1
|
Szafron JM, Heng EE, Boyd J, Humphrey JD, Marsden AL. Hemodynamics and Wall Mechanics of Vascular Graft Failure. Arterioscler Thromb Vasc Biol 2024; 44:1065-1085. [PMID: 38572650 PMCID: PMC11043008 DOI: 10.1161/atvbaha.123.318239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Blood vessels are subjected to complex biomechanical loads, primarily from pressure-driven blood flow. Abnormal loading associated with vascular grafts, arising from altered hemodynamics or wall mechanics, can cause acute and progressive vascular failure and end-organ dysfunction. Perturbations to mechanobiological stimuli experienced by vascular cells contribute to remodeling of the vascular wall via activation of mechanosensitive signaling pathways and subsequent changes in gene expression and associated turnover of cells and extracellular matrix. In this review, we outline experimental and computational tools used to quantify metrics of biomechanical loading in vascular grafts and highlight those that show potential in predicting graft failure for diverse disease contexts. We include metrics derived from both fluid and solid mechanics that drive feedback loops between mechanobiological processes and changes in the biomechanical state that govern the natural history of vascular grafts. As illustrative examples, we consider application-specific coronary artery bypass grafts, peripheral vascular grafts, and tissue-engineered vascular grafts for congenital heart surgery as each of these involves unique circulatory environments, loading magnitudes, and graft materials.
Collapse
Affiliation(s)
- Jason M Szafron
- Departments of Pediatrics (J.M.S., A.L.M.), Stanford University, CA
| | - Elbert E Heng
- Cardiothoracic Surgery (E.E.H., J.B.), Stanford University, CA
| | - Jack Boyd
- Cardiothoracic Surgery (E.E.H., J.B.), Stanford University, CA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT (J.D.H.)
| | | |
Collapse
|
2
|
El Sayed R, Sharifi A, Park CC, Haussen DC, Allen JW, Oshinski JN. Optimization of 4D Flow MRI Spatial and Temporal Resolution for Examining Complex Hemodynamics in the Carotid Artery Bifurcation. Cardiovasc Eng Technol 2023; 14:476-488. [PMID: 37156900 PMCID: PMC10524741 DOI: 10.1007/s13239-023-00667-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Three-dimensional, ECG-gated, time-resolved, three-directional, velocity-encoded phase-contrast MRI (4D flow MRI) has been applied extensively to measure blood velocity in great vessels but has been much less used in diseased carotid arteries. Carotid artery webs (CaW) are non-inflammatory intraluminal shelf-like projections into the internal carotid artery (ICA) bulb that are associated with complex flow and cryptogenic stroke. PURPOSE Optimize 4D flow MRI for measuring the velocity field of complex flow in the carotid artery bifurcation model that contains a CaW. METHODS A 3D printed phantom model created from computed tomography angiography (CTA) of a subject with CaW was placed in a pulsatile flow loop within the MRI scanner. 4D Flow MRI images of the phantom were acquired with five different spatial resolutions (0.50-2.00 mm3) and four different temporal resolutions (23-96 ms) and compared to a computational fluid dynamics (CFD) solution of the flow field as a reference. We examined four planes perpendicular to the vessel centerline, one in the common carotid artery (CCA) and three in the internal carotid artery (ICA) where complex flow was expected. At these four planes pixel-by-pixel velocity values, flow, and time average wall shear stress (TAWSS) were compared between 4D flow MRI and CFD. HYPOTHESIS An optimized 4D flow MRI protocol will provide a good correlation with CFD velocity and TAWSS values in areas of complex flow within a clinically feasible scan time (~ 10 min). RESULTS Spatial resolution affected the velocity values, time average flow, and TAWSS measurements. Qualitatively, a spatial resolution of 0.50 mm3 resulted in higher noise, while a lower spatial resolution of 1.50-2.00 mm3 did not adequately resolve the velocity profile. Isotropic spatial resolutions of 0.50-1.00 mm3 showed no significant difference in total flow compared to CFD. Pixel-by-pixel velocity correlation coefficients between 4D flow MRI and CFD were > 0.75 for 0.50-1.00 mm3 but were < 0.5 for 1.50 and 2.00 mm3. Regional TAWSS values determined from 4D flow MRI were generally lower than CFD and decreased at lower spatial resolutions (larger pixel sizes). TAWSS differences between 4D flow and CFD were not statistically significant at spatial resolutions of 0.50-1.00 mm3 but were different at 1.50 and 2.00 mm3. Differences in temporal resolution only affected the flow values when temporal resolution was > 48.4 ms; temporal resolution did not affect TAWSS values. CONCLUSION A spatial resolution of 0.74-1.00 mm3 and a temporal resolution of 23-48 ms (1-2 k-space segments) provides a 4D flow MRI protocol capable of imaging velocity and TAWSS in regions of complex flow within the carotid bifurcation at a clinically acceptable scan time.
