1
|
Jia Y, Le H, Wang X, Zhang J, Liu Y, Ding J, Zheng C, Chang F. Double-edged role of mechanical stimuli and underlying mechanisms in cartilage tissue engineering. Front Bioeng Biotechnol 2023; 11:1271762. [PMID: 38053849 PMCID: PMC10694366 DOI: 10.3389/fbioe.2023.1271762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/11/2023] [Indexed: 12/07/2023] Open
Abstract
Mechanical stimuli regulate the chondrogenic differentiation of mesenchymal stem cells and the homeostasis of chondrocytes, thus affecting implant success in cartilage tissue engineering. The mechanical microenvironment plays fundamental roles in the maturation and maintenance of natural articular cartilage, and the progression of osteoarthritis Hence, cartilage tissue engineering attempts to mimic this environment in vivo to obtain implants that enable a superior regeneration process. However, the specific type of mechanical loading, its optimal regime, and the underlying molecular mechanisms are still under investigation. First, this review delineates the composition and structure of articular cartilage, indicating that the morphology of chondrocytes and components of the extracellular matrix differ from each other to resist forces in three top-to-bottom overlapping zones. Moreover, results from research experiments and clinical trials focusing on the effect of compression, fluid shear stress, hydrostatic pressure, and osmotic pressure are presented and critically evaluated. As a key direction, the latest advances in mechanisms involved in the transduction of external mechanical signals into biological signals are discussed. These mechanical signals are sensed by receptors in the cell membrane, such as primary cilia, integrins, and ion channels, which next activate downstream pathways. Finally, biomaterials with various modifications to mimic the mechanical properties of natural cartilage and the self-designed bioreactors for experiment in vitro are outlined. An improved understanding of biomechanically driven cartilage tissue engineering and the underlying mechanisms is expected to lead to efficient articular cartilage repair for cartilage degeneration and disease.
Collapse
Affiliation(s)
- Yao Jia
- Department of Orthopedics, The Second Hospital of Jilin University, Jilin, China
- The Second Bethune Clinical Medical College of Jilin University, Jilin, China
| | - Hanxiang Le
- Department of Orthopedics, The Second Hospital of Jilin University, Jilin, China
- The Fourth Treatment Area of Trauma Hip Joint Surgery Department, Tianjin Hospital, Tianjin, China
| | - Xianggang Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Jilin, China
| | - Jiaxin Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Jilin, China
| | - Yan Liu
- The Second Bethune Clinical Medical College of Jilin University, Jilin, China
| | - Jiacheng Ding
- The Second Bethune Clinical Medical College of Jilin University, Jilin, China
| | - Changjun Zheng
- Department of Orthopedics, The Second Hospital of Jilin University, Jilin, China
| | - Fei Chang
- Department of Orthopedics, The Second Hospital of Jilin University, Jilin, China
| |
Collapse
|
2
|
Li K, Zhu Y, Zhang Q, Shi Y, Yan T, Lu X, Sun H, Li T, Li Z, Shi X, Han D. Interstitial Injection of Hydrogels with High-Mechanical Conductivity Relieves Muscle Atrophy Induced by Nerve Injury. Adv Healthc Mater 2023; 12:e2202707. [PMID: 37409443 DOI: 10.1002/adhm.202202707] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 06/13/2023] [Accepted: 06/24/2023] [Indexed: 07/07/2023]
Abstract
Injectable hydrogels have been extensively used in tissue engineering where high mechanical properties are key for their functionality at sites of high physiological stress. In this study, an injectable, conductive hydrogel is developed exhibiting remarkable mechanical strength that can withstand a pressure of 500 kPa (85% deformation rate) and display good fatigue resistance, electrical conductivity, and tissue adhesion. A stable covalent cross-linked network with a slip-ring structure by threading amino β-cyclodextrin is formed onto the chain of a four-armed (polyethylene glycol) amino group, and then reacted with the four-armed (polyethylene glycol) maleimide under physiological conditions. The addition of silver nanowires enhances the hydrogel's electrical conductivity, enabling it to act as a good conductor in vivo. The hydrogel is injected into the fascial space, and the results show that the weight and muscle tone of the atrophied gastrocnemius muscle improve, subsequently alleviating muscle atrophy. Overall, this study provides a simple method for the preparation of a conductive hydrogel with high mechanical properties. In addition, the interstitial injection provides a strategy for the use of hydrogels in vivo.
