID: 27364595 PMCID: PMC5071131 DOI: 10.1016/j.joca.2016.06.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/26/2016] [Accepted: 06/13/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Cartilage is a highly mechano-responsive tissue. Chondrocytes undergo a series of complex changes, including proliferation and metabolic alteration as the target of external biomechanical and biochemical stimuli. IL-1β is known to regulate chondrocyte metabolism and plays an important role in the pathogenesis of osteoarthritis (OA). The objective of this study was to employ low-intensity pulsed ultrasound (LIPUS) as a localized mechanical stimulus and assess its effects on chondrocyte migration, proliferation, metabolism, and differentiation, as well as its ability to suppress IL-1β mediated catabolism in cartilage. METHODS Human cartilage explants and chondrocytes were stimulated by LIPUS in the presence and absence of IL-1β to asses cartilage degradation, chondrocytes metabolism, migration, and proliferation. Western blot analyses were conducted to study IL-1β the associated NFκB pathway in chondrocytes. RESULTS LIPUS stimulation increased the proteoglycan content in human cartilage explants and inhibited IL-1β induced loss of proteoglycans. LIPUS stimulation increased rates of chondrocyte migration and proliferation, and promoted chondrogenesis in mesenchymal stem cells (MSC). Further, LIPUS suppressed IL-1β induced activation of phosphorylation of NFκB-p65 and IĸBα leading to reduced expression of MMP13 and ADAMT5 in chondrocytes. CONCLUSIONS Collectively, these data demonstrate the potential therapeutic effects of LIPUS in preventing cartilage degradation and treating OA via a mechanical stimulation that inhibits the catabolic action of IL-1β and stimulates chondrocyte migration, proliferation, and differentiation.
Collapse
|
11
|
Griffin MF, Premakumar Y, Seifalian AM, Szarko M, Butler PEM. Biomechanical characterisation of the human nasal cartilages; implications for tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:11. [PMID: 26676857 PMCID: PMC4681753 DOI: 10.1007/s10856-015-5619-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 11/04/2015] [Indexed: 05/16/2023]
Abstract
Nasal reconstruction is currently performed using autologous grafts provides but is limited by donor site morbidity, tissue availability and potentially graft failure. Additionally, current alternative alloplastic materials are limited by their high extrusion and infection rates. Matching mechanical properties of synthetic materials to the native tissue they are replacing has shown to be important in the biocompatibility of implants. To date the mechanical properties of the human nasal cartilages has not been studied in depth to be able to create tissue-engineered replacements with similar mechanical properties to native tissue. The young's modulus was characterized in compression on fresh-frozen human cadaveric septal, alar, and lateral cartilage. Due to the functional differences experienced by the various aspects of the septal cartilage, 16 regions were evaluated with an average elastic modulus of 2.72 ± 0.63 MPa. Furthermore, the posterior septum was found to be significantly stiffer than the anterior septum (p < 0.01). The medial and lateral alar cartilages were tested at four points with an elastic modulus ranging from 2.09 ± 0.81 MPa, with no significant difference between the cartilages (p < 0.78). The lateral cartilage was tested once in all cadavers with an average elastic modulus of 0.98 ± 0.29 MPa. In conclusion, this study provides new information on the compressive mechanical properties of the human nasal cartilage, allowing surgeons to have a better understanding of the difference between the mechanical properties of the individual nasal cartilages. This study has provided a reference, by which tissue-engineered should be developed for effective cartilage replacements for nasal reconstruction.
Collapse
Affiliation(s)
- M F Griffin
- Centre for Nanotechnology & Regenerative Medicine, UCL Division of Surgery & Interventional Science, University College London, London, UK.
| | - Y Premakumar
- Anatomical Sciences, Institute for Medical and Biomedical Education, St. George's, University of London, London, UK
| | - A M Seifalian
- Centre for Nanotechnology & Regenerative Medicine, UCL Division of Surgery & Interventional Science, University College London, London, UK
| | - M Szarko
- Anatomical Sciences, Institute for Medical and Biomedical Education, St. George's, University of London, London, UK.
| | - P E M Butler
- Centre for Nanotechnology & Regenerative Medicine, UCL Division of Surgery & Interventional Science, University College London, London, UK
- Department of Plastic and Reconstructive Surgery, Royal Free Hampstead NHS Trust Hospital, London, UK
| |
Collapse
|
12
|
Correro-Shahgaldian MR, Introvigne J, Ghayor C, Weber FE, Gallo LM, Colombo V. Properties and Mechanobiological Behavior of Bovine Nasal Septum Cartilage. Ann Biomed Eng 2015; 44:1821-31. [PMID: 26502171 DOI: 10.1007/s10439-015-1481-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 10/03/2015] [Indexed: 12/23/2022]
Abstract
Bovine nasal septum (BNS) is a source of non-load bearing hyaline cartilage. Little information is available on its mechanical and biological properties. The aim of this work was to assess the characteristics of BNS cartilage and investigate its behavior in in vitro mechanobiological experiments. Mechanical tests, biochemical assays, and microscopic assessment were performed for tissue characterization. Compressions tests showed that the tissue is viscoelastic, although values of elastic moduli differ from the ones of other cartilaginous tissues. Water content was 78 ± 1.4%; glycosaminoglycans and collagen contents-measured by spectrophotometric assay and hydroxyproline assay-were 39 ± 5% and 25 ± 2.5% of dry weight, respectively. Goldner's Trichrome staining and transmission electron microscopy proved isotropic cells distribution and results of earlier cell division. Furthermore, gene expression was measured after uniaxial compression, showing variations depending on compression time as well as trends depending on equilibration time. In conclusion, BNS has been characterized at several levels, revealing that bovine nasal tissue is regionally homogeneous. Results suggest that, under certain conditions, BNS could be used to perform in vitro cartilage loading experiments.