Collapse
Affiliation(s)
- Retta El Sayed
- Department of Biomedical Engineering, The Wallace H. Coulter, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Alireza Sharifi
- Department of Radiology & Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
| | - Charlie C Park
- Department of Radiology & Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
| | | | - Jason W Allen
- Department of Biomedical Engineering, The Wallace H. Coulter, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
- Department of Radiology & Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - John N Oshinski
- Department of Biomedical Engineering, The Wallace H. Coulter, Emory University and Georgia Institute of Technology, Atlanta, GA, USA.
- Department of Radiology & Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA.
- Department of Neurology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
3
|
Zhang D, Lindsey SE. Recasting Current Knowledge of Human Fetal Circulation: The Importance of Computational Models. J Cardiovasc Dev Dis 2023; 10:240. [PMID: 37367405 PMCID: PMC10299027 DOI: 10.3390/jcdd10060240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Computational hemodynamic simulations are becoming increasingly important for cardiovascular research and clinical practice, yet incorporating numerical simulations of human fetal circulation is relatively underutilized and underdeveloped. The fetus possesses unique vascular shunts to appropriately distribute oxygen and nutrients acquired from the placenta, adding complexity and adaptability to blood flow patterns within the fetal vascular network. Perturbations to fetal circulation compromise fetal growth and trigger the abnormal cardiovascular remodeling that underlies congenital heart defects. Computational modeling can be used to elucidate complex blood flow patterns in the fetal circulatory system for normal versus abnormal development. We present an overview of fetal cardiovascular physiology and its evolution from being investigated with invasive experiments and primitive imaging techniques to advanced imaging (4D MRI and ultrasound) and computational modeling. We introduce the theoretical backgrounds of both lumped-parameter networks and three-dimensional computational fluid dynamic simulations of the cardiovascular system. We subsequently summarize existing modeling studies of human fetal circulation along with their limitations and challenges. Finally, we highlight opportunities for improved fetal circulation models.
Collapse
Affiliation(s)
| | - Stephanie E. Lindsey
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093, USA;
| |
Collapse
|
4
|
Transcatheter Hepatic Conduit-Azygous Vein Connection Reduces Pulmonary Arteriovenous Malformations in a Cyanotic Fontan Patient. JACC: CASE REPORTS 2023; 10:101760. [PMID: 36974056 PMCID: PMC10039384 DOI: 10.1016/j.jaccas.2023.101760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/21/2022] [Accepted: 12/23/2022] [Indexed: 03/17/2023]
Abstract
The authors report a closed-chest, transcatheter large-vessel connection (hepatic conduit to azygous vein) to reverse pulmonary arteriovenous malformations in a 10-year-old patient after Fontan for heterotaxy/interrupted inferior vena cava, with an increase in oxygen saturation from 78% to 96%. Computational fluid dynamics estimated a 14-fold increase in hepatic blood flow to the left pulmonary artery (from 1.3% to 14%). (Level of Difficulty: Advanced.).
