1
|
Brown NE, Ellerbe LR, Hollister SJ, Temenoff JS. Development and Characterization of Heparin-Containing Hydrogel/3D-Printed Scaffold Composites for Craniofacial Reconstruction. Ann Biomed Eng 2024; 52:2287-2307. [PMID: 38734845 DOI: 10.1007/s10439-024-03530-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Regeneration of cartilage and bone tissues remains challenging in tissue engineering due to their complex structures, and the need for both mechanical support and delivery of biological repair stimuli. Therefore, the goal of this study was to develop a composite scaffold platform for anatomic chondral and osteochondral repair using heparin-based hydrogels to deliver small molecules within 3D-printed porous scaffolds that provide structure, stiffness, and controlled biologic delivery. We designed a mold-injection system to combine hydrolytically degradable hydrogels and 3D-printed scaffolds that could be employed rapidly (< 30 min) in operating room settings (~23 °C). Micro-CT analysis demonstrated the effectiveness of our injection system through homogeneously distributed hydrogel within the pores of the scaffolds. Hydrogels and composite scaffolds exhibited efficient loading (~94%) of a small positively charged heparin-binding molecule (crystal violet) with sustained release over 14 days and showed high viability of encapsulated porcine chondrocytes over 7 days. Compression testing demonstrated nonlinear viscoelastic behavior where tangent stiffness decreased with scaffold porosity (porous scaffold tangent stiffness: 70%: 4.9 MPa, 80%: 1.5 MPa, and 90%: 0.20 MPa) but relaxation was not affected. Lower-porosity scaffolds (70%) showed stiffness similar to lower ranges of trabecular bone (4-8 MPa) while higher-porosity scaffolds (80% and 90%) showed stiffness similar to auricular cartilage (0.16-2 MPa). Ultimately, this rapid composite scaffold fabrication method may be employed in the operating room and utilized to control biologic delivery within load-bearing scaffolds.
Collapse
Affiliation(s)
- Nettie E Brown
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, 313 Ferst Dr, Atlanta, GA, 30332, USA
| | - Lela R Ellerbe
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, 313 Ferst Dr, Atlanta, GA, 30332, USA
| | - Scott J Hollister
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, 313 Ferst Dr, Atlanta, GA, 30332, USA.
| | - Johnna S Temenoff
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, 313 Ferst Dr, Atlanta, GA, 30332, USA.
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr, Atlanta, GA, 30332, USA.
| |
Collapse
|
2
|
Jovic TH, Nicholson T, Arora H, Nelson K, Doak SH, Whitaker IS. A comparative analysis of pulp-derived nanocelluloses for 3D bioprinting facial cartilages. Carbohydr Polym 2023; 321:121261. [PMID: 37739492 DOI: 10.1016/j.carbpol.2023.121261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 09/24/2023]
Abstract
Nanocelluloses have attracted significant interest in the field of bioprinting, with previous research outlining the value of nanocellulose fibrils and bacterial nanocelluloses for 3D bioprinting tissues such as cartilage. We have recently characterised three distinct structural formulations of pulp-derived nanocelluloses: fibrillar (NFC), crystalline (NCC) and blend (NCB), exhibiting variation in pore geometry and mechanical properties. In light of the characterisation of these three distinct entities, this study investigated whether these structural differences translated to differences in printability, chondrogenicity or biocompatibility for 3D bioprinting anatomical structures with human nasoseptal chondrocytes. Composite nanocellulose-alginate bioinks (75:25 v/v) of NFC, NCC and NCB were produced and tested for print resolution and fidelity. NFC offered superior print resolution whereas NCB demonstrated the best post-printing shape fidelity. Biologically, chondrogenicity was assessed using real time quantitative PCR, dimethylmethylene blue assays and histology. All biomaterials showed an increase in chondrogenic gene expression and extracellular matrix production over 21 days, but this was superior in the NCC bioink. Biocompatibility assessments revealed an increase in cell number and metabolism over 21 days in the NCC and NCB formulations. Nanocellulose augments printability and chondrogenicity of bioinks, of which the NCC and NCB formulations offer the best biological promise for bioprinting cartilage.
