1
|
Wearne LS, Rapagna S, Awadalla M, Keene G, Taylor M, Perilli E. Quantifying the immediate post-implantation strain field of cadaveric tibiae implanted with cementless tibial trays: A time-elapsed micro-CT and digital volume correlation analysis during stair descent. J Mech Behav Biomed Mater 2024; 151:106347. [PMID: 38181568 DOI: 10.1016/j.jmbbm.2023.106347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/07/2024]
Abstract
Primary stability, the mechanical fixation between implant and bone prior to osseointegration, is crucial for the long-term success of cementless tibial trays. However, little is known about the mechanical interplay between the implant and bone internally, as experimental studies quantifying internal strain are limited. This study employed digital volume correlation (DVC) to quantify the immediate post-implantation strain field of five cadaveric tibiae implanted with a commercially available cementless titanium tibial tray (Attune, DePuy Synthes). The tibiae were subjected to a five-step loading sequence (0-2.5 bodyweight, BW) replicating stair descent, with concomitant time-elapsed micro-CT imaging. With progressive loads, increased compression of trabecular bone was quantified, with the highest strains directly under the posterior region of the tibial tray implant, dissipating with increasing distance from the bone-implant interface. After load removal of the last load step (2.5BW), residual strains were observed in all of the five tibiae, with residual strains confined within 3.14 mm from the bone-implant interface. The residual strain is reflective of the observed initial migration of cementless tibial trays reported in clinical studies. The presence of strains above the yield strain of bone accepted in literature suggests that inelastic properties should be included within finite element models of the initial mechanical environment. This study provides a means to experimentally quantify the internal strain distribution of human tibia with cementless trays, increasing the understanding of the mechanical interaction between bone and implant.
Collapse
Affiliation(s)
- Lauren S Wearne
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Sophie Rapagna
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia; Flinders Microscopy and Microanalysis, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Maged Awadalla
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Greg Keene
- Orthopaedic Department, SportsMed, Adelaide, South Australia, Australia
| | - Mark Taylor
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Egon Perilli
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia.
| |
Collapse
|
2
|
Mylo MD, Poppinga S. Digital image correlation techniques for motion analysis and biomechanical characterization of plants. FRONTIERS IN PLANT SCIENCE 2024; 14:1335445. [PMID: 38273955 PMCID: PMC10808816 DOI: 10.3389/fpls.2023.1335445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024]
Abstract
Temporally and spatially complex 3D deformation processes appear in plants in a variety of ways and are difficult to quantify in detail by classical cinematographic methods. Furthermore, many biomechanical test methods, e.g. regarding compression or tension, result in quasi-2D deformations of the tested structure, which are very time-consuming to analyze manually regarding strain fields. In materials testing, the contact-free optical 2D- or 3D-digital image correlation method (2D/3D-DIC) is common practice for similar tasks, but is still rather seldom used in the fundamental biological sciences. The present review aims to highlight the possibilities of 2D/3D-DIC for the plant sciences. The equipment, software, and preparative prerequisites are introduced in detail and advantages and disadvantages are discussed. In addition to the analysis of wood and trees, where DIC has been used since the 1990s, this is demonstrated by numerous recent approaches in the contexts of parasite-host attachment, cactus joint biomechanics, fruit peel impact resistance, and slow as well as fast movement phenomena in cones and traps of carnivorous plants. Despite some technical and preparative efforts, DIC is a very powerful tool for full-field 2D/3D displacement and strain analyses of plant structures, which is suitable for numerous in-depth research questions in the fields of plant biomechanics and morphogenesis.
Collapse
Affiliation(s)
- Max D. Mylo
- Cluster of Excellence livMatS @ FIT – Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
- Department of Microsystems Engineering – IMTEK, University of Freiburg, Freiburg, Germany
| | - Simon Poppinga
- Botanical Garden, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
3
|
Cavazzoni G, Cristofolini L, Dall’Ara E, Palanca M. Bone metastases do not affect the measurement uncertainties of a global digital volume correlation algorithm. Front Bioeng Biotechnol 2023; 11:1152358. [PMID: 37008039 PMCID: PMC10060622 DOI: 10.3389/fbioe.2023.1152358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Introduction: Measurement uncertainties of Digital Volume Correlation (DVC) are influenced by several factors, like input images quality, correlation algorithm, bone type, etc. However, it is still unknown if highly heterogeneous trabecular microstructures, typical of lytic and blastic metastases, affect the precision of DVC measurements.Methods: Fifteen metastatic and nine healthy vertebral bodies were scanned twice in zero-strain conditions with a micro-computed tomography (isotropic voxel size = 39 μm). The bone microstructural parameters (Bone Volume Fraction, Structure Thickness, Structure Separation, Structure Number) were calculated. Displacements and strains were evaluated through a global DVC approach (BoneDVC). The relationship between the standard deviation of the error (SDER) and the microstructural parameters was investigated in the entire vertebrae. To evaluate to what extent the measurement uncertainty is influenced by the microstructure, similar relationships were assessed within sub-regions of interest.Results: Higher variability in the SDER was found for metastatic vertebrae compared to the healthy ones (range 91-1030 με versus 222–599 με). A weak correlation was found between the SDER and the Structure Separation in metastatic vertebrae and in the sub-regions of interest, highlighting that the heterogenous trabecular microstructure only weakly affects the measurement uncertainties of BoneDVC. No correlation was found for the other microstructural parameters. The spatial distribution of the strain measurement uncertainties seemed to be associated with regions with reduced greyscale gradient variation in the microCT images.Discussion: Measurement uncertainties cannot be taken for granted but need to be assessed in each single application of the DVC to consider the minimum unavoidable measurement uncertainty when interpreting the results.
Collapse
Affiliation(s)
- Giulia Cavazzoni
- Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield, United Kingdom
- INSIGNEO Institute for in Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Luca Cristofolini
- Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Enrico Dall’Ara
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield, United Kingdom
- INSIGNEO Institute for in Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Marco Palanca
- Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield, United Kingdom
- INSIGNEO Institute for in Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
- *Correspondence: Marco Palanca,
| |
Collapse
|
4
|
Stefanek P, Synek A, Dall'Ara E, Pahr DH. Comparison of linear and nonlinear stepwise μFE displacement predictions to digital volume correlation measurements of trabecular bone biopsies. J Mech Behav Biomed Mater 2023; 138:105631. [PMID: 36592570 DOI: 10.1016/j.jmbbm.2022.105631] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/30/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Digital volume correlation (DVC) enables to evaluate the ability of μFE models in predicting experimental results on the mesoscale. In this study predicted displacement fields of three different linear and materially nonlinear μFE simulation methods were compared to DVC measured displacement fields at specific load steps in the elastic regime (StepEl) and after yield (StepUlt). Five human trabecular bone biopsies from a previous study were compressed in several displacement steps until failure. At every compression step, μCT images (resolution: 36 μm) were recorded. A global DVC algorithm was applied to compute the displacement fields at all loading steps. The unloaded 3D images were then used to generate homogeneous, isotropic, linear and materially nonlinear μFE models. Three different μFE simulation methods were used: linear (L), nonlinear (NL), and nonlinear stepwise (NLS). Regarding L and NL, the boundary conditions were derived from the interpolated displacement fields at StepEl and StepUlt, while for the NLS method nonlinear changes of the boundary conditions of the experiments were captured using the DVC displacement field of every available load step until StepEl and StepUlt. The predicted displacement fields of all μFE simulation methods were in good agreement with the DVC measured displacement fields (individual specimens: R2>0.83 at StepEl and R2>0.59 at StepUlt; pooled data: R2>0.97 at StepEl and R2>0.92 at StepUlt). At StepEl, all three simulation methods showed similar intercepts, slopes, and coefficients of determination while the nonlinear μFE models improved the prediction of the displacement fields slightly in all Cartesian directions at StepUlt (individual specimens: L: R2>0.59 and NL, NLS: R2>0.68; pooled data: L: R2>0.92 and NL, NLS: R2>0.94). Damaged/overstrained elements in L, NL, and NLS occurred at similar locations but the number of overstrained elements was overestimated when using the L simulation method. Considering the increased solving time of the nonlinear μFE models as well as the acceptable performance in displacement prediction of the linear μFE models, one can conclude that for similar use cases linear μFE models represent the best compromise between computational effort and accuracy of the displacement field predictions.
Collapse
Affiliation(s)
- Pia Stefanek
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Austria.
| | - Alexander Synek
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Austria
| | - Enrico Dall'Ara
- Department of Oncology and Metabolism and Insigneo Institute for in Silico Medicine, University of Sheffield, UK
| | - Dieter H Pahr
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Austria; Division Biomechanics, Karl Landsteiner University of Health Sciences, Austria
| |
Collapse
|
5
|
Lamont S, Fropier J, Abadie J, Piat E, Constantinescu A, Roux C, Vernerey F. Profiling oocytes with neural networks from images and mechanical data. J Mech Behav Biomed Mater 2023; 138:105640. [PMID: 36566663 DOI: 10.1016/j.jmbbm.2022.105640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The success rate of assisted reproductive technologies could be greatly improved by selectively choosing egg cells (oocytes) with the greatest chance of fertilization. The goal of mechanical profiling is, thus, to improve predictive oocyte selection by isolating the mechanical properties of oocytes and correlating them to their reproductive potential. The restrictions on experimental platforms, however - including minimal invasiveness and practicality in laboratory implementation - greatly limits the data that can be acquired from a single oocyte. In this study, we perform indentation studies on human oocytes and characterize the mechanical properties of the zona pellucida, the outer layer of the oocyte. We obtain excellent fitting with our physical model when indenting with a flat surface and clearly illustrate localized shear-thinning behavior of the zona pellucida, which has not been previously reported. We conclude by outlining a promising methodology for isolating the mechanical properties of the cytoplasm using neural networks and optical images taken during indentation.
Collapse
Affiliation(s)
- Samuel Lamont
- Department of Mechanical Engineering, Program of Materials Science and Engineering, University of Colorado Boulder, Boulder, CO 80309, United States of America
| | - Juliette Fropier
- Laboratoire de Mécanique des Solides - CNRS - École Polytechnique - Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Joel Abadie
- FEMTO-ST Institute, Univ. Bourgogne Franche-Comté, CNRS, 15B avenue des Montboucons, 25030 Besançon, cedex, France
| | - Emmanuel Piat
- FEMTO-ST Institute, Univ. Bourgogne Franche-Comté, CNRS, 15B avenue des Montboucons, 25030 Besançon, cedex, France
| | - Andrei Constantinescu
- Laboratoire de Mécanique des Solides - CNRS - École Polytechnique - Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Christophe Roux
- Service de Biologie et Médecine de la Reproduction - Cryobiologie - CECOS Franche-Comté Bourgogne, CHRU Jean Minjoz, 3 Bd Fleming, 25030 Besançon cedex, France
| | - Franck Vernerey
- Department of Mechanical Engineering, Program of Materials Science and Engineering, University of Colorado Boulder, Boulder, CO 80309, United States of America.
| |
Collapse
|
6
|
Measurement of bone damage caused by quasi-static compressive loading-unloading to explore dental implants stability: Simultaneous use of in-vitro tests, μ-CT images, and digital volume correlation. J Mech Behav Biomed Mater 2023; 138:105566. [PMID: 36435034 DOI: 10.1016/j.jmbbm.2022.105566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Primary stability of dental implants is the initial mechanical engagement of the implant with its adjacent bone. Implantation and the subsequent loading may cause mechanical damage in the peripheral bone, which ultimately reduces the stability of the implant. This study aimed at evaluating primary stability of dental implants through applying stepwise compressive displacement-controlled, loading-unloading cycles to obtain overall stiffness and dissipated energy of the bone-implant structure; and quantifying induced plastic strains in surrounding bone using digital volume correlation (DVC) method, through comparing μCT images in different loading steps. To this end, dental implants were inserted into the cylindrical trabecular bones, then the bone-implant structure was undergone step-wise loading-unloading cycles, and μCT images were taken in some particular steps, then comparison was made between undeformed and deformed configurations using DVC to quantify plastic strain within the trabecular bone. Comparing stiffness reduction and dissipated energy values in different loading steps, obtained from the force-displacement curve in each loading step, revealed that the maximum displacement of 0.16 mm can be deemed as a safe threshold above which damages in peri-implant bone started to increase considerably (p < 0.05). In addition, it was found here that peri-implant bone strain linearly increased with decreasing bone-implant stiffness (p < 0.05). Moreover, strain concentration in peri-implant bone region showed that the plastic strain in trabecular bone spread up to a distance of about 2.5 mm away from the implant surface. Research of this kind can be used to optimize the design of dental implants, with the ultimate goal of improving their stability, also to validate in-silico models, e.g., micro-finite element models, which can help gain a deeper understanding of bone-implant construct behavior.