Collapse
|
5
|
Rosalia L, Ozturk C, Goswami D, Bonnemain J, Wang SX, Bonner B, Weaver JC, Puri R, Kapadia S, Nguyen CT, Roche ET. Soft robotic patient-specific hydrodynamic model of aortic stenosis and ventricular remodeling. Sci Robot 2023; 8:eade2184. [PMID: 36812335 PMCID: PMC10280738 DOI: 10.1126/scirobotics.ade2184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023]
Abstract
Aortic stenosis (AS) affects about 1.5 million people in the United States and is associated with a 5-year survival rate of 20% if untreated. In these patients, aortic valve replacement is performed to restore adequate hemodynamics and alleviate symptoms. The development of next-generation prosthetic aortic valves seeks to provide enhanced hemodynamic performance, durability, and long-term safety, emphasizing the need for high-fidelity testing platforms for these devices. We propose a soft robotic model that recapitulates patient-specific hemodynamics of AS and secondary ventricular remodeling which we validated against clinical data. The model leverages 3D-printed replicas of each patient's cardiac anatomy and patient-specific soft robotic sleeves to recreate the patients' hemodynamics. An aortic sleeve allows mimicry of AS lesions due to degenerative or congenital disease, whereas a left ventricular sleeve recapitulates loss of ventricular compliance and diastolic dysfunction (DD) associated with AS. Through a combination of echocardiographic and catheterization techniques, this system is shown to recreate clinical metrics of AS with greater controllability compared with methods based on image-guided aortic root reconstruction and parameters of cardiac function that rigid systems fail to mimic physiologically. Last, we leverage this model to evaluate the hemodynamic benefit of transcatheter aortic valves in a subset of patients with diverse anatomies, etiologies, and disease states. Through the development of a high-fidelity model of AS and DD, this work demonstrates the use of soft robotics to recreate cardiovascular disease, with potential applications in device development, procedural planning, and outcome prediction in industrial and clinical settings.
Collapse
Affiliation(s)
- Luca Rosalia
- Health Sciences and Technology Program, Harvard–Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, USA
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Caglar Ozturk
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Debkalpa Goswami
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Health Sciences and Technology, ETH-Zürich, Zürich, Switzerland
- Institute of Robotics and Intelligent Systems, ETH-Zürich, Zürich, Switzerland
| | - Jean Bonnemain
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Adult Intensive Care Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sophie X. Wang
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Benjamin Bonner
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, USA
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - James C. Weaver
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Rishi Puri
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Samir Kapadia
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Christopher T. Nguyen
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, USA
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
- Cardiovascular Innovation Research Center, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ellen T. Roche
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
6
|
Corti M, Zingaro A, Dede' L, Quarteroni AM. Impact of atrial fibrillation on left atrium haemodynamics: A computational fluid dynamics study. Comput Biol Med 2022; 150:106143. [PMID: 36182758 DOI: 10.1016/j.compbiomed.2022.106143] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/30/2022] [Accepted: 09/18/2022] [Indexed: 11/28/2022]
Abstract
We analyse the haemodynamics of the left atrium, highlighting differences between healthy individuals and patients affected by atrial fibrillation. The computational study is based on patient-specific geometries of the left atria to simulate blood flow dynamics. We design a novel procedure to compute the boundary data for the 3D haemodynamic simulations, which are particularly useful in absence of data from clinical measurements. With this aim, we introduce a parametric definition of atrial displacement, and we use a closed-loop lumped parameter model of the whole cardiovascular circulation conveniently tuned on the basis of the patient's characteristics. We evaluate several fluid dynamics indicators for atrial haemodynamics, validating our numerical results in terms of clinical measurements; we investigate the impact of geometric and clinical characteristics on the risk of thrombosis. To highlight the correlation of thrombus formation with atrial fibrillation, according to medical evidence, we propose a novel indicator: age stasis. It arises from the combination of Eulerian and Lagrangian quantities. This indicator identifies regions where slow flow cannot properly rinse the chamber, accumulating stale blood particles, and creating optimal conditions for clots formation.
Collapse
Affiliation(s)
- Mattia Corti
- MOX-Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133, Italy.