Collapse
Affiliation(s)
- Thomas H Jovic
- Reconstructive Surgery and Regenerative Medicine Research Centre, Institute of Life Sciences 1, Swansea University, SA2 8PP, UK; Welsh Centre for Burns & Plastic Surgery, Morriston Hospital, Swansea SA6 6NL, UK.
| | | | | | | | | | - Iain S Whitaker
- Reconstructive Surgery and Regenerative Medicine Research Centre, Institute of Life Sciences 1, Swansea University, SA2 8PP, UK; Welsh Centre for Burns & Plastic Surgery, Morriston Hospital, Swansea SA6 6NL, UK
| |
Collapse
|
3
|
Baldwin MC, Zarudnaya D, Liu ZJ, Herring SW. The nasal septum and midfacial growth. Anat Rec (Hoboken) 2023. [PMID: 36965023 DOI: 10.1002/ar.25214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/22/2023] [Accepted: 03/09/2023] [Indexed: 03/27/2023]
Abstract
The nasal septum is the only element of the chondrocranium which never completely ossifies. The persistence of this nonarticular cartilage has given rise to a variety of theories concerning cranial mechanics and growth of the midface. Previously, using pigs, we demonstrated that the septum is not a strut supporting the snout and that septal growth seems capable of stretching the overlying nasofrontal suture, a major contributor to snout elongation. Here we investigate whether abnormalities of the septum are implicated in cases of midfacial hypoplasia, in which growth of the midface is inadequate. Mild midfacial hypoplasia is common in domestic pig breeds and often severe in the Yucatan minipig, a popular laboratory breed. Normal-snouted and midfacial hypoplastic heads of standard (farm mixed breed) and minipigs ranging in age from perinatal to 12 months were dissected, imaged by CT, and/or prepared for histology. Even at birth, Yucatan minipigs with midfacial hypoplasia exhibited greater caudal ossification than normal; the ventral cartilaginous sphenoidal "tail" was diminished or missing. In addition, cells that morphologically appeared to have divided recently were less numerous than in newborn standard pigs. Juvenile Yucatan minipigs lacked caudal cartilaginous growth zones almost completely. In standard newborns, the ventral caudal septum was more replicative than the dorsal, but this trend was not seen in Yucatan newborns. In conclusion, accelerated maturation of the caudal septum was associated with midfacial hypoplasia, a further indication that the septum, particularly its ventral portion, is important for midfacial elongation.
Collapse
Affiliation(s)
- Michael C Baldwin
- Department of Oral Health Sciences, University of Washington, Box 357475, Seattle, Washington, 98195, USA
| | - Diana Zarudnaya
- Department of Oral Health Sciences, University of Washington, Box 357475, Seattle, Washington, 98195, USA
| | - Zi-Jun Liu
- Department of Orthodontics, University of Washington, Box 357446, Seattle, Washington, 98195, USA
| | - Susan W Herring
- Department of Orthodontics, University of Washington, Box 357446, Seattle, Washington, 98195, USA
| |
Collapse
|
4
|
Baddam P, Bayona-Rodriguez F, Campbell SM, El-Hakim H, Graf D. Properties of the Nasal Cartilage, from Development to Adulthood: A Scoping Review. Cartilage 2022; 13:19476035221087696. [PMID: 35345900 PMCID: PMC9137313 DOI: 10.1177/19476035221087696] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/29/2022] [Accepted: 01/21/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE Nasal septum cartilage is a hyaline cartilage that provides structural support to the nasal cavity and midface. Currently, information on its cellular and mechanical properties is widely dispersed and has often been inferred from studies conducted on other cartilage types such as the knee. A detailed understanding of nasal cartilage properties is important for several biological, clinical, and engineering disciplines. The objectives of this scoping review are to (1) consolidate actual existing knowledge on nasal cartilage properties and (2) identify gaps of knowledge and research questions requiring future investigations. DESIGN This scoping review incorporated articles identified using PROSPERO, Cochrane Library (CDSR and Central), WOS BIOSIS, WOS Core Collection, and ProQuest Dissertations and Theses Global databases. Following the screening process, 86 articles were considered. Articles were categorized into three groups: growth, extracellular matrix, and mechanical properties. RESULTS Most articles investigated growth properties followed by extracellular matrix and mechanical properties. NSC cartilage is not uniform. Nasal cartilage growth varies with age and location. Similarly, extracellular matrix composition and mechanical properties are location-specific within the NSC. Moreover, most articles included in the review investigate these properties in isolation and only very few articles demonstrate the interrelationship between multiple cartilage properties. CONCLUSIONS This scoping review presents a first comprehensive description of research on NSC properties with a focus on NSC growth, extracellular matrix and mechanical properties. It additionally identifies the needs (1) to understand how these various cartilage properties intersect and (2) for more granular, standardized assessment protocols to describe NSC.