Collapse
Affiliation(s)
- Maria Rita Correro-Shahgaldian
- Clinic for Masticatory Disorders, Removable Prosthodontics and Special Care, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland.,Oral Biotechnology & Bioengineering, Department of Cranio-Maxillofacial Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Jasmin Introvigne
- Clinic for Masticatory Disorders, Removable Prosthodontics and Special Care, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland
| | - Chafik Ghayor
- Oral Biotechnology & Bioengineering, Department of Cranio-Maxillofacial Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Franz E Weber
- Oral Biotechnology & Bioengineering, Department of Cranio-Maxillofacial Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Luigi M Gallo
- Clinic for Masticatory Disorders, Removable Prosthodontics and Special Care, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland
| | - Vera Colombo
- Clinic for Masticatory Disorders, Removable Prosthodontics and Special Care, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland.
| |
Collapse
|
13
|
Schätti OR, Marková M, Torzilli PA, Gallo LM. Mechanical Loading of Cartilage Explants with Compression and Sliding Motion Modulates Gene Expression of Lubricin and Catabolic Enzymes. Cartilage 2015; 6:185-93. [PMID: 26175864 PMCID: PMC4481391 DOI: 10.1177/1947603515581680] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE Translation of the contact zone in articulating joints is an important component of joint kinematics, yet rarely investigated in a biological context. This study was designed to investigate how sliding contact areas affect cartilage mechanobiology. We hypothesized that higher sliding speeds would lead to increased extracellular matrix mechanical stress and the expression of catabolic genes. DESIGN A cylindrical Teflon indenter was used to apply 50 or 100 N normal forces at 10, 40, or 70 mm/s sliding speed. Mechanical parameters were correlated with gene expressions using a multiple linear regression model. RESULTS In both loading groups there was no significant effect of sliding speed on any of the mechanical parameters (strain, stress, modulus, tangential force). However, an increase in vertical force (from 50 to 100 N) led to a significant increase in extracellular matrix strain and stress. For 100 N, significant correlations between gene expression and mechanical parameters were found for TIMP-3 (r(2) = 0.89), ADAMTS-5 (r(2) = 0.73), and lubricin (r(2) = 0.73). CONCLUSIONS The sliding speeds applied do not have an effect on the mechanical response of the cartilage, this could be explained by a partial attainment of the "elastic limit" at and above a sliding speed of 10 mm/s. Nevertheless, we still found a relationship between sliding speed and gene expression when the tissue was loaded with 100 N normal force. Thus despite the absence of speed-dependent mechanical changes (strain, stress, modulus, tangential force), the sliding speed had an influence on gene expression.
Collapse
Affiliation(s)
- Oliver R. Schätti
- Laboratory of Physiology and Biomechanics of the Masticatory System, Center for Oral Medicine, Dental and Maxillo-Facial Surgery, University of Zurich, Plattenstrasse, Zurich, Switzerland,Institute for Biomechanics, Swiss Federal Institute of Technology, ETH Zentrum, Zurich, Switzerland,Laboratory for Soft Tissue Research, Hospital for Special Surgery, New York, NY, USA
| | - Michala Marková
- Laboratory of Physiology and Biomechanics of the Masticatory System, Center for Oral Medicine, Dental and Maxillo-Facial Surgery, University of Zurich, Plattenstrasse, Zurich, Switzerland,Laboratory of Biomechanics, Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Czech Republic
| | - Peter A. Torzilli
- Laboratory for Soft Tissue Research, Hospital for Special Surgery, New York, NY, USA
| | - Luigi M. Gallo
- Laboratory of Physiology and Biomechanics of the Masticatory System, Center for Oral Medicine, Dental and Maxillo-Facial Surgery, University of Zurich, Plattenstrasse, Zurich, Switzerland
| |
Collapse
|
14
|
Correro-Shahgaldian MR, Ghayor C, Spencer ND, Weber FE, Gallo LM. A Model System of the Dynamic Loading Occurring in Synovial Joints: The Biological Effect of Plowing on Pristine Cartilage. Cells Tissues Organs 2015; 199:364-72. [DOI: 10.1159/000375294] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2015] [Indexed: 11/19/2022] Open
|