Collapse
Affiliation(s)
- Kai Li
- College of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yuting Zhu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Qiang Zhang
- Hebei Key Laboratory of Nanobiotechnology, Yanshan University, Qinhuangdao, 066004, China
| | - Yahong Shi
- College of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Tun Yan
- College of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xi Lu
- College of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Huizhen Sun
- College of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Tingting Li
- College of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhongxian Li
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xiaoli Shi
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong Han
- College of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
The explorations of dynamic interactions of paxillin at the focal adhesions. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140825. [PMID: 35926716 DOI: 10.1016/j.bbapap.2022.140825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/16/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022]
Abstract
Paxillin is one of the most important adapters in integrin-mediated adhesions that performs numerous crucial functions relying on its dynamic interactions. Its structural behavior serves different purposes, providing a base for several activities. The various domains of paxillin display different functions in the whole process of cell movements and have a significant role in cell adhesion, migration, signal transmission, and protein-protein interactions. On the other hand, some paxillin-associated proteins provide a unique spatiotemporal mechanism for regulating its dynamic characteristics in the tissue homeostasis and make it a more complex and decisive protein at the focal adhesions. This review briefly describes the structural adaptations and molecular mechanisms of recruitment of paxillin into adhesions, explains paxillin's binding dynamics and impact on adhesion stability and turnover, and reveals a variety of paxillin-associated regulatory mechanisms and how paxillin is embedded into the signaling networks.
Collapse
|
4
|
Jia Y, Wang Y, Niu L, Zhang H, Tian J, Gao D, Zhang X, Lu TJ, Qian J, Huang G, Xu F. The Plasticity of Nanofibrous Matrix Regulates Fibroblast Activation in Fibrosis. Adv Healthc Mater 2021; 10:e2001856. [PMID: 33511795 DOI: 10.1002/adhm.202001856] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/16/2021] [Indexed: 01/01/2023]
Abstract
Natural extracellular matrix (ECM) mostly has a fibrous structure that supports and mechanically interacts with local residing cells to guide their behaviors. The effect of ECM elasticity on cell behaviors has been extensively investigated, while less attention has been paid to the effect of matrix fiber-network plasticity at microscale, although plastic remodeling of fibrous matrix is a common phenomenon in fibrosis. Here, a significant decrease is found in plasticity of native fibrotic tissues, which is associated with an increase in matrix crosslinking. To explore the role of plasticity in fibrosis development, a set of 3D collagen nanofibrous matrix with constant modulus but tunable plasticity is constructed by adjusting the crosslinking degree. Using plasticity-controlled 3D culture models, it is demonstrated that the decrease of matrix plasticity promotes fibroblast activation and spreading. Further, a coarse-grained molecular dynamic model is developed to simulate the cell-matrix interaction at microscale. Combining with molecular experiments, it is revealed that the enhanced fibroblast activation is mediated through cytoskeletal tension and nuclear translocation of Yes-associated protein. Taken together, the results clarify the effects of crosslinking-induced plasticity changes of nanofibrous matrix on the development of fibrotic diseases and highlight plasticity as an important mechanical cue in understanding cell-matrix interactions.
Collapse
Affiliation(s)
- Yuanbo Jia
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education School of Life Science and Technology Xi'an Jiaotong University Xi'an 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC) Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Yanzhong Wang
- Department of Engineering Mechanics Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province Zhejiang University Hangzhou 310027 P. R. China
| | - Lele Niu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education School of Life Science and Technology Xi'an Jiaotong University Xi'an 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC) Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Hang Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education School of Life Science and Technology Xi'an Jiaotong University Xi'an 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC) Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Jin Tian
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education School of Life Science and Technology Xi'an Jiaotong University Xi'an 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC) Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Dengfeng Gao
- Department of Cardiology The Second Affiliated Hospital Xi'an Jiaotong University School of Medical Xi'an Shaanxi P. R. China
| | - Xiaohui Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education School of Life Science and Technology Xi'an Jiaotong University Xi'an 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC) Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Tian Jian Lu
- State Key Laboratory of Mechanics and Control of Mechanical Structures Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China