Collapse
|
7
|
Fischer F, Plappert D, Ganzenmüller G, Langkemper R, Heusinger-Hess V, Hiermaier S. A Feasibility Study of In-Situ Damage Visualization in Basalt-Fiber Reinforced Polymers with Open-Source Digital Volume Correlation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:523. [PMID: 36676256 PMCID: PMC9865184 DOI: 10.3390/ma16020523] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
This work analyses damage formation within the bulk of basalt fiber-reinforced polymers (BFRP) by means of open-source Digital Volume Correlation (DVC). Volumetric image data were obtained from conventional in-situ X-Ray computed micro-tomography (µCT) of samples loaded in tension. The open-source image registration toolkit Elastix was employed to obtain full 3D displacement fields from the image data. We assessed the accuracy of the DVC results using the method of manufactured solution and showed that the approach followed here can detect deformation with a magnitude in the order of a fiber diameter which in the present case is 17 µm. The beneficial influence of regularization on DVC results is presented on the manufactured solution as well as on real in-situ tensile testing CT data of a BFRP sample. Results of the correlation showed that conventional µCT equipment in combination with DVC can be used to detect defects which could previously only be visualized using synchrotron facilities or destructive methods.
Collapse
Affiliation(s)
- Frank Fischer
- Department of Sustainable Systems Engineering (INATECH), Albert-Ludwigs-Universität, 79110 Freiburg, Germany
| | - David Plappert
- Department of Sustainable Systems Engineering (INATECH), Albert-Ludwigs-Universität, 79110 Freiburg, Germany
| | - Georg Ganzenmüller
- Department of Sustainable Systems Engineering (INATECH), Albert-Ludwigs-Universität, 79110 Freiburg, Germany
- Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institut (EMI), 79104 Freiburg, Germany
| | - Ralph Langkemper
- Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institut (EMI), 79104 Freiburg, Germany
| | - Victoria Heusinger-Hess
- Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institut (EMI), 79104 Freiburg, Germany
| | - Stefan Hiermaier
- Department of Sustainable Systems Engineering (INATECH), Albert-Ludwigs-Universität, 79110 Freiburg, Germany
- Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institut (EMI), 79104 Freiburg, Germany
| |
Collapse
|
8
|
Open-porous magnesium-based scaffolds withstand in vitro corrosion under cyclic loading: A mechanistic study. Bioact Mater 2023; 19:406-417. [PMID: 35574056 PMCID: PMC9062748 DOI: 10.1016/j.bioactmat.2022.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 01/05/2023] Open
Abstract
The successful application of magnesium (Mg) alloys as biodegradable bone substitutes for critical-sized defects may be comprised by their high degradation rate resulting in a loss of mechanical integrity. This study investigates the degradation pattern of an open-porous fluoride-coated Mg-based scaffold immersed in circulating Hanks' Balanced Salt Solution (HBSS) with and without in situ cyclic compression (30 N/1 Hz). The changes in morphological and mechanical properties have been studied by combining in situ high-resolution X-ray computed tomography mechanics and digital volume correlation. Although in situ cyclic compression induced acceleration of the corrosion rate, probably due to local disruption of the coating layer where fatigue microcracks were formed, no critical failures in the overall scaffold were observed, indicating that the mechanical integrity of the Mg scaffolds was preserved. Structural changes, due to the accumulation of corrosion debris between the scaffold fibres, resulted in a significant increase (p < 0.05) in the material volume fraction from 0.52 ± 0.07 to 0.47 ± 0.03 after 14 days of corrosion. However, despite an increase in fibre material loss, the accumulated corrosion products appear to have led to an increase in Young's modulus after 14 days as well as lower third principal strain (εp3) accumulation (−91000 ± 6361 με and −60093 ± 2414 με after 2 and 14 days, respectively). Therefore, this innovative Mg scaffold design and composition provide a bone replacement, capable of sustaining mechanical loads in situ during the postoperative phase allowing new bone formation to be initially supported as the scaffold resorbs. First report on in vitro cyclic loading of MgF2 coated open-porous Mg scaffolds in HBSS simulating 2–3 months in humans. Fluoride-coating slows down corrosion under cyclic loading in vitro. Entangled scaffold structure accumulates local corrosion debris which keeps the mechanical integrity over 14 days in vitro.
Collapse
|
9
|
Dall'Ara E, Bodey AJ, Isaksson H, Tozzi G. A practical guide for in situ mechanical testing of musculoskeletal tissues using synchrotron tomography. J Mech Behav Biomed Mater 2022; 133:105297. [PMID: 35691205 DOI: 10.1016/j.jmbbm.2022.105297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/03/2022] [Accepted: 05/25/2022] [Indexed: 02/07/2023]
Abstract
Musculoskeletal tissues are complex hierarchical materials where mechanical response is linked to structural and material properties at different dimensional levels. Therefore, high-resolution three-dimensional tomography is very useful for assessing tissue properties at different scales. In particular, Synchrotron Radiation micro-Computed Tomography (SR-microCT) has been used in several applications to analyze the structure of bone and biomaterials. In the past decade the development of digital volume correlation (DVC) algorithms applied to SR-microCT images and its combination with in situ mechanical testing (four-dimensional imaging) have allowed researchers to visualise, for the first time, the deformation of musculoskeletal tissues and their interaction with biomaterials under different loading scenarios. However, there are several experimental challenges that make these measurements difficult and at high risk of failure. Challenges relate to sample preparation, imaging parameters, loading setup, accumulated tissue damage for multiple tomographic acquisitions, reconstruction methods and data processing. Considering that access to SR-microCT facilities is usually associated with bidding processes and long waiting times, the failure of these experiments could notably slow down the advancement of this research area and reduce its impact. Many of the experimental failures can be avoided with increased experience in performing the tests and better guidelines for preparation and execution of these complex experiments; publication of negative results could help interested researchers to avoid recurring mistakes. Therefore, the goal of this article is to highlight the potential and pitfalls in the design and execution of in situ SR-microCT experiments, involving multiple scans, of musculoskeletal tissues for the assessment of their structural and/or mechanical properties. The advice and guidelines that follow should improve the success rate of this type of experiment, allowing the community to reach higher impact more efficiently.
Collapse
Affiliation(s)
- E Dall'Ara
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, UK; INSIGNEO Institute for in Silico Medicine, University of Sheffield, UK.
| | | | - H Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - G Tozzi
- School of Engineering, London South Bank University, London, UK
| |
Collapse
|
10
|
Bogdanov AA, Panin SV, Lyubutin PS, Eremin AV, Buslovich DG, Byakov AV. An Automated Optical Strain Measurement System for Estimating Polymer Degradation under Fatigue Testing. SENSORS (BASEL, SWITZERLAND) 2022; 22:6034. [PMID: 36015792 PMCID: PMC9415936 DOI: 10.3390/s22166034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/23/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
(1) Background: this study deals with design of an automated laboratory facility based on a servo-hydraulic testing machine for estimating parameters of mechanical hysteresis loops by means of the digital image correlation (DIC) method. (2) Methods: the paper presents a description of the testing facility, describes the grounds for calculating the elastic modulus, the offset yield strength (OYS) and the parameters of the mechanical hysteresis loops by the DIC method. (3) Results: the developed hardware-software facility was tested by studying the fatigue process in neat polyimide (PI) under various amplitude tension-tension loadings. It was found that the damage accumulation was accompanied by the decrease in the loop areas, while failure occurred when it reduced by at least ~5 kJ/m3. (4) Conclusions: it was shown that lowering the loop area along with changing the secant modulus value makes it possible to estimate the level of the scattered damage accumulation (mainly at the stresses above the OYS level). It was revealed that fractography data, namely the pattern and sizes of the fatigue crack initiation and propagation zones, did not correlate well with the dependences of the parameters of the hysteresis loops.
Collapse
Affiliation(s)
- Alexey A. Bogdanov
- Laboratory of Mechanics of Polymer Composite Materials, Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, Tomsk 634055, Russia
- Department of Materials Science, Engineering School of Advanced Manufacturing Technologies, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Sergey V. Panin
- Laboratory of Mechanics of Polymer Composite Materials, Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, Tomsk 634055, Russia
- Department of Materials Science, Engineering School of Advanced Manufacturing Technologies, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Pavel S. Lyubutin
- Laboratory of Mechanics of Polymer Composite Materials, Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, Tomsk 634055, Russia
| | - Alexander V. Eremin
- Laboratory of Mechanics of Polymer Composite Materials, Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, Tomsk 634055, Russia
- Department of Materials Science, Engineering School of Advanced Manufacturing Technologies, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Dmitry G. Buslovich
- Laboratory of Mechanics of Polymer Composite Materials, Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, Tomsk 634055, Russia
| | - Anton V. Byakov
- Laboratory of Mechanics of Polymer Composite Materials, Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, Tomsk 634055, Russia
| |
Collapse
|
11
|
Micro-CT scan optimisation for mechanical loading of tibia with titanium tibial tray: A digital volume correlation zero strain error analysis. J Mech Behav Biomed Mater 2022; 134:105336. [PMID: 35863298 DOI: 10.1016/j.jmbbm.2022.105336] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/08/2022] [Accepted: 06/24/2022] [Indexed: 01/08/2023]
Abstract
Primary stability of press-fit tibial trays is achieved by introducing an interference fit between bone and implant. The internal cancellous bone strains induced during this process and during loading have yet to be quantified experimentally. Advancements in large-gantry micro-CT imaging and digital volume correlation (DVC) allow quantification of such strains. However, before undertaking such a test, experimental requirements and DVC performance need to be examined, particularly considering the presence of a large orthopaedic implant (tibial tray). The aim of this study was to assess the DVC zero-strain accuracy (mean absolute error: MAER) and precision (standard deviation of error: SDER) on a cadaveric human tibia implanted with a titanium press-fit tray across four plausible scanning configurations, using a cabinet micro-CT system (Nikon XT H 225 ST). These varied in rotation step and resulting scanning time (106 min vs. 66 min), presence or absence of a 2 mm-thick aluminium cylinder for mechanical testing, and X-ray tube voltage (150 kVp vs. 215 kVp). One proximal tibia was implanted and micro-CT scanned (42 μm/pixel), with repeated scanning and specimen repositioning in between. DVC (DaVis, LaVision, direct correlation) was performed on nine cubic volumes of interest (VOIs: 13.4 mm-side) and across the entire proximal tibia. Strain errors were comparable across the four scanning configurations and sufficiently low for assessing bone within its elastic region in VOIs (MAER=223-540 με; SDER=88-261 με) and at organ level (MAER=536 με; SDER=473 με). Whilst the investigated experimental conditions, including a large titanium implant, present added complexity for DVC analysis, scans of sufficient quality can be achieved, reaching a compromise between the DVC requirements and the wanted application. The approach used for choosing the X-ray source settings considering the transmitted X-ray signal intensity and source power, is also discussed.