Collapse
Affiliation(s)
- Pranidhi Baddam
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
| | | | - Sandra M. Campbell
- John W. Scott Health Sciences Library, University of Alberta, Edmonton, AB, Canada
| | - Hamdy El-Hakim
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Daniel Graf
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
5
|
Asnaghi MA, Power L, Barbero A, Haug M, Köppl R, Wendt D, Martin I. Biomarker Signatures of Quality for Engineering Nasal Chondrocyte-Derived Cartilage. Front Bioeng Biotechnol 2020; 8:283. [PMID: 32318561 PMCID: PMC7154140 DOI: 10.3389/fbioe.2020.00283] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/18/2020] [Indexed: 01/06/2023] Open
Abstract
The definition of quality controls for cell therapy and engineered product manufacturing processes is critical for safe, effective, and standardized clinical implementation. Using the example context of cartilage grafts engineered from autologous nasal chondrocytes, currently used for articular cartilage repair in a phase II clinical trial, we outlined how gene expression patterns and generalized linear models can be introduced to define molecular signatures of identity, purity, and potency. We first verified that cells from the biopsied nasal cartilage can be contaminated by cells from a neighboring tissue, namely perichondrial cells, and discovered that they cannot deposit cartilaginous matrix. Differential analysis of gene expression enabled the definition of identity markers for the two cell populations, which were predictive of purity in mixed cultures. Specific patterns of expression of the same genes were significantly correlated with cell potency, defined as the capacity to generate tissues with histological and biochemical features of hyaline cartilage. The outlined approach can now be considered for implementation in a good manufacturing practice setting, and offers a paradigm for other regenerative cellular therapies.
Collapse
Affiliation(s)
- M Adelaide Asnaghi
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Laura Power
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Andrea Barbero
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Martin Haug
- Department of Surgery, University Hospital Basel, Basel, Switzerland
| | - Ruth Köppl
- Otorhinolaryngology, Head and Neck Surgery, University Hospital Basel, Basel, Switzerland
| | - David Wendt
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| |
Collapse
|
6
|
Fertuzinhos A, Teixeira MA, Ferreira MG, Fernandes R, Correia R, Malheiro AR, Flores P, Zille A, Dourado N. Thermo-Mechanical Behaviour of Human Nasal Cartilage. Polymers (Basel) 2020; 12:polym12010177. [PMID: 31936593 PMCID: PMC7023433 DOI: 10.3390/polym12010177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 01/06/2023] Open
Abstract
The aim of this study was to undergo a comprehensive analysis of the thermo-mechanical properties of nasal cartilages for the future design of a composite polymeric material to be used in human nose reconstruction surgery. A thermal and dynamic mechanical analysis (DMA) in tension and compression modes within the ranges 1 to 20 Hz and 30 °C to 250 °C was performed on human nasal cartilage. Differential scanning calorimetry (DSC), as well as characterization of the nasal septum (NS), upper lateral cartilages (ULC), and lower lateral cartilages (LLC) reveals the different nature of the binding water inside the studied specimens. Three peaks at 60–80 °C, 100–130 °C, and 200 °C were attributed to melting of the crystalline region of collagen matrix, water evaporation, and the strongly bound non-interstitial water in the cartilage and composite specimens, respectively. Thermogravimetric analysis (TGA) showed that the degradation of cartilage, composite, and subcutaneous tissue of the NS, ULC, and LLC take place in three thermal events (~37 °C, ~189 °C, and ~290 °C) showing that cartilage releases more water and more rapidly than the subcutaneous tissue. The water content of nasal cartilage was estimated to be 42 wt %. The results of the DMA analyses demonstrated that tensile mode is ruled by flow-independent behaviour produced by the time-dependent deformability of the solid cartilage matrix that is strongly frequency-dependent, showing an unstable crystalline region between 80–180 °C, an amorphous region at around 120 °C, and a clear glass transition point at 200 °C (780 kJ/mol). Instead, the unconfined compressive mode is clearly ruled by a flow-dependent process caused by the frictional force of the interstitial fluid that flows within the cartilage matrix resulting in higher stiffness (from 12 MPa at 1 Hz to 16 MPa at 20 Hz in storage modulus). The outcomes of this study will support the development of an artificial material to mimic the thermo-mechanical behaviour of the natural cartilage of the human nose.