- Nanjing Center for Multifunctional Lightweight Materials and Structures Nanjing University of Aeronautics and Astronautics Nanjing 21006 P. R. China
| | - Jin Qian
- Department of Engineering Mechanics Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province Zhejiang University Hangzhou 310027 P. R. China
| | - Guoyou Huang
- Department of Engineering Mechanics School of Civil Engineering Wuhan University Wuhan 430072 P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education School of Life Science and Technology Xi'an Jiaotong University Xi'an 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC) Xi'an Jiaotong University Xi'an 710049 P. R. China
| |
Collapse
|
5
|
Wang Y, Sang J, Ao R, Ma Y, Fu B. Numerical simulation of deformed red blood cell by utilizing neural network approach and finite element analysis. Comput Methods Biomech Biomed Engin 2020; 23:1190-1200. [DOI: 10.1080/10255842.2020.1791836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Ying Wang
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, China
| | - Jianbing Sang
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, China
| | - Rihan Ao
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, China
| | - Yu Ma
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, China
| | - Bowei Fu
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, China
| |
Collapse
|
6
|
Sun Y, Xu Z, Wang M, Lv S, Wu H, Chi G, Li L, Li Y. Soft Matrix Combined With BMPR Inhibition Regulates Neurogenic Differentiation of Human Umbilical Cord Mesenchymal Stem Cells. Front Bioeng Biotechnol 2020; 8:791. [PMID: 32760710 PMCID: PMC7372119 DOI: 10.3389/fbioe.2020.00791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/22/2020] [Indexed: 11/25/2022] Open
Abstract
Stem cells constantly encounter as well as respond to a variety of signals in their microenvironment. Although the role of biochemical factors has always been emphasized, the significance of biophysical signals has not been studied until recently. Additionally, biophysical elements, like extracellular matrix (ECM) stiffness, can regulate functions of stem cells. In this study, we demonstrated that soft matrix with 1-10 kPa can induce neural differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs). Importantly, we used a combination of soft matrix and bone morphogenetic protein receptor (BMPR) inhibition to promote neurogenic differentiation of hUC-MSCs. Furthermore, BMPR/SMADs occurs in crosstalk with the integrinβ1 downstream signaling pathway. In addition, BMPR inhibition plays a positive role in maintaining the undifferentiated state of hUC-MSCs on the hydrogel substrate. The results provide further evidence for the molecular mechanisms via which stem cells convert mechanical inputs into fateful decisions.
Collapse
Affiliation(s)
- Yingying Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
- Department of Stomatology, First Hospital of Jilin University, Changchun, China
| | - Ziran Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Meijing Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Shuang Lv
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Haitao Wu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
7
|
Tang K, Li S, Li P, Xia Q, Yang R, Li T, Li L, Jiang Y, Qin X, Yang H, Wu C, You F, Tan Y, Liu Y. Shear stress stimulates integrin β1 trafficking and increases directional migration of cancer cells via promoting deacetylation of microtubules. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118676. [DOI: 10.1016/j.bbamcr.2020.118676] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 01/09/2020] [Accepted: 02/05/2020] [Indexed: 12/17/2022]
|
8
|
MacKay L, Khadra A. The bioenergetics of integrin-based adhesion, from single molecule dynamics to stability of macromolecular complexes. Comput Struct Biotechnol J 2020; 18:393-416. [PMID: 32128069 PMCID: PMC7044673 DOI: 10.1016/j.csbj.2020.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/22/2022] Open
Abstract
The forces actively generated by motile cells must be transmitted to their environment in a spatiotemporally regulated manner, in order to produce directional cellular motion. This task is accomplished through integrin-based adhesions, large macromolecular complexes that link the actin-cytoskelton inside the cell to its external environment. Despite their relatively large size, adhesions exhibit rapid dynamics, switching between assembly and disassembly in response to chemical and mechanical cues exerted by cytoplasmic biochemical signals, and intracellular/extracellular forces, respectively. While in material science, force typically disrupts adhesive contact, in this biological system, force has a more nuanced effect, capable of causing assembly or disassembly. This initially puzzled experimentalists and theorists alike, but investigation into the mechanisms regulating adhesion dynamics have progressively elucidated the origin of these phenomena. This review provides an overview of recent studies focused on the theoretical understanding of adhesion assembly and disassembly as well as the experimental studies that motivated them. We first concentrate on the kinetics of integrin receptors, which exhibit a complex response to force, and then investigate how this response manifests itself in macromolecular adhesion complexes. We then turn our attention to studies of adhesion plaque dynamics that link integrins to the actin-cytoskeleton, and explain how force can influence the assembly/disassembly of these macromolecular structure. Subsequently, we analyze the effect of force on integrins populations across lengthscales larger than single adhesions. Finally, we cover some theoretical studies that have considered both integrins and the adhesion plaque and discuss some potential future avenues of research.