Collapse
|
12
|
Jia Z, Deng Z, Li L. Biomineralized Materials as Model Systems for Structural Composites: 3D Architecture. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106259. [PMID: 35085421 DOI: 10.1002/adma.202106259] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Biomineralized materials are sophisticated material systems with hierarchical 3D material architectures, which are broadly used as model systems for fundamental mechanical, materials science, and biomimetic studies. The current knowledge of the structure of biological materials is mainly based on 2D imaging, which often impedes comprehensive and accurate understanding of the materials' intricate 3D microstructure and consequently their mechanics, functions, and bioinspired designs. The development of 3D techniques such as tomography, additive manufacturing, and 4D testing has opened pathways to study biological materials fully in 3D. This review discusses how applying 3D techniques can provide new insights into biomineralized materials that are either well known or possess complex microstructures that are challenging to understand in the 2D framework. The diverse structures of biomineralized materials are characterized based on four universal structural motifs. Nacre is selected as an example to demonstrate how the progression of knowledge from 2D to 3D can bring substantial improvements to understanding the growth mechanism, biomechanics, and bioinspired designs. State-of-the-art multiscale 3D tomographic techniques are discussed with a focus on their integration with 3D geometric quantification, 4D in situ experiments, and multiscale modeling. Outlook is given on the emerging approaches to investigate the synthesis-structure-function-biomimetics relationship.
Collapse
Affiliation(s)
- Zian Jia
- Department of Mechanical Engineering, Virginia Polytechnic Institute of Technology and State University, Blacksburg, VA, 24061, USA
| | - Zhifei Deng
- Department of Mechanical Engineering, Virginia Polytechnic Institute of Technology and State University, Blacksburg, VA, 24061, USA
| | - Ling Li
- Department of Mechanical Engineering, Virginia Polytechnic Institute of Technology and State University, Blacksburg, VA, 24061, USA
| |
Collapse
|
13
|
Kok J, Törnquist E, Raina DB, Le Cann S, Novak V, Širka A, Lidgren L, Grassi L, Isaksson H. Fracture behavior of a composite of bone and calcium sulfate/hydroxyapatite. J Mech Behav Biomed Mater 2022; 130:105201. [DOI: 10.1016/j.jmbbm.2022.105201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022]
|
14
|
Wang B, Zou X, Pan B. Accurate and efficient internal deformation measurement of multiphase/porous materials via segmentation-aided digital volume correlation. APPLIED OPTICS 2022; 61:C1-C12. [PMID: 35200992 DOI: 10.1364/ao.435830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/18/2021] [Indexed: 06/14/2023]
Abstract
In using the regular subvolume-based digital volume correlation (R-DVC) method, calculation points should be defined at the real material phase, and the local deformation within the interrogated subvolumes is assumed to be continuous. However, this basic assumption in R-DVC analysis is often violated when measuring the deformation near the interface when dealing with multiphase materials (including porous materials) or contact problems. This is because discontinuous deformation always presents in the calculation points located at the vicinity of interfaces of various phases. All these factors lead to increased measurement error and/or meaningless calculation burdens when using R-DVC. To address these issues, we propose a segmentation-aided DVC (S-DVC) for accuracy-enhanced internal deformation analysis near the interface. The presented S-DVC first divides the reference volume image into different portions according to the distinct gray scales within different material phases (or background) or objects. Based on the segmented reference volume image, we can ensure that subvolumes only contain the voxels from the same material phase/object and exclude other phases/objects. As such, the error due to undermatched shape function can be minimized and meaningless DVC calculation can be avoided. The accuracy, efficiency, and practicality of S-DVC over R-DVC are validated by a simulated compression test of nodular cast iron (multiphase material) and a real compression experiment of 3D printed polymer (porous material).
Collapse
|
15
|
Dall'Ara E, Tozzi G. Digital volume correlation for the characterization of musculoskeletal tissues: Current challenges and future developments. Front Bioeng Biotechnol 2022; 10:1010056. [PMID: 36267445 PMCID: PMC9577231 DOI: 10.3389/fbioe.2022.1010056] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Biological tissues are complex hierarchical materials, difficult to characterise due to the challenges associated to the separation of scale and heterogeneity of the mechanical properties at different dimensional levels. The Digital Volume Correlation approach is the only image-based experimental approach that can accurately measure internal strain field within biological tissues under complex loading scenarios. In this minireview examples of DVC applications to study the deformation of musculoskeletal tissues at different dimensional scales are reported, highlighting the potential and challenges of this relatively new technique. The manuscript aims at reporting the wide breath of DVC applications in the past 2 decades and discuss future perspective for this unique technique, including fast analysis, applications on soft tissues, high precision approaches, and clinical applications.
Collapse
Affiliation(s)
- Enrico Dall'Ara
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, United Kingdom.,INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Gianluca Tozzi
- School of Engineering, University of Greenwich, Chatham Maritime, United Kingdom
| |
Collapse
|
16
|
Application of Digital Image Correlation in Structural Health Monitoring of Bridge Infrastructures: A Review. INFRASTRUCTURES 2021. [DOI: 10.3390/infrastructures6120176] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A vision-based approach has been employed in Structural Health Monitoring (SHM) of bridge infrastructure. The approach has many advantages: non-contact, non-destructive, long-distance, high precision, immunity from electromagnetic interference, and multiple-target monitoring. This review aims to summarise the vision- and Digital Image Correlation (DIC)-based SHM methods for bridge infrastructure because of their strategic significance and security concerns. Four different bridge types were studied: concrete, suspension, masonry, and steel bridge. DIC applications in SHM have recently garnered attention in aiding to assess the bridges’ structural response mechanisms under loading. Different non-destructive diagnostics methods for SHM in civil infrastructure have been used; however, vision-based techniques like DIC were only developed over the last two decades, intending to facilitate damage detection in bridge systems with prompt and accurate data for efficient and sustainable operation of the bridge structure throughout its service life. Research works reviewed in this article demonstrated the DIC capability to detect damage such as cracks, spalling, and structural parameters such as deformation, strains, vibration, deflection, and rotation. In addition, the reviewed works indicated that the DIC as an efficient and reliable technique could provide sustainable monitoring solutions for different bridge infrastructures.
Collapse
|
17
|
Marras D, Palanca M, Cristofolini L. Effects Induced by Osteophytes on the Strain Distribution in the Vertebral Body Under Different Loading Configurations. Front Bioeng Biotechnol 2021; 9:756609. [PMID: 34778229 PMCID: PMC8585771 DOI: 10.3389/fbioe.2021.756609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/27/2021] [Indexed: 11/27/2022] Open
Abstract
The mechanical consequences of osteophytes are not completely clear. We aimed to understand whether and how the presence of an osteophyte perturbs strain distribution in the neighboring bone. The scope of this study was to evaluate the mechanical behavior induced by the osteophytes using full-field surface strain analysis in different loading configurations. Eight thoracolumbar segments, containing a vertebra with an osteophyte and an adjacent vertebra without an osteophyte (control), were harvested from six human spines. The position and size of the osteophytes were evaluated using clinical computed tomography imaging. The spine segments were biomechanically tested in the elastic regime in different loading configurations while the strains over the frontal and lateral surface of vertebral bodies were measured using digital image correlation. The strain fields in the vertebrae with and without osteophytes were compared. The correlation between osteophyte size and strain alteration was explored. The strain fields measured in the vertebrae with osteophytes were different from the control ones. In pure compression, we observed a mild trend between the size of the osteophyte and the strain distribution (R2 = 0.32, p = 0.15). A slightly stronger trend was found for bending (R2 = 0.44, p = 0.075). This study suggests that the osteophytes visibly perturb the strain field in the nearby vertebral area. However, the effect on the surrounding bone is not consistent. Indeed, in some cases the osteophyte shielded the neighboring bone, and in other cases, the osteophyte increased the strains.
Collapse
Affiliation(s)
- Daniele Marras
- Department of Industrial Engineering, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Marco Palanca
- Department of Industrial Engineering, Alma Mater Studiorum-Università di Bologna, Bologna, Italy.,Department of Oncology and Metabolism, INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Luca Cristofolini
- Department of Industrial Engineering, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| |
Collapse
|
18
|
Use of machine learning to select texture features in investigating the effects of axial loading on T 2-maps from magnetic resonance imaging of the lumbar discs. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2021; 31:1979-1991. [PMID: 34718864 DOI: 10.1007/s00586-021-07036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/20/2021] [Accepted: 10/18/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Recent advances in texture analysis and machine learning offer new opportunities to improve the application of imaging to intervertebral disc biomechanics. This study employed texture analysis and machine learning on MRIs to investigate the lumbar disc's response to loading. METHODS Thirty-five volunteers (30 (SD 11) yrs.) with and without chronic back pain spent 20 min lying in a relaxed unloaded supine position, followed by 20 min loaded in compression, and then 20 min with traction applied. T2-weighted MR images were acquired during the last 5 min of each loading condition. Custom image analysis software was used to segment discs from adjacent tissues semi-automatically and segment each disc into the nucleus, anterior and posterior annulus automatically. A grey-level, co-occurrence matrix with one to four pixels offset in four directions (0°, 45°, 90° and 135°) was then constructed (320 feature/tissue). The Random Forest Algorithm was used to select the most promising classifiers. Linear mixed-effect models and Cohen's d compared loading conditions. FINDINGS All statistically significant differences (p < 0.001) were observed in the nucleus and posterior annulus in the 135° offset direction at the L4-5 level between lumbar compression and traction. Correlation (P2-Offset, P4-Offset) and information measure of correlation 1 (P3-Offset, P4-Offset) detected significant changes in the nucleus. Statistically significant changes were also observed for homogeneity (P2-Offset, P3-Offset), contrast (P2-Offset), and difference variance (P4-Offset) of the posterior annulus. INTERPRETATION MRI textural features may have the potential of identifying the disc's response to loading, particularly in the nucleus and posterior annulus, which appear most sensitive to loading. LEVEL OF EVIDENCE Diagnostic: individual cross-sectional studies with consistently applied reference standard and blinding.