| | - Alberto Zingaro
- MOX-Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133, Italy
| | - Luca Dede'
- MOX-Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133, Italy
| | - Alfio Maria Quarteroni
- MOX-Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133, Italy; Institute of Mathematics, École Polytechnique Fédérale de Lausanne, Station 8, Av. Piccard, Lausanne, CH-1015, Switzerland (Professor Emeritus)
| |
Collapse
|
7
|
Birla AK, Brimmer S, Short WD, Olutoye OO, Shar JA, Lalwani S, Sucosky P, Parthiban A, Keswani SG, Caldarone CA, Birla RK. Current state of the art in hypoplastic left heart syndrome. Front Cardiovasc Med 2022; 9:878266. [PMID: 36386362 PMCID: PMC9651920 DOI: 10.3389/fcvm.2022.878266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022] Open
Abstract
Hypoplastic left heart syndrome (HLHS) is a complex congenital heart condition in which a neonate is born with an underdeveloped left ventricle and associated structures. Without palliative interventions, HLHS is fatal. Treatment typically includes medical management at the time of birth to maintain patency of the ductus arteriosus, followed by three palliative procedures: most commonly the Norwood procedure, bidirectional cavopulmonary shunt, and Fontan procedures. With recent advances in surgical management of HLHS patients, high survival rates are now obtained at tertiary treatment centers, though adverse neurodevelopmental outcomes remain a clinical challenge. While surgical management remains the standard of care for HLHS patients, innovative treatment strategies continue to be developing. Important for the development of new strategies for HLHS patients is an understanding of the genetic basis of this condition. Another investigational strategy being developed for HLHS patients is the injection of stem cells within the myocardium of the right ventricle. Recent innovations in tissue engineering and regenerative medicine promise to provide important tools to both understand the underlying basis of HLHS as well as provide new therapeutic strategies. In this review article, we provide an overview of HLHS, starting with a historical description and progressing through a discussion of the genetics, surgical management, post-surgical outcomes, stem cell therapy, hemodynamics and tissue engineering approaches.
Collapse
Affiliation(s)
- Aditya K. Birla
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, United States
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, United States
| | - Sunita Brimmer
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, United States
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, United States
- Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX, United States
| | - Walker D. Short
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, United States
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, United States
| | - Oluyinka O. Olutoye
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, United States
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, United States
| | - Jason A. Shar
- Department of Mechanical Engineering, Kennesaw State University, Marietta, GA, United States
| | - Suriya Lalwani
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, United States
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, United States
| | - Philippe Sucosky
- Department of Mechanical Engineering, Kennesaw State University, Marietta, GA, United States
| | - Anitha Parthiban
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, United States
- Division of Pediatric Cardiology, Texas Children's Hospital, Houston, TX, United States
| | - Sundeep G. Keswani
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, United States
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, United States
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, United States
| | - Christopher A. Caldarone
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, United States
- Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX, United States
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, United States
| | - Ravi K. Birla
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, United States
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, United States
- Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX, United States
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
8
|
Cherry Kemmerling E. In Vitro Pressure Measurements Across an Interatrial Shunt for HFpEF Treatment. Cardiovasc Eng Technol 2022; 13:662-672. [PMID: 35106722 DOI: 10.1007/s13239-021-00607-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/15/2021] [Indexed: 01/27/2023]
Abstract
PURPOSE Preserved ejection fraction heart failure (HFpEF) can be treated by installing a shunt in the interatrial septum, which relieves excess pressure in the left atrium by allowing blood to flow from left to right. This technique has proven effective in clinical trials, but the details of the flow through the shunted heart are not well understood. The current study aims to collect quantitative data on the relationship between pressure and flow rate in such shunts. METHODS An in vitro, shunted double atrium flow phantom was fabricated and used to investigate the relationship between pressure drop and flow across an interatrial shunt. Flow rate was controlled and the resulting pressure drop across the shunt was measured for a variety of flow cases, including steady and pulsatile flow, flow rate waveforms typical of healthy and failing hearts, and low and high heart rates. RESULTS The results show a positive relationship between shunt flow rate and pressure drop which is more pronounced in steady flow than in pulsatile flow. Increasing heart rate increases the time-averaged pressure drop across the shunt but not the maximum pressure drop. For steady-flow cases, large changes in pressure drop resulting from moderate changes in flow rate suggest a flow regime transition during parts of the cardiac cycle. Comparison of time-averaged pulsatile flow pressure measurements with steady-flow measurements and two analytical plate-orifice models suggests that none approximate pulsatile flow accurately. CONCLUSIONS The flow rate/pressure drop relationship across an in vitro model of an interatrial shunt has been measured for a variety of physiologically relevant cases. Among other things, the results suggest that steady flow approximations to the heart's pulsatile flow should be used with caution and simplified theoretical models do not approximate the flow rate/pressure drop relationship accurately.