Collapse
Affiliation(s)
- Laurent MacKay
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada
| | - Anmar Khadra
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Molina JJ, Yamamoto R. Modeling the mechanosensitivity of fast-crawling cells on cyclically stretched substrates. SOFT MATTER 2019; 15:683-698. [PMID: 30623962 DOI: 10.1039/c8sm01903g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The mechanosensitivity of cells, which determines how they are able to respond to mechanical signals, is crucial for the functioning of biological systems. Experimentally, this is investigated by studying the reorientation of cells on cyclically stretched substrates. The reorientation depends on the type of cell and on the stretching protocol, but the mechanisms responsible for the response are still not completely understood. Here, we introduce a computational model for fast crawling cells on cyclically stretched substrates that accounts for the sub-cellular elements responsible for cell shape and motility. This includes the dynamics of the cell membrane, the actin cytoskeleton, and the focal adhesions with the stretching substrate. These processes evolve over characteristic time scales that can vary by orders of magnitude and naturally give rise to the frequency dependent reorientation observed experimentally. Depending on which processes are being probed by the stretching and on the type of coupling with the substrate, our simulations predict either no reorientation, a bi-stability in the parallel and perpendicular directions, or a complete reorientation in either the parallel or perpendicular direction. In particular, we show that an asymmetry in the adhesion dynamics during the loading and unloading phases of the stretching, whether it comes from the response of the cell itself or from the precise stretching protocol, can be used to selectively align the cells. Our results provide further evidence for the importance of focal adhesion dynamics in determining the mechanosensitive response of cells, as well as a way to interpret recent experiments.
Collapse
Affiliation(s)
- John J Molina
- Department of Chemical Engineering, Kyoto University, Kyoto, Japan.
| | - Ryoichi Yamamoto
- Department of Chemical Engineering, Kyoto University, Kyoto, Japan. and Institute of Industrial Science, The University of Tokyo, Tokyo, 153-8505, Japan
| |
Collapse
|
10
|
Bell S, Redmann AL, Terentjev EM. Universal Kinetics of the Onset of Cell Spreading on Substrates of Different Stiffness. Biophys J 2019; 116:551-559. [PMID: 30665696 PMCID: PMC6369430 DOI: 10.1016/j.bpj.2018.12.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 12/17/2018] [Accepted: 12/28/2018] [Indexed: 12/19/2022] Open
Abstract
When plated onto substrates, cell morphology and even stem-cell differentiation are influenced by the stiffness of their environment. Stiffer substrates give strongly spread (eventually polarized) cells with strong focal adhesions and stress fibers; very soft substrates give a less developed cytoskeleton and much lower cell spreading. The kinetics of this process of cell spreading is studied extensively, and important universal relationships are established on how the cell area grows with time. Here, we study the population dynamics of spreading cells, investigating the characteristic processes involved in the cell response to the substrate. We show that unlike the individual cell morphology, this population dynamics does not depend on the substrate stiffness. Instead, a strong activation temperature dependence is observed. Different cell lines on different substrates all have long-time statistics controlled by the thermal activation over a single energy barrier ΔG ≈ 18 kcal/mol, whereas the early-time kinetics follows a power law ∼t5. This implies that the rate of spreading depends on an internal process of adhesion complex assembly and activation; the operational complex must have five component proteins, and the last process in the sequence (which we believe is the activation of focal adhesion kinase) is controlled by the binding energy ΔG.
Collapse
Affiliation(s)
- Samuel Bell
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Anna-Lena Redmann
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Eugene M Terentjev
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
11
|
Osteogenesis-Related Behavior of MC3T3-E1 Cells on Substrates with Tunable Stiffness. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4025083. [PMID: 30515396 PMCID: PMC6236916 DOI: 10.1155/2018/4025083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/25/2018] [Accepted: 10/23/2018] [Indexed: 12/28/2022]
Abstract
Osteogenic differentiation of cells has considerable clinical significance in bone defect treatment, and cell behavior is linked to extracellular matrix stiffness. This study aimed to determine how matrix stiffness affects cell morphology and subsequently regulates the osteogenic phenotype of osteogenesis precursor cells. Four PDMS substrates were prepared with stiffness corresponding to the elastic modulus ranging from 0.6 MPa to 2.7 MPa by altering the Sylgard 527 and Sylgard 184 concentrations. MC3T3-E1 cells were cultured on the matrices. Cell morphology, vinculin expression, and key osteogenic markers, Col I, OCN, OPN, and calcium nodule, were examined. The activity and expression level of Yes-associated protein (YAP) were evaluated. Results showed that cell spreading exhibited no correlation with the stiffness of matrix designed in this paper, but substratum stiffness did modulate MC3T3-E1 osteogenic differentiation. Col I, OPN, and OCN proteins were significantly increased in cells cultured on soft matrices compared with stiff matrices. Additionally, cells cultured on the 1:3 ratio matrices had more nodules than those on other matrices. Accordingly, cells on substrates with low stiffness showed enhanced expression of the osteogenic markers. Meanwhile, YAP expression was downregulated on soft substrates although the subcellular location was not affected. Our results provide evidence that matrix stiffness (elastic modulus ranging from 0.6 MPa to 2.7 MPa) affects the osteogenic differentiation of MC3T3-E1, but it is not that “the stiffer, the better” as showed in some of the previous studies. The optimal substrate stiffness may exist to promote osteoblast differentiation. Cell differentiation triggered by the changes in substrate stiffness may be independent of the YAP signal. This study has important implications for biomaterial design and stem cell-based tissue engineering.