Collapse
|
19
|
Timpano CS, Melenka GW. Digital volume correlation analysis of polylactic acid based fused filament fabrication printed composites. JOURNAL OF COMPOSITE MATERIALS 2021; 55:3699-3717. [PMID: 34720176 PMCID: PMC8551441 DOI: 10.1177/00219983211020500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fused filament fabrication (FFF) has rapidly begun to see implementation in industrial fields as a method of rapid manufacturing. Traditional FFF parts are made from a single thermoplastic polymer. The polymer is heated to its melting point and deposited on a work bed where a model is gradually built from the base up. While traditional FFF parts have low mechanical properties, a reinforcing phase allows for improved mechanical properties. The addition of a reinforcing material to the base polymer and complex internal microstructure of the 3 D printed party leads to anisotropic mechanical properties. Thus, these materials' mechanical properties become challenging to characterize using traditional measurement techniques due to the previously mentioned factors. Therefore, it is essential to develop a method in which mechanical properties can be measured and analyzed. This study aims to characterize the mechanical behaviour under a uniaxial tensile load of an FFF produced polylactic acid (PLA)-copper particulate composite. The internal response of the FFF sample was imaged using micro-computed tomography at predetermined loads. The μ-CT images were input into an open-source digital volume correlation (DVC) software to measure the internal displacements and strain tensor fields. The study results show the development of different strain fields and interior features of the FFF parts.
Collapse
Affiliation(s)
| | - Garrett W Melenka
- Garrett W Melenka, Department of Mechanical Engineering, Lassonde School of Engineering, Toronto, Ontario, Canada.
| |
Collapse
|
20
|
Clark JN, Tavana S, Clark B, Briggs T, Jeffers JRT, Hansen U. High resolution three-dimensional strain measurements in human articular cartilage. J Mech Behav Biomed Mater 2021; 124:104806. [PMID: 34509906 DOI: 10.1016/j.jmbbm.2021.104806] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 06/21/2021] [Accepted: 08/28/2021] [Indexed: 12/21/2022]
Abstract
An unresolved challenge in osteoarthritis research is characterising the localised intra-tissue mechanical response of articular cartilage. The aim of this study was to explore whether laboratory micro-computed tomography (micro-CT) and digital volume correlation (DVC) permit non-destructive quantification of three-dimensional (3D) strain fields in human articular cartilage. Human articular cartilage specimens were harvested from the knee, mounted into a loading device and imaged in the unloaded and loaded states using a micro-CT scanner. Strain was measured throughout the cartilage volume using the micro-CT image data and DVC analysis. The volumetric DVC-measured strain was within 5% of the known applied strain. Variation in strain distribution between the superficial, middle and deep zones was observed, consistent with the different architecture of the material in these locations. These results indicate DVC method may be suitable for calculating strain in human articular cartilage.
Collapse
Affiliation(s)
- Jeffrey N Clark
- Department of Mechanical Engineering, Imperial College London, London, UK
| | - Saman Tavana
- Department of Mechanical Engineering, Imperial College London, London, UK
| | - Brett Clark
- Imaging and Analysis Centre, Natural History Museum London, London, UK
| | - Tom Briggs
- Department of Mechanical Engineering, Imperial College London, London, UK
| | | | - Ulrich Hansen
- Department of Mechanical Engineering, Imperial College London, London, UK
| |
Collapse
|
21
|
Bonithon R, Kao AP, Fernández MP, Dunlop JN, Blunn GW, Witte F, Tozzi G. Multi-scale mechanical and morphological characterisation of sintered porous magnesium-based scaffolds for bone regeneration in critical-sized defects. Acta Biomater 2021; 127:338-352. [PMID: 33831571 DOI: 10.1016/j.actbio.2021.03.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/11/2021] [Accepted: 03/31/2021] [Indexed: 12/19/2022]
Abstract
Magnesium (Mg) and its alloys are very promising degradable, osteoconductive and osteopromotive materials to be used as regenerative treatment for critical-sized bone defects. Under load-bearing conditions, Mg alloys must display sufficient morphological and mechanical resemblance to the native bone they are meant to replace to provide adequate support and enable initial bone bridging. In this study, unique highly open-porous Mg-based scaffolds were mechanically and morphologically characterised at different scales. In situ X-ray computed tomography (XCT) mechanics, digital volume correlation (DVC), electron microscopy and nanoindentation were combined to assess the influence of material properties on the apparent (macro) mechanics of the scaffold. The results showed that Mg exhibited a higher connected structure (38.4mm-3 and 6.2mm-3 for Mg and trabecular bone (Tb), respectively) and smaller spacing (245µm and 629µm for Mg and Tb, respectively) while keeping an overall appropriate porosity of 55% in the range of trabecular bone (30-80%). This fully connected and highly porous structure promoted lower local strain compared to the trabecular bone structure at material level (i.e. -22067 ± 8409µε and -40120 ± 18364µε at 6% compression for Mg and trabecular bone, respectively) and highly ductile mechanical behaviour at apparent level preventing premature scaffold failure. Furthermore, the Mg scaffolds exceeded the physiological strain of bone tissue generated in daily activities such as walking or running (500-2000µε) by one order of magnitude. The yield stress was also found to be close to trabecular bone (2.06MPa and 6.67MPa for Mg and Tb, respectively). Based on this evidence, the study highlights the overall biomechanical suitability of an innovative Mg-based scaffold design to be used as a treatment for bone critical-sized defects. STATEMENT OF SIGNIFICANCE: Bone regeneration remains a challenging field of research where different materials and solutions are investigated. Among the variety of treatments, biodegradable magnesium-based implants represent a very promising possibility. The novelty of this study is based on the characterisation of innovative magnesium-based implants whose structure and manufacturing have been optimised to enable the preservation of mechanical integrity and resemble bone microarchitecture. It is also based on a multi-scale approach by coupling high-resolution X-ray computed tomography (XCT), with in situ mechanics, digital volume correlation (DVC) as well as nano-indentation and electron-based microscopy imaging to define how degradable porous Mg-based implants fulfil morphological and mechanical requirements to be used as critical bone defects regeneration treatment.
Collapse
|
22
|
Tavana S, Clark JN, Newell N, Calder JD, Hansen U. In Vivo Deformation and Strain Measurements in Human Bone Using Digital Volume Correlation (DVC) and 3T Clinical MRI. MATERIALS 2020; 13:ma13235354. [PMID: 33255848 PMCID: PMC7728341 DOI: 10.3390/ma13235354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022]
Abstract
Strains within bone play an important role in the remodelling process and the mechanisms of fracture. The ability to assess these strains in vivo can provide clinically relevant information regarding bone health, injury risk, and can also be used to optimise treatments. In vivo bone strains have been investigated using multiple experimental techniques, but none have quantified 3D strains using non-invasive techniques. Digital volume correlation based on clinical MRI (DVC-MRI) is a non-invasive technique that has the potential to achieve this. However, before it can be implemented, uncertainties associated with the measurements must be quantified. Here, DVC-MRI was evaluated to assess its potential to measure in vivo strains in the talus. A zero-strain test (two repeated unloaded scans) was conducted using three MRI sequences, and three DVC approaches to quantify errors and to establish optimal settings. With optimal settings, strains could be measured with a precision of 200 με and accuracy of 480 με for a spatial resolution of 7.5 mm, and a precision of 133 με and accuracy of 251 με for a spatial resolution of 10 mm. These results demonstrate that this technique has the potential to measure relevant levels of in vivo bone strain and to be used for a range of clinical applications.
Collapse
Affiliation(s)
- Saman Tavana
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (J.N.C.); (N.N.)
- Correspondence: (S.T.); (U.H.); Tel.: +44-(0)20-7594-7061 (U.H.)
| | - Jeffrey N. Clark
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (J.N.C.); (N.N.)
| | - Nicolas Newell
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (J.N.C.); (N.N.)
| | - James D. Calder
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK;
- Fortius Clinic, 17 Fitzhardinge St, London W1H 6EQ, UK
| | - Ulrich Hansen
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (J.N.C.); (N.N.)
- Correspondence: (S.T.); (U.H.); Tel.: +44-(0)20-7594-7061 (U.H.)
| |
Collapse
|
23
|
Ryan MK, Oliviero S, Costa MC, Wilkinson JM, Dall’Ara E. Heterogeneous Strain Distribution in the Subchondral Bone of Human Osteoarthritic Femoral Heads, Measured with Digital Volume Correlation. MATERIALS 2020; 13:ma13204619. [PMID: 33081288 PMCID: PMC7603047 DOI: 10.3390/ma13204619] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 11/16/2022]
Abstract
Osteoarthritis (OA) is a chronic disease, affecting approximately one third of people over the age of 45. Whilst the etiology and pathogenesis of the disease are still not well understood, mechanics play an important role in both the initiation and progression of osteoarthritis. In this study, we demonstrate the application of stepwise compression, combined with microCT imaging and digital volume correlation (DVC) to measure and evaluate full-field strain distributions within osteoarthritic femoral heads under uniaxial compression. A comprehensive analysis showed that the microstructural features inherent in OA bone did not affect the level of uncertainties associated with the applied methods. The results illustrate the localization of strains at the loading surface as well as in areas of low bone volume fraction and subchondral cysts. Trabecular thickness and connectivity density were identified as the only microstructural parameters with any association to the magnitude of local strain measured at apparent yield strain or the volume of bone exceeding yield strain. This work demonstrates a novel approach to evaluating the mechanical properties of the whole human femoral head in case of severe OA.
Collapse
Affiliation(s)
- Melissa K. Ryan
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield S10 2TN, UK; (S.O.); (M.C.C.); (J.M.W.); (E.D.)
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield S10 2TN, UK
- Medical Device Research Institute, Flinders University, Adelaide 5042, Australia
- Correspondence: ; Tel.: +61-8-8201-3208
| | - Sara Oliviero
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield S10 2TN, UK; (S.O.); (M.C.C.); (J.M.W.); (E.D.)
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield S10 2TN, UK
| | - Maria Cristiana Costa
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield S10 2TN, UK; (S.O.); (M.C.C.); (J.M.W.); (E.D.)
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield S10 2TN, UK
| | - J. Mark Wilkinson
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield S10 2TN, UK; (S.O.); (M.C.C.); (J.M.W.); (E.D.)
| | - Enrico Dall’Ara
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield S10 2TN, UK; (S.O.); (M.C.C.); (J.M.W.); (E.D.)
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
24
|
Boulanaache Y, Becce F, Farron A, Pioletti DP, Terrier A. Glenoid bone strain after anatomical total shoulder arthroplasty: In vitro measurements with micro-CT and digital volume correlation. Med Eng Phys 2020; 85:48-54. [PMID: 33081963 DOI: 10.1016/j.medengphy.2020.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 08/31/2020] [Accepted: 09/23/2020] [Indexed: 01/09/2023]
Abstract
Glenoid implant loosening remains a major source of failure and concern after anatomical total shoulder arthroplasty (aTSA). It is assumed to be associated with eccentric loading and excessive bone strain, but direct measurement of bone strain after aTSA is not available yet. Therefore, our objective was to develop an in vitro technique for measuring bone strain around a loaded glenoid implant. A custom loading device (1500 N) was designed to fit within a micro-CT scanner, to use digital volume correlation for measuring displacement and calculating strain. Errors were evaluated with three pairs of unloaded scans. The average displacement random error of three pairs of unloaded scans was 6.1 µm. Corresponding systematic and random errors of strain components were less than 806.0 µε and 2039.9 µε, respectively. The average strain accuracy (MAER) and precision (SDER) were 694.3 µε and 440.3 µε, respectively. The loaded minimum principal strain (8738.9 µε) was 12.6 times higher than the MAER (694.3 µε) on average, and was above the MAER for most of the glenoid bone volume (98.1%). Therefore, this technique proves to be accurate and precise enough to eventually compare glenoid implant designs, fixation techniques, or to validate numerical models of specimens under similar loading.