Collapse
|
9
|
Dirix P, Buoso S, Peper ES, Kozerke S. Synthesis of patient-specific multipoint 4D flow MRI data of turbulent aortic flow downstream of stenotic valves. Sci Rep 2022; 12:16004. [PMID: 36163357 PMCID: PMC9513106 DOI: 10.1038/s41598-022-20121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/08/2022] [Indexed: 11/09/2022] Open
Abstract
We propose to synthesize patient-specific 4D flow MRI datasets of turbulent flow paired with ground truth flow data to support training of inference methods. Turbulent blood flow is computed based on the Navier-Stokes equations with moving domains using realistic boundary conditions for aortic shapes, wall displacements and inlet velocities obtained from patient data. From the simulated flow, synthetic multipoint 4D flow MRI data is generated with user-defined spatiotemporal resolutions and reconstructed with a Bayesian approach to compute time-varying velocity and turbulence maps. For MRI data synthesis, a fixed hypothetical scan time budget is assumed and accordingly, changes to spatial resolution and time averaging result in corresponding scaling of signal-to-noise ratios (SNR). In this work, we focused on aortic stenotic flow and quantification of turbulent kinetic energy (TKE). Our results show that for spatial resolutions of 1.5 and 2.5 mm and time averaging of 5 ms as encountered in 4D flow MRI in practice, peak total turbulent kinetic energy downstream of a 50, 75 and 90% stenosis is overestimated by as much as 23, 15 and 14% (1.5 mm) and 38, 24 and 23% (2.5 mm), demonstrating the importance of paired ground truth and 4D flow MRI data for assessing accuracy and precision of turbulent flow inference using 4D flow MRI exams.
Collapse
Affiliation(s)
- Pietro Dirix
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.
| | - Stefano Buoso
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Eva S Peper
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Conijn M, Wintermans L, Metselaar R, Ruisch J, Bax E, van Egmond C, Nieuwenstein B, Warmerdam E, Krings G. A 3D printed pulmonary mock loop for hemodynamic studies in congenital heart disease. Biomed Phys Eng Express 2022; 8. [PMID: 35970091 DOI: 10.1088/2057-1976/ac8993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/15/2022] [Indexed: 11/11/2022]
Abstract
Background With the increasing survival of the congenital heart disease population, there is a growing need for in-depth understanding of blood circulation in these patients. Mock loops provide the opportunity for comprehensive hemodynamic studies without burden and risks for patients. This study aimed to evaluate the ability of the presented mock loop to mimic the hemodynamics of the pulmonary circulation with and without stenosis and the MR compatibility of the system. Methods A pulsatile pump with two chambers, separated by a flexible membrane, was designed and 3D printed. A cough assist device applied an alternating positive and negative pressure on the membrane. One adult, and three pediatric pulmonary bifurcations were 3D printed and incorporated in the setup. Two pediatric models had a 50% stenosis of the left branch. Bilateral compliance chambers allowed for individual compliance tuning. A reservoir determined the diastolic pressure. Two carbon heart valves guaranteed unidirectional flow. The positive pressure on the cough assist device was tuned until an adequate stroke volume was reached with a frequency of 60 bpm. Flow and pressure measurements were performed on the main pulmonary artery and the two branches. The MR compatibility of the setup was evaluated. Results A stroke volume with a cardiac index of 2L/min/m2 was achieved in all models. Physiological pressure curves were generated in both normal and stenotic models. The mock loop was MR compatible. Conclusion This MR compatible mock loop, closely resembles the pulmonary circulation thereby providing a controllable environment for hemodynamic studies.