Collapse
|
12
|
Nestor-Bergmann A, Johns E, Woolner S, Jensen OE. Mechanical characterization of disordered and anisotropic cellular monolayers. Phys Rev E 2018; 97:052409. [PMID: 29906905 PMCID: PMC7613005 DOI: 10.1103/physreve.97.052409] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Indexed: 01/13/2023]
Abstract
We consider a cellular monolayer, described using a vertex-based model, for which cells form a spatially disordered array of convex polygons that tile the plane. Equilibrium cell configurations are assumed to minimize a global energy defined in terms of cell areas and perimeters; energy is dissipated via dynamic area and length changes, as well as cell neighbor exchanges. The model captures our observations of an epithelium from a Xenopus embryo showing that uniaxial stretching induces spatial ordering, with cells under net tension (compression) tending to align with (against) the direction of stretch, but with the stress remaining heterogeneous at the single-cell level. We use the vertex model to derive the linearized relation between tissue-level stress, strain, and strain rate about a deformed base state, which can be used to characterize the tissue’s anisotropic mechanical properties; expressions for viscoelastic tissue moduli are given as direct sums over cells. When the base state is isotropic, the model predicts that tissue properties can be tuned to a regime with high elastic shear resistance but low resistance to area changes, or vice versa.
Collapse
Affiliation(s)
- Alexander Nestor-Bergmann
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, United Kingdom
| | - Emma Johns
- Wellcome Trust Centre for Cell-Matrix Research, School of Medical Sciences, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Sarah Woolner
- Wellcome Trust Centre for Cell-Matrix Research, School of Medical Sciences, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Oliver E Jensen
- School of Mathematics, University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
13
|
Ramos JRD, Travasso R, Carvalho J. Capillary network formation from dispersed endothelial cells: Influence of cell traction, cell adhesion, and extracellular matrix rigidity. Phys Rev E 2018; 97:012408. [PMID: 29448490 DOI: 10.1103/physreve.97.012408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Indexed: 11/07/2022]
Abstract
The formation of a functional vascular network depends on biological, chemical, and physical processes being extremely well coordinated. Among them, the mechanical properties of the extracellular matrix and cell adhesion are fundamental to achieve a functional network of endothelial cells, able to fully cover a required domain. By the use of a Cellular Potts Model and Finite Element Method it is shown that there exists a range of values of endothelial traction forces, cell-cell adhesion, and matrix rigidities where the network can spontaneously be formed, and its properties are characterized. We obtain the analytical relation that the minimum traction force required for cell network formation must obey. This minimum value for the traction force is approximately independent on the considered cell number and cell-cell adhesion. We quantify how these two parameters influence the morphology of the resulting networks (size and number of meshes).
Collapse
Affiliation(s)
- João R D Ramos
- Centro de Física da Universidade de Coimbra, CFisUC, 3007-516 Coimbra, Portugal.,Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| | - Rui Travasso
- Centro de Física da Universidade de Coimbra, CFisUC, 3007-516 Coimbra, Portugal
| | - João Carvalho
- Centro de Física da Universidade de Coimbra, CFisUC, 3007-516 Coimbra, Portugal
| |
Collapse
|
14
|
Control of cellular adhesion and myofibroblastic character with sub-micrometer magnetoelastic vibrations. J Biomech 2018; 71:199-207. [PMID: 29477260 DOI: 10.1016/j.jbiomech.2018.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/25/2017] [Accepted: 02/05/2018] [Indexed: 02/06/2023]
Abstract
The effect of sub-cellular mechanical loads on the behavior of fibroblasts was investigated using magnetoelastic (ME) materials, a type of material that produces mechanical vibrations when exposed to an external magnetic AC field. The integration of this functionality into implant surfaces could mitigate excessive fibrotic responses to many biomedical devices. By changing the profiles of the AC magnetic field, the amplitude, duration, and period of the applied vibrations was altered to understand the effect of each parameter on cell behavior. Results indicate fibroblast adhesion depends on the magnitude and total number of applied vibrations, and reductions in proliferative activity, cell spreading, and the expression of myofibroblastic markers occur in response to the vibrations induced by the ME materials. These findings suggest that the subcellular amplitude mechanical loads produced by ME materials could potentially remotely modulate myofibroblastic activity and limit undesirable fibrotic development.