Collapse
Affiliation(s)
- Y Boulanaache
- Laboratory of Biomechanical Orthopedics, Ecole Polytechnique Fédérale de Lausanne, Station 9, 1015 Lausanne, Switzerland
| | - F Becce
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - A Farron
- Service of Orthopedics and Traumatology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - D P Pioletti
- Laboratory of Biomechanical Orthopedics, Ecole Polytechnique Fédérale de Lausanne, Station 9, 1015 Lausanne, Switzerland
| | - A Terrier
- Laboratory of Biomechanical Orthopedics, Ecole Polytechnique Fédérale de Lausanne, Station 9, 1015 Lausanne, Switzerland.
| |
Collapse
|
25
|
Rankin K, Steer J, Paton J, Mavrogordato M, Marter A, Worsley P, Browne M, Dickinson A. Developing an Analogue Residual Limb for Comparative DVC Analysis of Transtibial Prosthetic Socket Designs. MATERIALS 2020; 13:ma13183955. [PMID: 32906701 PMCID: PMC7557588 DOI: 10.3390/ma13183955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022]
Abstract
Personalised prosthetic sockets are fabricated by expert clinicians in a skill- and experience-based process, with research providing tools to support evidence-based practice. We propose that digital volume correlation (DVC) may offer a deeper understanding of load transfer from prosthetic sockets into the residual limb, and tissue injury risk. This study’s aim was to develop a transtibial amputated limb analogue for volumetric strain estimation using DVC, evaluating its ability to distinguish between socket designs. A soft tissue analogue material was developed, comprising silicone elastomer and sand particles as fiducial markers for image correlation. The material was cast to form an analogue residual limb informed by an MRI scan of a person with transtibial amputation, for whom two polymer check sockets were produced by an expert prosthetist. The model was micro-CT scanned according to (i) an unloaded noise study protocol and (ii) a case study comparison between the two socket designs, loaded to represent two-legged stance. The scans were reconstructed to give 108 µm voxels. The DVC noise study indicated a 64 vx subvolume and 50% overlap, giving better than 0.32% strain sensitivity, and ~3.5 mm spatial resolution of strain. Strain fields induced by the loaded sockets indicated tensile, compressive and shear strain magnitudes in the order of 10%, with a high signal:noise ratio enabling distinction between the two socket designs. DVC may not be applicable for socket design in the clinical setting, but does offer critical 3D strain information from which existing in vitro and in silico tools can be compared and validated to support the design and manufacture of prosthetic sockets, and enhance the biomechanical understanding of the load transfer between the limb and the prosthesis.
Collapse
Affiliation(s)
- Kathryn Rankin
- Bioengineering Science Research Group, School of Engineering, University of Southampton, Southampton SO17 1BJ, UK; (K.R.); (J.S.); (J.P.); (A.M.); (M.B.)
- µ-VIS X-Ray Imaging Centre, University of Southampton, Southampton SO17 1BJ, UK;
| | - Joshua Steer
- Bioengineering Science Research Group, School of Engineering, University of Southampton, Southampton SO17 1BJ, UK; (K.R.); (J.S.); (J.P.); (A.M.); (M.B.)
| | - Joshua Paton
- Bioengineering Science Research Group, School of Engineering, University of Southampton, Southampton SO17 1BJ, UK; (K.R.); (J.S.); (J.P.); (A.M.); (M.B.)
| | - Mark Mavrogordato
- µ-VIS X-Ray Imaging Centre, University of Southampton, Southampton SO17 1BJ, UK;
| | - Alexander Marter
- Bioengineering Science Research Group, School of Engineering, University of Southampton, Southampton SO17 1BJ, UK; (K.R.); (J.S.); (J.P.); (A.M.); (M.B.)
| | - Peter Worsley
- Skin Health Research Group, School of Health Sciences, University of Southampton, Southampton SO16 6YD, UK;
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Martin Browne
- Bioengineering Science Research Group, School of Engineering, University of Southampton, Southampton SO17 1BJ, UK; (K.R.); (J.S.); (J.P.); (A.M.); (M.B.)
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Alexander Dickinson
- Bioengineering Science Research Group, School of Engineering, University of Southampton, Southampton SO17 1BJ, UK; (K.R.); (J.S.); (J.P.); (A.M.); (M.B.)
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Correspondence: ; Tel.: +44-(238)-059-5394
| |
Collapse
|
26
|
Clark JN, Tavana S, Heyraud A, Tallia F, Jones JR, Hansen U, Jeffers JRT. Quantifying 3D Strain in Scaffold Implants for Regenerative Medicine. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3890. [PMID: 32899192 PMCID: PMC7504351 DOI: 10.3390/ma13173890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/30/2022]
Abstract
Regenerative medicine solutions require thoughtful design to elicit the intended biological response. This includes the biomechanical stimulus to generate an appropriate strain in the scaffold and surrounding tissue to drive cell lineage to the desired tissue. To provide appropriate strain on a local level, new generations of scaffolds often involve anisotropic spatially graded mechanical properties that cannot be characterised with traditional materials testing equipment. Volumetric examination is possible with three-dimensional (3D) imaging, in situ loading and digital volume correlation (DVC). Micro-CT and DVC were utilised in this study on two sizes of 3D-printed inorganic/organic hybrid scaffolds (n = 2 and n = 4) with a repeating homogenous structure intended for cartilage regeneration. Deformation was observed with a spatial resolution of under 200 µm whilst maintaining displacement random errors of 0.97 µm, strain systematic errors of 0.17% and strain random errors of 0.031%. Digital image correlation (DIC) provided an analysis of the external surfaces whilst DVC enabled localised strain concentrations to be examined throughout the full 3D volume. Strain values derived using DVC correlated well against manually calculated ground-truth measurements (R2 = 0.98, n = 8). The technique ensures the full 3D micro-mechanical environment experienced by cells is intimately considered, enabling future studies to further examine scaffold designs for regenerative medicine.
Collapse
Affiliation(s)
- Jeffrey N. Clark
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (J.N.C.); (S.T.); (U.H.)
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (A.H.); (F.T.); (J.R.J.)
| | - Saman Tavana
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (J.N.C.); (S.T.); (U.H.)
| | - Agathe Heyraud
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (A.H.); (F.T.); (J.R.J.)
| | - Francesca Tallia
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (A.H.); (F.T.); (J.R.J.)
| | - Julian R. Jones
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (A.H.); (F.T.); (J.R.J.)
| | - Ulrich Hansen
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (J.N.C.); (S.T.); (U.H.)
| | - Jonathan R. T. Jeffers
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (J.N.C.); (S.T.); (U.H.)
| |
Collapse
|
27
|
Vertebral stiffness measured via tomosynthesis-based digital volume correlation is strongly correlated with reference values from micro-CT-based DVC. Med Eng Phys 2020; 84:169-173. [PMID: 32977915 DOI: 10.1016/j.medengphy.2020.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/03/2020] [Accepted: 08/24/2020] [Indexed: 11/21/2022]
Abstract
Digital tomosynthesis (DTS) is a clinically available modality that allows imaging of a patient's spine in supine and standing positions. The purpose of this study was to establish the extent to which vertebral displacement and stiffness derived from DTS-based digital volume correlation (DTS-DVC) are correlated with those from a reference method, i.e., microcomputed tomography-based DVC (μCT-DVC). T11 vertebral bodies from 11 cadaveric donors were DTS imaged twice in a nonloaded state and once under a fixed load level approximating upper body weight. The same vertebrae were µCT imaged in nonloaded and loaded states (40 μm voxel size). Vertebral displacements were calculated at each voxel using DVC with pairs of nonloaded and loaded images, from which endplate-to-endplate axial displacement (DDVC) and vertebral stiffness (SDVC) were calculated. Both DDVC and SDVC demonstrated strong positive correlations between DTS-DVC and μCT-DVC, with correlations being stronger when vertebral displacement was calculated using the median (R2=0.80; p<0.0002 and R2=0.93; p<0.0001, respectively) rather than average displacement (R2=0.63; p<0.004 and R2=0.69; p<0.002, respectively). In conclusion, the demonstrated relationship of DTS-DVC with the μCT standard supports further development of a biomechanics-based clinical assessment of vertebral bone quality using the DTS-DVC technique.
Collapse
|
28
|
Turunen MJ, Le Cann S, Tudisco E, Lovric G, Patera A, Hall SA, Isaksson H. Sub-trabecular strain evolution in human trabecular bone. Sci Rep 2020; 10:13788. [PMID: 32796859 PMCID: PMC7429852 DOI: 10.1038/s41598-020-69850-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/14/2020] [Indexed: 01/09/2023] Open
Abstract
To comprehend the most detrimental characteristics behind bone fractures, it is key to understand the material and tissue level strain limits and their relation to failure sites. The aim of this study was to investigate the three-dimensional strain distribution and its evolution during loading at the sub-trabecular level in trabecular bone tissue. Human cadaver trabecular bone samples were compressed in situ until failure, while imaging with high-resolution synchrotron radiation X-ray tomography. Digital volume correlation was used to determine the strains inside the trabeculae. Regions without emerging damage were compared to those about to crack. Local strains in close vicinity of developing cracks were higher than previously reported for a whole trabecular structure and similar to those reported for single isolated trabeculae. Early literature on bone fracture strain thresholds at the tissue level seem to underestimate the maximum strain magnitudes in trabecular bone. Furthermore, we found lower strain levels and a reduced ability to capture detailed crack-paths with increased image voxel size. This highlights the dependence between the observed strain levels and the voxel size and that high-resolution is needed to investigate behavior of individual trabeculae. Furthermore, low trabecular thickness appears to be one predictor of developing cracks. In summary, this study investigated the local strains in whole trabecular structure at sub-trabecular resolution in human bone and confirmed the high strain magnitudes reported for single trabeculae under loading and, importantly extends its translation to the whole trabecular structure.