Collapse
Affiliation(s)
- Aureliano Fertuzinhos
- CMEMS-UMinho, Departamento de Engenharia Mecânica, Universidade do Minho, Campus de Azurém, 4804-533 Guimarães, Portugal; (A.F.); (P.F.)
| | - Marta A. Teixeira
- 2C2T—Centro de Ciência e Tecnologia Têxtil, Universidade do Minho, Campus de Azurém, 4804-533 Guimarães, Portugal; (M.A.T.); (A.Z.)
| | - Miguel Goncalves Ferreira
- Department of Otolaryngology, Head and Neck Surgery, Santo António Hospital, 4099-001 Porto, Portugal;
| | - Rui Fernandes
- HEMS—Histology and Electron Microscopy, i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (R.F.); (R.C.); (A.R.M.)
- IBMC—Instituto de Biologia Molecular e Celular, University of Porto, 4200-135 Porto, Portugal
| | - Rossana Correia
- HEMS—Histology and Electron Microscopy, i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (R.F.); (R.C.); (A.R.M.)
- Ipatimup—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Ana Rita Malheiro
- HEMS—Histology and Electron Microscopy, i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (R.F.); (R.C.); (A.R.M.)
- IBMC—Instituto de Biologia Molecular e Celular, University of Porto, 4200-135 Porto, Portugal
| | - Paulo Flores
- CMEMS-UMinho, Departamento de Engenharia Mecânica, Universidade do Minho, Campus de Azurém, 4804-533 Guimarães, Portugal; (A.F.); (P.F.)
| | - Andrea Zille
- 2C2T—Centro de Ciência e Tecnologia Têxtil, Universidade do Minho, Campus de Azurém, 4804-533 Guimarães, Portugal; (M.A.T.); (A.Z.)
| | - Nuno Dourado
- CMEMS-UMinho, Departamento de Engenharia Mecânica, Universidade do Minho, Campus de Azurém, 4804-533 Guimarães, Portugal; (A.F.); (P.F.)
- Correspondence:
| |
Collapse
|
7
|
Chang B, Reighard C, Flanagan C, Hollister S, Zopf D. Evaluation of human nasal cartilage nonlinear and rate dependent mechanical properties. J Biomech 2019; 100:109549. [PMID: 31926590 DOI: 10.1016/j.jbiomech.2019.109549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 11/25/2022]
Abstract
Nasal reconstruction frequently requires donor cartilage and tissue, and ideally, donor tissue will closely emulate native nasal cartilage mechanics. Tissue engineering scaffolds, especially 3D printed scaffolds, have been proposed for nasal reconstruction, and the success of these constructs may depend on how well scaffolds reflect native nasal cartilage mechanical properties. Therefore, consistent and comprehensive characterization of native nasal cartilage mechanical properties is a foundation for nasal cartilage tissue engineering and reconstruction in general by providing design targets for reconstructive materials. Our group has previously shown the feasibility of producing scaffolds with porous architecture permitting chondrocyte growth and cartilage production. In this study, we determined the nonlinear and stress relaxation behavior of human nasal cartilage under unconfined compression. We then fit this experimental data to nonlinear elastic, nonlinear viscoelastic and nonlinear biphasic constitutive models. The resulting coefficients will provide design targets for nasal reconstruction and scaffold design as well as outcome measures for assessment of tissue engineered nasal cartilage.
Collapse
Affiliation(s)
- Brian Chang
- University of Michigan Medical School, 1500 East Hospital Drive, Ann Arbor, MI 48109, USA
| | - Chelsea Reighard
- University of Michigan Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, 1000 Wall Street, Ann Arbor, MI 48105, USA
| | - Colleen Flanagan
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd., Ann Arbor, MI 48109, USA
| | - Scott Hollister
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, GA 30332, USA.
| | - David Zopf
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd., Ann Arbor, MI 48109, USA; Department of Otolaryngology - Head and Neck Surgery, CS Mott Children's Hospital, 1540 East Hospital Drive, Ann Arbor, MI 48109, USA.