Collapse
|
15
|
He S, Ji B. Mechanics of Cell Mechanosensing in Protrusion and Retraction of Lamellipodium. ACS Biomater Sci Eng 2017; 3:2943-2953. [PMID: 33418714 DOI: 10.1021/acsbiomaterials.6b00539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Lamellipodia (LP), a subcellular structure at cell front, plays a key role in cell spreading and migration. And its mechanosensing function is of crucial importance for cell activities. But the mechanism of the mechanosensing function remains poorly understood. Here we developed a multiscale model to consider its protrusion and retraction processes, and analyzed the forces acted on the key structural components of the LP and the effect of these forces on LP movement. Our results show that raising substrate rigidity increases the force acting on the focal adhesion (FA) and decreases the force on LP actin, thus promoting the maturation of FA while suppressing the detachment of LP actin from the cell membrane. The membrane tension also influences the LP movement, but its effect is opposite to that of the substrate rigidity. It turns out that the substrate rigidity and membrane tension together regulate the dynamics of FAs and the detachment of LP actin, which in turn determine the LP movement. Interestingly, we found that the effect of substrate rigidity and membrane tension on the LP movement both exhibit a biphasic manner. We show that our predictions agree, in general, with the experiments on cell mechanosensing behaviors at both subcellular and cellular levels.
Collapse
Affiliation(s)
- Shijie He
- Biomechanics and Biomaterials Laboratory, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Baohua Ji
- Biomechanics and Biomaterials Laboratory, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| |
Collapse
|
16
|
Yu S, Wang H, Ni Y, He L, Huang M, Lin Y, Qian J, Jiang H. Tuning interfacial patterns of molecular bonds via surface morphology. SOFT MATTER 2017; 13:5970-5976. [PMID: 28869265 DOI: 10.1039/c7sm01278k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Many studies have demonstrated that the mechanical properties of the extracellular matrix can significantly influence the morphology, strength and lifetime of focal adhesions. However, how the morphology of the contact surface affects the pattern formation of the molecular bonds still remains largely unknown. Here, by simplifying the cell and extracellular matrix to two opposing elastic bodies and considering the lateral diffusion as well as the bonding/debonding of molecular bonds, we study the clustering behavior of receptor-ligand bonds between curved surfaces and the phase diagrams of cluster patterns. We reveal the important role of surface morphology and bond kinetics in regulating the patterns of bond clusters. We further investigate the segregation dynamics of the interfacial bonds under various loading speeds, and we show that the average interfacial stress is rate-dependent while the rupture stress is rate-independent. Finally, we demonstrate that programmable patterning of bond clusters can be achieved through the designed surface morphology.
Collapse
Affiliation(s)
- Sai Yu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Xu GK, Qian J, Hu J. The glycocalyx promotes cooperative binding and clustering of adhesion receptors. SOFT MATTER 2016; 12:4572-4583. [PMID: 27102288 DOI: 10.1039/c5sm03139g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cell adhesion plays a pivotal role in various biological processes, e.g., immune responses, cancer metastasis, and stem cell differentiation. The adhesion behaviors depend subtly on the binding kinetics of receptors and ligands restricted at the cell-substrate interfaces. Although much effort has been directed toward investigating the kinetics of adhesion molecules, the role of the glycocalyx, anchored on cell surfaces as an exterior layer, is still unclear. In this paper, we propose a theoretical approach to study the collective binding kinetics of a few and a large number of binders in the presence of the glycocalyx, representing the cases of initial and mature adhesions of cells, respectively. The analytical results are validated by finding good agreement with our Monte Carlo simulations. In the force loading case, the on-rate and affinity increase as more bonds form, whereas this cooperative effect is not observed in the displacement loading case. The increased thickness and stiffness of the glycocalyx tend to decrease the affinity for a few bonds, while they have less influence on the affinity for a large number of bonds. Moreover, for a flexible membrane with thermally-excited shape fluctuations, the glycocalyx is exhibited to promote the formation of bond clusters, mainly due to the cooperative binding of binders. This study helps to understand the cooperative kinetics of adhesion receptors under physiologically relevant loading conditions and sheds light on the novel role of the glycocalyx in cell adhesion.