Collapse
Affiliation(s)
- Mikael J Turunen
- Department of Applied Physics, University of Eastern Finland, Box 1627, 70211, Kuopio, Finland. .,Department of Biomedical Engineering, Lund University, Lund, Sweden.
| | - Sophie Le Cann
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Erika Tudisco
- Division of Geotechnical Engineering, Lund University, Lund, Sweden
| | - Goran Lovric
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland.,Centre D'Imagerie BioMédicale, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Stephen A Hall
- Division of Solid Mechanics, Lund University, Lund, Sweden.,Lund Institute of advanced Neutron and X-ray Science (LINXS), Lund, Sweden
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden.,Department of Orthopaedics, Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
29
|
Le Cann S, Tudisco E, Tägil M, Hall SA, Isaksson H. Bone Damage Evolution Around Integrated Metal Screws Using X-Ray Tomography - in situ Pullout and Digital Volume Correlation. Front Bioeng Biotechnol 2020; 8:934. [PMID: 32850760 PMCID: PMC7419699 DOI: 10.3389/fbioe.2020.00934] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022] Open
Abstract
Better understanding of the local deformation of the bone network around metallic implants subjected to loading is of importance to assess the mechanical resistance of the bone-implant interface and limit implant failure. In this study, four titanium screws were osseointegrated into rat tibiae for 4 weeks and screw pullout was conducted in situ under x-ray microtomography, recording macroscopic mechanical behavior and full tomographies at multiple load steps before failure. Images were analyzed using Digital Volume Correlation (DVC) to access internal displacement and deformation fields during loading. A repeatable failure pattern was observed, where a ∼300–500 μm-thick envelope of bone detached from the trabecular structure. Fracture initiated close to the screw tip and propagated along the implant surface, at a distance of around 500 μm. Thus, the fracture pattern appeared to be influenced by the microstructure of the bone formed closely around the threads, which confirmed that the model is relevant for evaluating the effect of pharmacological treatments affecting local bone formation. Moreover, cracks at the tibial plateau were identified by DVC analysis of the tomographic images acquired during loading. Moderate strains were first distributed in the trabecular bone, which localized into higher strains regions with subsequent loading, revealing crack-formation not evident in the tomographic images. The in situ loading methodology followed by DVC is shown to be a powerful tool to study internal deformation and fracture behavior of the newly formed bone close to an implant when subjected to loading. A better understanding of the interface failure may help improve the outcome of surgical implants.
Collapse
Affiliation(s)
- Sophie Le Cann
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Erika Tudisco
- Division of Geotechnical Engineering, Lund University, Lund, Sweden
| | - Magnus Tägil
- Department of Orthopaedics, Clinical Sciences, Lund University, Lund, Sweden
| | - Stephen A Hall
- Division of Solid Mechanics, Lund University, Lund, Sweden.,Lund Institute for Advanced Neutron and X-ray Science, Lund, Sweden
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden.,Department of Orthopaedics, Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
30
|
Zhang T, Pled F, Desceliers C. Robust Multiscale Identification of Apparent Elastic Properties at Mesoscale for Random Heterogeneous Materials with Multiscale Field Measurements. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2826. [PMID: 32586015 PMCID: PMC7345255 DOI: 10.3390/ma13122826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 11/27/2022]
Abstract
The aim of this work is to efficiently and robustly solve the statistical inverse problem related to the identification of the elastic properties at both macroscopic and mesoscopic scales of heterogeneous anisotropic materials with a complex microstructure that usually cannot be properly described in terms of their mechanical constituents at microscale. Within the context of linear elasticity theory, the apparent elasticity tensor field at a given mesoscale is modeled by a prior non-Gaussian tensor-valued random field. A general methodology using multiscale displacement field measurements simultaneously made at both macroscale and mesoscale has been recently proposed for the identification the hyperparameters of such a prior stochastic model by solving a multiscale statistical inverse problem using a stochastic computational model and some information from displacement fields at both macroscale and mesoscale. This paper contributes to the improvement of the computational efficiency, accuracy and robustness of such a method by introducing (i) a mesoscopic numerical indicator related to the spatial correlation length(s) of kinematic fields, allowing the time-consuming global optimization algorithm (genetic algorithm) used in a previous work to be replaced with a more efficient algorithm and (ii) an ad hoc stochastic representation of the hyperparameters involved in the prior stochastic model in order to enhance both the robustness and the precision of the statistical inverse identification method. Finally, the proposed improved method is first validated on in silico materials within the framework of 2D plane stress and 3D linear elasticity (using multiscale simulated data obtained through numerical computations) and then exemplified on a real heterogeneous biological material (beef cortical bone) within the framework of 2D plane stress linear elasticity (using multiscale experimental data obtained through mechanical testing monitored by digital image correlation).
Collapse
|
31
|
Löwer E, Pham T, Leißner T, Peuker U. Study on the influence of solids volume fraction on filter cake structures using micro tomography. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2019.12.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Tavana S, Clark JN, Prior J, Baxan N, Masouros SD, Newell N, Hansen U. Quantifying deformations and strains in human intervertebral discs using Digital Volume Correlation combined with MRI (DVC-MRI). J Biomech 2020; 102:109604. [PMID: 31928737 DOI: 10.1016/j.jbiomech.2020.109604] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/19/2019] [Accepted: 12/31/2019] [Indexed: 02/02/2023]
Abstract
Physical disruptions to intervertebral discs (IVDs) can cause mechanical changes that lead to degeneration and to low back pain which affects 75% of us in our lifetimes. Quantifying the effects of these changes on internal IVD strains may lead to better preventative strategies and treatments. Digital Volume Correlation (DVC) is a non-invasive technique that divides volumetric images into subsets, and measures strains by tracking the internal patterns within them under load. Applying DVC to MRIs may allow non-invasive strain measurements. However, DVC-MRI for strain measurements in IVDs has not been used previously. The purpose of this study was to quantify the strain and deformation errors associated with DVC-MRI for measurements in human IVDs. Eight human lumbar IVDs were MRI scanned (9.4 T) for a 'zero-strain study' (multiple unloaded scans to quantify noise within the system), and a loaded study (2 mm axial compression). Three DVC methodologies: Fast-Fourier transform (FFT), direct correlation (DC), and a combination of both FFT and DC approaches were compared with subset sizes ranging from 8 to 88 voxels to establish the optimal DVC methodology and settings which were then used in the loaded study. FFT + DC was the optimal method and a subset size of 56 voxels (2520 µm) was found to be a good compromise between errors and spatial resolution. Displacement and strain errors did not exceed 28 µm and 3000 microstrain, respectively. These findings demonstrate that DVC-MRI can quantify internal strains within IVDs non-invasively and accurately. The method has unique potential for assessing IVD strains within patients.
Collapse
Affiliation(s)
- S Tavana
- Department of Mechanical Engineering, Imperial College London, UK
| | - J N Clark
- Department of Mechanical Engineering, Imperial College London, UK
| | - J Prior
- Department of Bioengineering, Imperial College London, UK
| | - N Baxan
- Biomedical Imaging Centre, Department of Medicine, Imperial College London, UK
| | - S D Masouros
- Department of Bioengineering, Imperial College London, UK
| | - N Newell
- Department of Mechanical Engineering, Imperial College London, UK.
| | - U Hansen
- Department of Mechanical Engineering, Imperial College London, UK
| |
Collapse
|
33
|
In situ characterization of nanoscale strains in loaded whole joints via synchrotron X-ray tomography. Nat Biomed Eng 2019; 4:343-354. [PMID: 31768001 PMCID: PMC7101244 DOI: 10.1038/s41551-019-0477-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 10/11/2019] [Indexed: 11/09/2022]
Abstract
Imaging techniques for quantifying how the hierarchical structure of deforming joints changes are constrained by destructive sample treatments, sample-size restrictions and lengthy scan times. Here, we report the use of fast, low-dose pink-beam synchrotron X-ray tomography combined with mechanical loading at nanometric precision for the in situ imaging, at resolutions lower than 100 nm, of mechanical strain in intact untreated joints under physiologically realistic conditions. We show that, in young, aged, and osteoarthritic mice, hierarchical changes in tissue structure and mechanical behaviour can be simultaneously visualized, and that tissue structure at the cellular level correlates with whole-joint mechanical performance. We also used the tomographic approach to study the co-localization of tissue strains to specific chondrocyte lacunar organizations within intact loaded joints, and for the exploration of the role of calcified-cartilage stiffness on the biomechanics of healthy and pathological joints.
Collapse
|
34
|
Powierza B, Gollwitzer C, Wolgast D, Staude A, Bruno G. Fully experiment-based evaluation of few digital volume correlation techniques. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:115105. [PMID: 31779430 DOI: 10.1063/1.5099572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Digital Volume Correlation (DVC) is a powerful set of techniques used to compute the local shifts of 3D images obtained, for instance, in tomographic experiments. It is utilized to analyze the geometric changes of the investigated object as well as to correct the corresponding image misalignments for further analysis. It can therefore be used to evaluate the local density changes of the same regions of the inspected specimens, which might be shifted between measurements. In recent years, various approaches and corresponding pieces of software were introduced. Accuracies for the computed shift vectors of up to about 1‰ of a single voxel size have been reported. These results, however, were based either on synthetic datasets or on an unrealistic setup. In this work, we propose two simple methods to evaluate the accuracy of DVC-techniques using more realistic input data and apply them to several DVC programs. We test these methods on three materials (tuff, sandstone, and concrete) that show different contrast and structural features.
Collapse
Affiliation(s)
- Bartosz Powierza
- Bundesanstalt für Materialforschung und -Prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Christian Gollwitzer
- Bundesanstalt für Materialforschung und -Prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Dagmar Wolgast
- Chemnitzer Werkstoffmechanik GmbH, Technologie-Campus 1, 09126 Chemnitz, Germany
| | - Andreas Staude
- Thermo Fisher Scientific, c/o Zuse Institut Berlin (ZIB), Takustraße 7, 14195 Berlin, Germany
| | - Giovanni Bruno
- Bundesanstalt für Materialforschung und -Prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| |
Collapse
|
35
|
Rapagna S, Berahmani S, Wyers CE, van den Bergh JP, Reynolds KJ, Tozzi G, Janssen D, Perilli E. Quantification of human bone microarchitecture damage in press-fit femoral knee implantation using HR-pQCT and digital volume correlation. J Mech Behav Biomed Mater 2019; 97:278-287. [DOI: 10.1016/j.jmbbm.2019.04.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/04/2019] [Accepted: 04/28/2019] [Indexed: 11/27/2022]
|
36
|
Kusins J, Knowles N, Ryan M, Dall’Ara E, Ferreira L. Performance of QCT-Derived scapula finite element models in predicting local displacements using digital volume correlation. J Mech Behav Biomed Mater 2019; 97:339-345. [DOI: 10.1016/j.jmbbm.2019.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/24/2019] [Accepted: 05/13/2019] [Indexed: 01/27/2023]
|
37
|
Comini F, Palanca M, Cristofolini L, Dall'Ara E. Uncertainties of synchrotron microCT-based digital volume correlation bone strain measurements under simulated deformation. J Biomech 2019; 86:232-237. [DOI: 10.1016/j.jbiomech.2019.01.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 12/18/2018] [Accepted: 01/22/2019] [Indexed: 10/27/2022]
|
38
|
Le Cann S, Tudisco E, Turunen MJ, Patera A, Mokso R, Tägil M, Belfrage O, Hall SA, Isaksson H. Investigating the Mechanical Characteristics of Bone-Metal Implant Interface Using in situ Synchrotron Tomographic Imaging. Front Bioeng Biotechnol 2019; 6:208. [PMID: 30719433 PMCID: PMC6348316 DOI: 10.3389/fbioe.2018.00208] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/18/2018] [Indexed: 12/18/2022] Open
Abstract
Long-term stability of endosseous implants depends on successful bone formation, ingrowth and adaptation to the implant. Specifically, it will define the mechanical properties of the newly formed bone-implant interface. 3D imaging during mechanical loading tests (in situ loading) can improve the understanding of the local processes leading to bone damage and failure. In this study, titanium screws were implanted into rat tibiae and were allowed to integrate for 4 weeks with or without the addition of the growth factor Bone Morphogenetic Protein and the bisphosphonate Zoledronic Acid. Samples were subjected to in situ pullout using high-resolution synchrotron x-ray tomography at the Tomcat beamline (SLS, PSI, Switzerland) at 30 keV with 25 ms exposure time, resulting in a total acquisition time of 45 s per scan, with a 3.6 μm isotropic voxel size. Using a custom-made loading device positioned inside the beamline, screws were pulled out with 0.05 mm increment, acquiring multiple scans until rupture of the sample. The in situ loading protocol was adapted to ensure short imaging time, which enabled multiple samples to be tested with short loading steps, while keeping the total testing time low and reducing dose deposition. Higher trabecular bone content was quantified in the surrounding of the screw in the treated groups, which correlated with increased mechanical strength and stiffness. Differences in screw implantation, such as contact between threads and cortex as well as minor tilt of the screw were also correlated to the mechanical parameters. In situ loading enabled the investigation of crack propagation during the pullout, highlighting the mechanical behavior of the interface. Three typical crack types were observed: (1) rupture at the interface of trabecular and cortical bone tissues, close to the screw, (2) large crack inside the cortex connected to the implant, and (3) first failure away from the screw with cracks propagating toward the screw-bone interface. Mechanical properties of in vivo integrated bone-metal screws rely on a combination of multiple parameters that are difficult to identify and separate one from the other.