| |
Collapse
|
8
|
Nasal Reconstruction and Repair of Secondary Nasal Deformities Following Treatment of Nasal Hemangiomas. J Craniofac Surg 2018; 28:427-433. [PMID: 27755445 DOI: 10.1097/scs.0000000000003227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Secondary nasal deformities and retardation of development due to treatment of nasal hemangioma during infancy are a challenge when it comes to nasal reconstruction. In order to evaluate nasal repair and reconstruction in these patients, the authors compared the ease and outcomes of using expanded forehead, nasolabial sulcus, and medial upper arm tube flaps. METHODS According to the deformities and patients' wishes, flaps were selected; using autogeneic rib cartilage, auricle cartilage, or silica gel as a scaffold or without framework; the inner lining were made by the residual scar tissue or the distal end of transferred flap. The esthetical and functional scores were recorded by the Nasal Appearance and Function Evaluation Questionnaire score to evaluate the effectiveness of the methods. RESULTS From January 2010 to December 2015, 34 patients were included. Postoperative follow-up went for 12 to 36 months. The expanded forehead flap was used in 28 patients, the nasolabial sulcus flap in 5 patients, and the medial upper arm tube flap in 1 patient. Regarding framework, 20 patients used rib cartilage, 8 patients used auricle cartilage, 1 patient used silicone, and 5 patients did not use any framework. All patients reported the increasing nasal appearance and function evaluation. CONCLUSION Repair of secondary nasal defects following treatment of hemangiomas in infants and young children using an expanded frontal flap and autogenous cartilage framework is a reliable method with great long-term esthetic results. The nasolabial sulcus flap is a relatively simple method, especially for patients with a unilateral nasal alar defect. Supporting structure is needed and appropriate overcorrection is necessary.
Collapse
|
9
|
Jones MEH, Gröning F, Dutel H, Sharp A, Fagan MJ, Evans SE. The biomechanical role of the chondrocranium and sutures in a lizard cranium. J R Soc Interface 2017; 14:20170637. [PMID: 29263126 PMCID: PMC5746569 DOI: 10.1098/rsif.2017.0637] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/28/2017] [Indexed: 11/30/2022] Open
Abstract
The role of soft tissues in skull biomechanics remains poorly understood. Not least, the chondrocranium, the portion of the braincase which persists as cartilage with varying degrees of mineralization. It also remains commonplace to overlook the biomechanical role of sutures despite evidence that they alter strain distribution. Here, we examine the role of both the sutures and the chondrocranium in the South American tegu lizard Salvator merianae We use multi-body dynamics analysis (MDA) to provide realistic loading conditions for anterior and posterior unilateral biting and a detailed finite element model to examine strain magnitude and distribution. We find that strains within the chondrocranium are greatest during anterior biting and are primarily tensile; also that strain within the cranium is not greatly reduced by the presence of the chondrocranium unless it is given the same material properties as bone. This result contradicts previous suggestions that the anterior portion (the nasal septum) acts as a supporting structure. Inclusion of sutures to the cranium model not only increases overall strain magnitudes but also leads to a more complex distribution of tension and compression rather than that of a beam under sagittal bending.
Collapse
Affiliation(s)
- Marc E H Jones
- School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
- South Australian Museum, North Terrace, Adelaide, South Australia 5001, Australia
| | - Flora Gröning
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Hugo Dutel
- School of Engineering and Computer Science, Medical and Biological Engineering Research Group, University of Hull, Hull HU6 7RX, UK
| | - Alana Sharp
- Research Department of Cell and Developmental Biology, UCL, University College London, Anatomy Building, Gower Street, London WCIE 6BT, UK
| | - Michael J Fagan
- School of Engineering and Computer Science, Medical and Biological Engineering Research Group, University of Hull, Hull HU6 7RX, UK
| | - Susan E Evans
- Research Department of Cell and Developmental Biology, UCL, University College London, Anatomy Building, Gower Street, London WCIE 6BT, UK
| |
Collapse
|
10
|
Liu YF, Messinger K, Inman JC. Yield Strength Testing in Human Cadaver Nasal Septal Cartilage and L-Strut Constructs. JAMA FACIAL PLAST SU 2017; 19:40-45. [PMID: 27711923 DOI: 10.1001/jamafacial.2016.1180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance To our knowledge, yield strength testing in human nasal septal cartilage has not been reported to date. An understanding of the basic mechanics of the nasal septum may help surgeons decide how much of an L-strut to preserve and how much grafting is needed. Objectives To determine the factors correlated with yield strength of the cartilaginous nasal septum and to explore the association between L-strut width and thickness in determining yield strength. Design, Setting, and Participants In an anatomy laboratory, yield strength of rectangular pieces of fresh cadaver nasal