Collapse
Affiliation(s)
- Guang-Kui Xu
- International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jin Qian
- Department of Engineering Mechanics, Soft Matter Research Center, Zhejiang University, Hangzhou 310027, China
| | - Jinglei Hu
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| |
Collapse
|
18
|
Xu GK, Liu Z, Feng XQ, Gao H. Tension-compression asymmetry in the binding affinity of membrane-anchored receptors and ligands. Phys Rev E 2016; 93:032411. [PMID: 27078394 DOI: 10.1103/physreve.93.032411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Indexed: 06/05/2023]
Abstract
Cell adhesion plays a crucial role in many biological processes of cells, e.g., immune responses, tissue morphogenesis, and stem cell differentiation. An essential problem in the molecular mechanism of cell adhesion is to characterize the binding affinity of membrane-anchored receptors and ligands under different physiological conditions. In this paper, a theoretical model is presented to study the binding affinity between a large number of anchored receptors and ligands under both tensile and compressive stresses, and corroborated by demonstrating excellent agreement with Monte Carlo simulations. It is shown that the binding affinity becomes lower as the magnitude of the applied stress increases, and drops to zero at a critical tensile or compressive stress. Interestingly, the critical compressive stress is found to be substantially smaller than the critical tensile stress for relatively long and flexible receptor-ligand complexes. This counterintuitive finding is explained by using the Euler instability theory of slender columns under compression. The tension-compression asymmetry in the binding affinity of anchored receptors and ligands depends subtly on the competition between the breaking and instability of their complexes. This study helps in understanding the role of mechanical forces in cell adhesion mediated by specific binding molecules.
Collapse
Affiliation(s)
- Guang-Kui Xu
- International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zishun Liu
- International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Huajian Gao
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
19
|
Liu Y, Gao Y. Non-uniform breaking of molecular bonds, peripheral morphology and releasable adhesion by elastic anisotropy in bio-adhesive contacts. J R Soc Interface 2015; 12:20141042. [PMID: 25392403 DOI: 10.1098/rsif.2014.1042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Biological adhesive contacts are usually of hierarchical structures, such as the clustering of hundreds of sub-micrometre spatulae on keratinous hairs of gecko feet, or the clustering of molecular bonds into focal contacts in cell adhesion. When separating these interfaces, releasable adhesion can be accomplished by asymmetric alignment of the lowest scale discrete bonds (such as the inclined spatula that leads to different peeling force when loading in different directions) or by elastic anisotropy. However, only two-dimensional contact has been analysed for the latter method (Chen & Gao 2007 J. Mech. Phys. Solids 55, 1001-1015 (doi:10.1016/j.jmps.2006.10.008)). Important questions such as the three-dimensional contact morphology, the maximum to minimum pull-off force ratio and the tunability of releasable adhesion cannot be answered. In this work, we developed a three-dimensional cohesive interface model with fictitious viscosity that is capable of simulating the de-adhesion instability and the peripheral morphology before and after the onset of instability. The two-dimensional prediction is found to significantly overestimate the maximum to minimum pull-off force ratio. Based on an interface fracture mechanics analysis, we conclude that (i) the maximum and minimum pull-off forces correspond to the largest and smallest contact stiffness, i.e. 'stiff-adhere and compliant-release', (ii) the fracture toughness is sensitive to the crack morphology and the initial contact shape can be designed to attain a significantly higher maximum-to-minimum pull-off force ratio than a circular contact, and (iii) since the adhesion is accomplished by clustering of discrete bonds or called bridged crack in terms of fracture mechanics terminology, the above conclusions can only be achieved when the bridging zone is significantly smaller than the contact size. This adhesion-fracture analogy study leads to mechanistic predictions that can be readily used to design biomimetics and releasable adhesives.
Collapse
Affiliation(s)
- Yan Liu
- Tianjin First Central Hospital, Tianjin Medical University, Tianjin 300192, People's Republic of China Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Yanfei Gao
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
20
|
Jiang H, Qian J, Lin Y, Ni Y, He L. Aggregation dynamics of molecular bonds between compliant materials. SOFT MATTER 2015; 11:2812-2820. [PMID: 25706682 DOI: 10.1039/c4sm02903h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this paper, we develop a mechanochemical modeling framework in which the spatial-temporal evolution of receptor-ligand bonds takes place at the interface between two compliant media in the presence of an externally applied tensile load. Bond translocation, dissociation and association occur simultaneously, resulting in dynamic aggregation of molecular bonds that is regulated by mechanical factors such as material compliance and applied stress. The results show that bond aggregation is energetically favorable in the out-of-equilibrium process with convoluted time scales from bond diffusion and reaction. Material stiffness is predicted to contribute to adhesion growth and an optimal level of applied stress leads to the maximized size of bond clusters for integrin-based adhesion, consistent with related experimental observations on focal adhesions of cell-matrix interactions. The stress distribution within bond clusters is generally non-uniform and governed by the stress concentration index.