Collapse
Affiliation(s)
- Sophie Le Cann
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Erika Tudisco
- Division of Geotechnical Engineering, Lund University, Lund, Sweden
| | - Mikael J Turunen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | | | | | - Magnus Tägil
- Department of Orthopaedics, Clinical Sciences, Lund University, Lund, Sweden
| | - Ola Belfrage
- Department of Orthopaedics, Clinical Sciences, Lund University, Lund, Sweden
| | - Stephen A Hall
- Division of Solid Mechanics, Lund University, Lund, Sweden
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden.,Department of Orthopaedics, Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
39
|
Variability in strain distribution in the mice tibia loading model: A preliminary study using digital volume correlation. Med Eng Phys 2018; 62:7-16. [PMID: 30243888 DOI: 10.1016/j.medengphy.2018.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 06/28/2018] [Accepted: 09/02/2018] [Indexed: 01/27/2023]
Abstract
It is well known that bone has an enormous adaptive capacity to mechanical loadings, and to this extent, several in vivo studies on mouse tibia use established cyclic compressive loading protocols to investigate the effects of mechanical stimuli. In these experiments, the applied axial load is well controlled but the positioning of the hind-limb between the loading endcaps may dramatically affect the strain distribution induced on the tibia. In this study, the full field strain distribution induced by a typical in vivo setup on mouse tibiae was investigated through a combination of in situ compressive testing, µCT scanning and a global digital volume correlation (DVC) approach. The precision of the DVC method and the effect of repositioning on the strain distributions were evaluated. Acceptable uncertainties of the DVC approach for the analysis of loaded tibiae (411 ± 58µɛ) were found for nodal spacing of approximately 50 voxels (520 µm). When pairs of in situ preloaded and loaded images were registered, low variability of the strain distributions within the tibia were seen (range of mean differences in principal strains: 585-1800µɛ). On contrary, larger differences were seen after repositioning (range of mean differences in principal strains: 2500-5500µɛ). To conclude, these preliminary results on thee specimens showed that the DVC approach applied to the mouse tibia can be precise enough to evaluate local strain distributions under loads, and that repositioning of the hind-limb within the testing machine can induce large differences in the strain distributions that should be accounted for when modelling this system.
Collapse
|
40
|
Peña Fernández M, Cipiccia S, Dall'Ara E, Bodey AJ, Parwani R, Pani M, Blunn GW, Barber AH, Tozzi G. Effect of SR-microCT radiation on the mechanical integrity of trabecular bone using in situ mechanical testing and digital volume correlation. J Mech Behav Biomed Mater 2018; 88:109-119. [PMID: 30165258 DOI: 10.1016/j.jmbbm.2018.08.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 07/21/2018] [Accepted: 08/13/2018] [Indexed: 01/06/2023]
Abstract
The use of synchrotron radiation micro-computed tomography (SR-microCT) is becoming increasingly popular for studying the relationship between microstructure and bone mechanics subjected to in situ mechanical testing. However, it is well known that the effect of SR X-ray radiation can considerably alter the mechanical properties of bone tissue. Digital volume correlation (DVC) has been extensively used to compute full-field strain distributions in bone specimens subjected to step-wise mechanical loading, but tissue damage from sequential SR-microCT scans has not been previously addressed. Therefore, the aim of this study is to examine the influence of SR irradiation-induced microdamage on the apparent elastic properties of trabecular bone using DVC applied to in situ SR-microCT tomograms obtained with different exposure times. Results showed how DVC was able to identify high local strain levels (> 10,000 µε) corresponding to visible microcracks at high irradiation doses (~ 230 kGy), despite the apparent elastic properties remained unaltered. Microcracks were not detected and bone plasticity was preserved for low irradiation doses (~ 33 kGy), although image quality and consequently, DVC performance were reduced. DVC results suggested some local deterioration of tissue that might have resulted from mechanical strain concentration further enhanced by some level of local irradiation even for low accumulated dose.
Collapse
Affiliation(s)
- Marta Peña Fernández
- Zeiss Global Centre, School of Engineering, University of Portsmouth, Portsmouth, UK
| | | | - Enrico Dall'Ara
- Department of Oncology and Metabolism and INSIGNEO Institute For in Silico Medicine, University of Sheffield, Sheffield, UK
| | | | - Rachna Parwani
- Zeiss Global Centre, School of Engineering, University of Portsmouth, Portsmouth, UK
| | - Martino Pani
- Zeiss Global Centre, School of Engineering, University of Portsmouth, Portsmouth, UK
| | - Gordon W Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Asa H Barber
- Zeiss Global Centre, School of Engineering, University of Portsmouth, Portsmouth, UK; School of Engineering, London South Bank University, London, UK
| | - Gianluca Tozzi
- Zeiss Global Centre, School of Engineering, University of Portsmouth, Portsmouth, UK.
| |
Collapse
|
41
|
Martelli S, Perilli E. Time-elapsed synchrotron-light microstructural imaging of femoral neck fracture. J Mech Behav Biomed Mater 2018; 84:265-272. [DOI: 10.1016/j.jmbbm.2018.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/16/2017] [Accepted: 05/09/2018] [Indexed: 11/29/2022]
|
42
|
PEÑA FERNÁNDEZ M, BARBER A, BLUNN G, TOZZI G. Optimization of digital volume correlation computation in SR-microCT images of trabecular bone and bone-biomaterial systems. J Microsc 2018; 272:213-228. [DOI: 10.1111/jmi.12745] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/30/2018] [Accepted: 07/11/2018] [Indexed: 11/28/2022]
Affiliation(s)
| | - A.H. BARBER
- School of Engineering; University of Portsmouth; Portsmouth U.K
- School of Engineering; London South Bank University; U.K
| | - G.W. BLUNN
- School of Pharmacy and Biomedical Sciences; University of Portsmouth; Portsmouth U.K
| | - G. TOZZI
- School of Engineering; University of Portsmouth; Portsmouth U.K
| |
Collapse
|
43
|
Oliviero S, Giorgi M, Dall'Ara E. Validation of finite element models of the mouse tibia using digital volume correlation. J Mech Behav Biomed Mater 2018; 86:172-184. [PMID: 29986291 DOI: 10.1016/j.jmbbm.2018.06.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/29/2018] [Accepted: 06/15/2018] [Indexed: 01/30/2023]
Abstract
The mouse tibia is a common site to investigate bone adaptation. Micro-Finite Element (microFE) models based on micro-Computed Tomography (microCT) images can estimate bone mechanical properties non-invasively but their outputs need to be validated with experiments. Digital Volume Correlation (DVC) can provide experimental measurements of displacements over the whole bone volume. In this study we applied DVC to validate the local predictions of microFE models of the mouse tibia in compression. Six mouse tibiae were stepwise compressed within a microCT system. MicroCT images were acquired in four configurations with applied compression of 0.5 N (preload), 6.5 N, 13.0 N and 19.5 N. Failure load was measured after the last scan. A global DVC algorithm was applied to the microCT images in order to obtain the displacement field over the bone volume. Homogeneous, isotropic linear hexahedral microFE models were generated from the images collected in the preload configuration with boundary conditions interpolated from the DVC displacements at the extremities of the tibia. Experimental displacements from DVC and numerical predictions were compared at corresponding locations in the middle of the bone. Stiffness and strength were also estimated from each model and compared with the experimental measurements. The magnitude of the displacement vectors predicted by microFE models was highly correlated with experimental measurements (R2 >0.82). Higher but still reasonable errors were found for the Cartesian components. The models tended to overestimate local displacements in the longitudinal direction (R2 = 0.69-0.90, slope of the regression line=0.50-0.97). Errors in the prediction of structural mechanical properties were 14% ± 11% for stiffness and 9% ± 9% for strength. In conclusion, the DVC approach has been applied to the validation of microFE models of the mouse tibia. The predictions of the models for both structural and local properties have been found reasonable for most preclinical applications.
Collapse
Affiliation(s)
- S Oliviero
- Department of Oncology and Metabolism and INSIGNEO Institute for in Silico Medicine, University of Sheffield, Pam Liversidge Building, Mappin Street, S13JD Sheffield, UK.
| | - M Giorgi
- Department of Oncology and Metabolism and INSIGNEO Institute for in Silico Medicine, University of Sheffield, Pam Liversidge Building, Mappin Street, S13JD Sheffield, UK.
| | - E Dall'Ara
- Department of Oncology and Metabolism and INSIGNEO Institute for in Silico Medicine, University of Sheffield, Pam Liversidge Building, Mappin Street, S13JD Sheffield, UK.
| |
Collapse
|
44
|
Ruspi ML, Palanca M, Faldini C, Cristofolini L. Full-field in vitro investigation of hard and soft tissue strain in the spine by means of Digital Image Correlation. Muscles Ligaments Tendons J 2018; 7:538-545. [PMID: 29721455 DOI: 10.11138/mltj/2017.7.4.538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Introduction The spine deserves careful biomechanical investigation, because of the different types of degeneration deriving from daily stress, trauma, and hard and soft tissue pathologies. Many biomechanical studies evaluated the range of motion, structural stiffness of spine segments under different loading conditions, without addressing the strain distribution. Strain gauges have been used to measure strain in the vertebral body, in a pointwise way.What is currently missing is a method to measure the distribution of strain in the soft tissues (intervertebral discs and ligaments), and an integration between measurements in the hard and soft tissues. Digital Image Correlation (DIC) is a recently developed optical technique, which allows measuring the distribution of displacements and deformation in a contact-less way. It can provide a full-field view of the examined surface under load. DIC can therefore give a more complete knowledge of the biomechanics of the spine. Methods This study was performed multisegmental porcine spine specimens with two loading configurations (flexion and lateral bending), while DIC was used to measure the strain distribution. The tests showed the different deformation in the vertebral body, intervertebral discs and ligaments in compression and tension. At the same time it was possible to visualize the growth plates, which are Conclusion: Significantly softer than the vertebral bone.This work showed the feasibility of investigating the spine in a full-field way, and to quantify the strain inhomogeneity in the vertebrae and soft tissues. Therefore DIC can help improve implantable devices and the surgical technique.