septal cartilage was measured, and regression was performed to identify the factors correlated with yield strength. To measure yield strength in L-shaped models, 4 bonded paper L-struts models were constructed for every possible combination of the width and thickness, for a total of 240 models. Mathematical modeling using the resultant data with trend lines and surface fitting was performed to quantify the associations among L-strut width, thickness, and yield strength. The study dates were November 1, 2015, to April 1, 2016. Main Outcomes and Measures The factors correlated with nasal cartilage yield strength and the associations among L-strut width, thickness, and yield strength in L-shaped models. Results Among 95 cartilage pieces from 12 human cadavers (mean [SD] age, 67.7 [12.6] years) and 240 constructed L-strut models, L-strut thickness was the only factor correlated with nasal septal cartilage yield strength (coefficient for thickness, 5.54; 95% CI, 4.08-7.00; P < .001), with an adjusted R2 correlation coefficient of 0.37. The mean (SD) yield strength R2 varied with L-strut thickness exponentially (0.93 [0.06]) for set widths, and it varied with L-strut width linearly (0.82 [0.11]) or logarithmically (0.85 [0.17]) for set thicknesses. A 3-dimensional surface model of yield strength with L-strut width and thickness as variables was created using a 2-dimensional gaussian function (adjusted R2 = 0.94). Estimated yield strengths were generated from the model to allow determination of the desired yield strength with different permutations of L-strut width and thickness. Conclusions and Relevance In this study of human cadaver nasal septal cartilage, L-strut thickness was significantly associated with yield strength. In a bonded paper L-strut model, L-strut thickness had a more important role in determining yield strength than L-strut width. Surgeons should consider the thickness of potential L-struts when determining the amount of cartilaginous septum to harvest and graft. Level of Evidence NA.
Collapse
Affiliation(s)
- Yuan F Liu
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, California
| | - Kelton Messinger
- medical student at Loma Linda University School of Medicine, Loma Linda, California
| | - Jared C Inman
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, California
| |
Collapse
|
11
|
Griffin MF, Premakumar Y, Seifalian AM, Szarko M, Butler PEM. Biomechanical characterisation of the human nasal cartilages; implications for tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:11. [PMID: 26676857 PMCID: PMC4681753 DOI: 10.1007/s10856-015-5619-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 11/04/2015] [Indexed: 05/16/2023]
Abstract
Nasal reconstruction is currently performed using autologous grafts provides but is limited by donor site morbidity, tissue availability and potentially graft failure. Additionally, current alternative alloplastic materials are limited by their high extrusion and infection rates. Matching mechanical properties of synthetic materials to the native tissue they are replacing has shown to be important in the biocompatibility of implants. To date the mechanical properties of the human nasal cartilages has not been studied in depth to be able to create tissue-engineered replacements with similar mechanical properties to native tissue. The young's modulus was characterized in compression on fresh-frozen human cadaveric septal, alar, and lateral cartilage. Due to the functional differences experienced by the various aspects of the septal cartilage, 16 regions were evaluated with an average elastic modulus of 2.72 ± 0.63 MPa. Furthermore, the posterior septum was found to be significantly stiffer than the anterior septum (p < 0.01). The medial and lateral alar cartilages were tested at four points with an elastic modulus ranging from 2.09 ± 0.81 MPa, with no significant difference between the cartilages (p < 0.78). The lateral cartilage was tested once in all cadavers with an average elastic modulus of 0.98 ± 0.29 MPa. In conclusion, this study provides new information on the compressive mechanical properties of the human nasal cartilage, allowing surgeons to have a better understanding of the difference between the mechanical properties of the individual nasal cartilages. This study has provided a reference, by which tissue-engineered should be developed for effective cartilage replacements for nasal reconstruction.
Collapse
Affiliation(s)
- M F Griffin
- Centre for Nanotechnology & Regenerative Medicine, UCL Division of Surgery & Interventional Science, University College London, London, UK.
| | - Y Premakumar
- Anatomical Sciences, Institute for Medical and Biomedical Education, St. George's, University of London, London, UK
| | - A M Seifalian
- Centre for Nanotechnology & Regenerative Medicine, UCL Division of Surgery & Interventional Science, University College London, London, UK
| | - M Szarko
- Anatomical Sciences, Institute for Medical and Biomedical Education, St. George's, University of London, London, UK.
| | - P E M Butler
- Centre for Nanotechnology & Regenerative Medicine, UCL Division of Surgery & Interventional Science, University College London, London, UK
- Department of Plastic and Reconstructive Surgery, Royal Free Hampstead NHS Trust Hospital, London, UK
| |
Collapse
|