Collapse
Affiliation(s)
- Hongyuan Jiang
- Department of Modern Mechanics, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026, China
| | | | | | | | | |
Collapse
|
21
|
Findley T, Chaudhry H, Dhar S. Transmission of muscle force to fascia during exercise. J Bodyw Mov Ther 2015; 19:119-23. [DOI: 10.1016/j.jbmt.2014.08.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/24/2014] [Accepted: 08/26/2014] [Indexed: 11/15/2022]
|
22
|
Tian J, Zhang FJ, Lei GH. Role of integrins and their ligands in osteoarthritic cartilage. Rheumatol Int 2014; 35:787-98. [PMID: 25261047 DOI: 10.1007/s00296-014-3137-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 09/17/2014] [Indexed: 12/31/2022]
Abstract
Osteoarthritis (OA) is a degenerative disease, which is characterized by articular cartilage destruction, and mainly affects the older people. The extracellular matrix (ECM) provides a vital cellular environment, and interactions between the cell and ECM are important in regulating many biological processes, including cell growth, differentiation, and survival. However, the pathogenesis of this disease is not fully elucidated, and it cannot be cured totally. Integrins are one of the major receptors in chondrocytes. A number of studies confirmed that the chondrocytes express several integrins including α5β1, αVβ3, αVβ5, α6β1, α1β1, α2β1, α10β1, and α3β1, and some integrins ligands might act as the OA progression biomarkers. This review focuses on the functional role of integrins and their extracellular ligands in OA progression, especially OA cartilage. Clear understanding of the role of integrins and their ligands in OA cartilage may have impact on future development of successful therapeutic approaches to OA.
Collapse
Affiliation(s)
- Jian Tian
- Department of Orthopaedics, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, China
| | | | | |
Collapse
|
23
|
Noble PB, Pascoe CD, Lan B, Ito S, Kistemaker LEM, Tatler AL, Pera T, Brook BS, Gosens R, West AR. Airway smooth muscle in asthma: linking contraction and mechanotransduction to disease pathogenesis and remodelling. Pulm Pharmacol Ther 2014; 29:96-107. [PMID: 25062835 DOI: 10.1016/j.pupt.2014.07.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 07/12/2014] [Accepted: 07/15/2014] [Indexed: 02/07/2023]
Abstract
Asthma is an obstructive airway disease, with a heterogeneous and multifactorial pathogenesis. Although generally considered to be a disease principally driven by chronic inflammation, it is becoming increasingly recognised that the immune component of the pathology poorly correlates with the clinical symptoms of asthma, thus highlighting a potentially central role for non-immune cells. In this context airway smooth muscle (ASM) may be a key player, as it comprises a significant proportion of the airway wall and is the ultimate effector of acute airway narrowing. Historically, the contribution of ASM to asthma pathogenesis has been contentious, yet emerging evidence suggests that ASM contractile activation imparts chronic effects that extend well beyond the temporary effects of bronchoconstriction. In this review article we describe the effects that ASM contraction, in combination with cellular mechanotransduction and novel contraction-inflammation synergies, contribute to asthma pathogenesis. Specific emphasis will be placed on the effects that ASM contraction exerts on the mechanical properties of the airway wall, as well as novel mechanisms by which ASM contraction may contribute to more established features of asthma such as airway wall remodelling.
Collapse
Affiliation(s)
- Peter B Noble
- School of Anatomy, Physiology and Human Biology, University of Western Australia, WA, Australia
| | - Chris D Pascoe
- Center for Heart Lung Innovation, University of British Columbia, BC, Canada
| | - Bo Lan
- Center for Heart Lung Innovation, University of British Columbia, BC, Canada; Bioengineering College, Chongqing University, Chongqing, China
| | - Satoru Ito
- Department of Respiratory Medicine, Nagoya University, Aichi, Japan
| | - Loes E M Kistemaker
- Department of Molecular Pharmacology, University of Groningen, The Netherlands
| | - Amanda L Tatler
- Division of Respiratory Medicine, University of Nottingham, United Kingdom
| | - Tonio Pera
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Bindi S Brook
- School of Mathematical Sciences, University of Nottingham, United Kingdom
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, The Netherlands
| | - Adrian R West
- Department of Physiology, University of Manitoba, MB, Canada; Biology of Breathing, Manitoba Institute of Child Health, MB, Canada.
| |
Collapse
|