Collapse
Affiliation(s)
- Maria Luisa Ruspi
- Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Marco Palanca
- Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Cesare Faldini
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, Italy.,2 Orthopaedic and Traumatologic Clinic, Rizzoli Orthopaedic Institute
| | - Luca Cristofolini
- Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
45
|
Takahashi A, Zhu X, Aoyama Y, Umezu M, Iwasaki K. Three-Dimensional Strain Measurements of a Tubular Elastic Model Using Tomographic Particle Image Velocimetry. Cardiovasc Eng Technol 2018; 9:395-404. [PMID: 29560585 DOI: 10.1007/s13239-018-0350-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 03/15/2018] [Indexed: 11/24/2022]
Abstract
The evaluation of strain induced in a blood vessel owing to contact with a medical device is of significance to examine the causes leading to vascular injury and rupture. The development of a method to assess strain in largely deformed elastic materials is expected. This study's scope was to measure strain in deformed tubular elastic mock vessels using tomographic particle image velocimetry (tomo-PIV), and to show the applicability of this measurement method by comparing the results with data derived from a finite element analysis (FEA). Strain distribution was calculated from the displacement distribution, which in turn was measured by tracking fluorescent 13 μm particles in a transparent tubular elastic model using tomo-PIV. The von Mises strain distribution was calculated for a model whose inner diameter was subjected to a pressure load, because of which it expanded from 25 to 27.5 mm, adjusting to the diameter change of a human aorta during heartbeat. An FEA simulating the experiment was also conducted. Three-dimensional strain was successfully measured by using the tomo-PIV method. The radial strain distribution in the model linearly decreased outward (from the its inner to its outer side), and the result was consistent with the data obtained from the FEA. The mean von Mises strain measured using tomo-PIV was comparable with that obtained from the FEA (tomo-PIV: 0.155, FEA: 0.156). This study demonstrates the feasibility of utilizing tomo-PIV to quantitatively assess the three-dimensional strain induced in largely deformed elastic models.
Collapse
Affiliation(s)
- Azuma Takahashi
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Xiaodong Zhu
- Department of Modern Mechanical Engineering, Graduate School of Creative Science and Engineering, Waseda University, Tokyo, Japan
| | - Yusuke Aoyama
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Mitsuo Umezu
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.,Department of Modern Mechanical Engineering, Graduate School of Creative Science and Engineering, Waseda University, Tokyo, Japan.,Cooperative Major in Advanced Biomedical Sciences, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Kiyotaka Iwasaki
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan. .,Department of Modern Mechanical Engineering, Graduate School of Creative Science and Engineering, Waseda University, Tokyo, Japan. .,Cooperative Major in Advanced Biomedical Sciences, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan. .,, 2-2 Wakamatsu-cho, Shinjuku, Tokyo, 162-8480, Japan.
| |
Collapse
|
46
|
Full-field strain distribution in multi-vertebra spine segments: An in vitro application of digital image correlation. Med Eng Phys 2018; 52:76-83. [DOI: 10.1016/j.medengphy.2017.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 11/08/2017] [Accepted: 11/22/2017] [Indexed: 11/17/2022]
|
47
|
Danesi V, Erani P, Brandolini N, Juszczyk MM, Cristofolini L. Effect of the In Vitro Boundary Conditions on the Surface Strain Experienced by the Vertebral Body in the Elastic Regime. J Biomech Eng 2017; 138:2543312. [PMID: 27496676 DOI: 10.1115/1.4034383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Indexed: 11/08/2022]
Abstract
The vertebral strength and strain can be assessed in vitro by both using isolated vertebrae and sets of three adjacent vertebrae (the central one is loaded through the disks). Our goal was to elucidate if testing single-vertebra-specimens in the elastic regime provides different surface strains to three-vertebrae-segments. Twelve three-vertebrae sets were extracted from thoracolumbar human spines. To measure the principal strains, the central vertebra of each segment was prepared with eight strain-gauges. The sets were tested mechanically, allowing comparison of the surface strains between the two boundary conditions: first when the same vertebra was loaded through the disks (three-vertebrae-segment) and then with the endplates embedded in cement (single-vertebra). They were all subjected to four nondestructive tests (compression, traction, torsion clockwise, and counterclockwise). The magnitude of principal strains differed significantly between the two boundary conditions. For axial loading, the largest principal strains (along vertebral axis) were significantly higher when the same vertebra was tested isolated compared to the three-vertebrae-segment. Conversely, circumferential strains decreased significantly in the single vertebrae compared to the three-vertebrae-segment, with some variations exceeding 100% of the strain magnitude, including changes from tension to compression. For torsion, the differences between boundary conditions were smaller. This study shows that, in the elastic regime, when the vertebra is loaded through a cement pot, the surface strains differ from when it is loaded through the disks. Therefore, when single vertebrae are tested, surface strain should be taken with caution.
Collapse
|
48
|
Takahashi A, Suzuki S, Aoyama Y, Umezu M, Iwasaki K. A three-dimensional strain measurement method in elastic transparent materials using tomographic particle image velocimetry. PLoS One 2017; 12:e0184782. [PMID: 28910397 PMCID: PMC5599044 DOI: 10.1371/journal.pone.0184782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 08/30/2017] [Indexed: 11/17/2022] Open
Abstract
Background The mechanical interaction between blood vessels and medical devices can induce strains in these vessels. Measuring and understanding these strains is necessary to identify the causes of vascular complications. This study develops a method to measure the three-dimensional (3D) distribution of strain using tomographic particle image velocimetry (Tomo-PIV) and compares the measurement accuracy with the gauge strain in tensile tests. Methods and findings The test system for measuring 3D strain distribution consists of two cameras, a laser, a universal testing machine, an acrylic chamber with a glycerol water solution for adjusting the refractive index with the silicone, and dumbbell-shaped specimens mixed with fluorescent tracer particles. 3D images of the particles were reconstructed from 2D images using a multiplicative algebraic reconstruction technique (MART) and motion tracking enhancement. Distributions of the 3D displacements were calculated using a digital volume correlation. To evaluate the accuracy of the measurement method in terms of particle density and interrogation voxel size, the gauge strain and one of the two cameras for Tomo-PIV were used as a video-extensometer in the tensile test. The results show that the optimal particle density and interrogation voxel size are 0.014 particles per pixel and 40 × 40 × 40 voxels with a 75% overlap. The maximum measurement error was maintained at less than 2.5% in the 4-mm-wide region of the specimen. Conclusions We successfully developed a method to experimentally measure 3D strain distribution in an elastic silicone material using Tomo-PIV and fluorescent particles. To the best of our knowledge, this is the first report that applies Tomo-PIV to investigate 3D strain measurements in elastic materials with large deformation and validates the measurement accuracy.
Collapse
Affiliation(s)
- Azuma Takahashi
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
| | - Sara Suzuki
- Department of Modern Mechanical Engineering, Graduate School of Creative Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
| | - Yusuke Aoyama
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
| | - Mitsuo Umezu
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan.,Department of Modern Mechanical Engineering, Graduate School of Creative Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
| | - Kiyotaka Iwasaki
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan.,Cooperative Major in Advanced Biomedical Sciences, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
| |
Collapse
|
49
|
Ali AM, Newman SDS, Hooper PA, Davies CM, Cobb JP. The effect of implant position on bone strain following lateral unicompartmental knee arthroplasty: A Biomechanical Model Using Digital Image Correlation. Bone Joint Res 2017; 6:522-529. [PMID: 28855192 PMCID: PMC5579314 DOI: 10.1302/2046-3758.68.bjr-2017-0067.r1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 06/27/2017] [Indexed: 11/06/2022] Open
Abstract
Objectives Unicompartmental knee arthroplasty (UKA) is a demanding procedure, with tibial component subsidence or pain from high tibial strain being potential causes of revision. The optimal position in terms of load transfer has not been documented for lateral UKA. Our aim was to determine the effect of tibial component position on proximal tibial strain. Methods A total of 16 composite tibias were implanted with an Oxford Domed Lateral Partial Knee implant using cutting guides to define tibial slope and resection depth. Four implant positions were assessed: standard (5° posterior slope); 10° posterior slope; 5° reverse tibial slope; and 4 mm increased tibial resection. Using an electrodynamic axial-torsional materials testing machine (Instron 5565), a compressive load of 1.5 kN was applied at 60 N/s on a meniscal bearing via a matching femoral component. Tibial strain beneath the implant was measured using a calibrated Digital Image Correlation system. Results A 5° increase in tibial component posterior slope resulted in a 53% increase in mean major principal strain in the posterior tibial zone adjacent to the implant (p = 0.003). The highest strains for all implant positions were recorded in the anterior cortex 2 cm to 3 cm distal to the implant. Posteriorly, strain tended to decrease with increasing distance from the implant. Lateral cortical strain showed no significant relationship with implant position. Conclusion Relatively small changes in implant position and orientation may significantly affect tibial cortical strain. Avoidance of excessive posterior tibial slope may be advisable during lateral UKA. Cite this article: A. M. Ali, S. D. S. Newman, P. A. Hooper, C. M. Davies, J. P. Cobb. The effect of implant position on bone strain following lateral unicompartmental knee arthroplasty: A Biomechanical Model Using Digital Image Correlation. Bone Joint Res 2017;6:522–529. DOI: 10.1302/2046-3758.68.BJR-2017-0067.R1.
Collapse
Affiliation(s)
- A M Ali
- Imperial College London, Charing Cross Campus, London, W6 8RP, UK
| | - S D S Newman
- Imperial College London, Charing Cross Campus, London, W6 8RP, UK
| | - P A Hooper
- Department of Mechanical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - C M Davies
- Department of Mechanical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - J P Cobb
- Imperial College London, Charing Cross Campus, London, W6 8RP, UK
| |
Collapse
|
50
|
Micro Finite Element models of the vertebral body: Validation of local displacement predictions. PLoS One 2017; 12:e0180151. [PMID: 28700618 PMCID: PMC5507408 DOI: 10.1371/journal.pone.0180151] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/10/2017] [Indexed: 11/19/2022] Open
Abstract
The estimation of local and structural mechanical properties of bones with micro Finite Element (microFE) models based on Micro Computed Tomography images depends on the quality bone geometry is captured, reconstructed and modelled. The aim of this study was to validate microFE models predictions of local displacements for vertebral bodies and to evaluate the effect of the elastic tissue modulus on model’s predictions of axial forces. Four porcine thoracic vertebrae were axially compressed in situ, in a step-wise fashion and scanned at approximately 39μm resolution in preloaded and loaded conditions. A global digital volume correlation (DVC) approach was used to compute the full-field displacements. Homogeneous, isotropic and linear elastic microFE models were generated with boundary conditions assigned from the interpolated displacement field measured from the DVC. Measured and predicted local displacements were compared for the cortical and trabecular compartments in the middle of the specimens. Models were run with two different tissue moduli defined from microindentation data (12.0GPa) and a back-calculation procedure (4.6GPa). The predicted sum of axial reaction forces was compared to the experimental values for each specimen. MicroFE models predicted more than 87% of the variation in the displacement measurements (R2 = 0.87–0.99). However, model predictions of axial forces were largely overestimated (80–369%) for a tissue modulus of 12.0GPa, whereas differences in the range 10–80% were found for a back-calculated tissue modulus. The specimen with the lowest density showed a large number of elements strained beyond yield and the highest predictive errors. This study shows that the simplest microFE models can accurately predict quantitatively the local displacements and qualitatively the strain distribution within the vertebral body, independently from the considered bone types.
Collapse
|