Collapse
Affiliation(s)
- Maartje Conijn
- Wilhelmina Children's Hospital University Medical Centre, Lundlaan 6, Utrecht, 3584 EA, NETHERLANDS
| | - Lieke Wintermans
- Wilhelmina Children's Hospital University Medical Centre, Lundlaan 6, Utrecht, Utrecht, 3584 EA , NETHERLANDS
| | - Rutger Metselaar
- Wilhelmina Children's Hospital University Medical Centre, Lundlaan 6, Utrecht, Utrecht, 3581 EA, NETHERLANDS
| | - Janna Ruisch
- Wilhelmina Children's Hospital University Medical Centre, Lundlaan 6, Utrecht, Utrecht, 3581 EA, NETHERLANDS
| | - Eva Bax
- Wilhelmina Children's Hospital University Medical Centre, Lundlaan 6, Utrecht, Utrecht, 3581 EA, NETHERLANDS
| | - Carmen van Egmond
- Wilhelmina Children's Hospital University Medical Centre, Lundlaan 6, Utrecht, Utrecht, 3581 EA , NETHERLANDS
| | - Ben Nieuwenstein
- Wilhelmina Children's Hospital University Medical Centre, Lundlaan 6, Utrecht, Utrecht, 3581 EA, NETHERLANDS
| | - Evangeline Warmerdam
- Wilhelmina Children's Hospital University Medical Centre, Lundlaan 6, Utrecht, Utrecht, 3581 EA, NETHERLANDS
| | - Gregor Krings
- Wilhelmina Children's Hospital University Medical Centre, Lundlaan 6, Utrecht, Utrecht, 3581 EA, NETHERLANDS
| |
Collapse
|
11
|
Salman HE, Kamal RY, Hijazi ZM, Yalcin HC. Hemodynamic and Structural Comparison of Human Fetal Heart Development Between Normally Growing and Hypoplastic Left Heart Syndrome-Diagnosed Hearts. Front Physiol 2022; 13:856879. [PMID: 35399257 PMCID: PMC8984126 DOI: 10.3389/fphys.2022.856879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/02/2022] [Indexed: 11/20/2022] Open
Abstract
Congenital heart defects (CHDs) affect a wide range of societies with an incidence rate of 1.0–1.2%. These defects initiate at the early developmental stage and result in critical health disorders. Although genetic factors play a role in the formation of CHDs, the occurrence of cases in families with no history of CHDs suggests that mechanobiological forces may also play a role in the initiation and progression of CHDs. Hypoplastic left heart syndrome (HLHS) is a critical CHD, which is responsible for 25–40% of all prenatal cardiac deaths. The comparison of healthy and HLHS hearts helps in understanding the main hemodynamic differences related to HLHS. Echocardiography is the most common imaging modality utilized for fetal cardiac assessment. In this study, we utilized echocardiographic images to compare healthy and HLHS human fetal hearts for determining the differences in terms of heart chamber dimensions, valvular flow rates, and hemodynamics. The cross-sectional areas of chamber dimensions are determined from 2D b-mode ultrasound images. Valvular flow rates are measured via Doppler echocardiography, and hemodynamic quantifications are performed with the use of computational fluid dynamics (CFD) simulations. The obtained results indicate that cross-sectional areas of the left and right sides of the heart are similar for healthy fetuses during gestational development. The left side of HLHS heart is underdeveloped, and as a result, the hemodynamic parameters such as flow velocity, pressure, and wall shear stress (WSS) are significantly altered compared to those of healthy hearts.
Collapse
Affiliation(s)
- Huseyin Enes Salman
- Department of Mechanical Engineering, TOBB University of Economics and Technology, Ankara, Turkey
| | - Reema Yousef Kamal
- Pediatric Cardiology Division, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Ziyad M. Hijazi
- Sidra Heart Center, Sidra Medicine, Weill Cornell Medical College, Doha, Qatar
| | - Huseyin Cagatay Yalcin
- Biomedical Research Center, Qatar University, Doha, Qatar
- *Correspondence: Huseyin Cagatay Yalcin,
| |
Collapse
|
12
|
Parker LP, Svensson Marcial A, Brismar TB, Broman LM, Prahl Wittberg L. Impact of Altered Vena Cava Flow Rates on Right Atrium Flow Characteristics. J Appl Physiol (1985) 2022; 132:1167-1178. [PMID: 35271411 PMCID: PMC9054263 DOI: 10.1152/japplphysiol.00649.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The right atrium (RA) combines the superior (SVC) and inferior vena cava (IVC) flows. Treatments like extracorporeal membrane oxygenation (ECMO) and hemodialysis by catheter alter IVC/SVC flows. Here we assess how altered IVC/SVC flow contributions impact RA flow. Four healthy volunteers were imaged with CT, reconstructed and combined into a patient-averaged model. Large Eddy Simulations (LES) were performed for a range of IVC/SVC flow contributions (30-70% each, increments of 5%) and common flow metrics were recorded. Model sensitivity to reconstruction domain extent, constant/pulsatile inlets and hematocrit was also assessed. Consistent with literature, a single vortex occupied the central RA across all flowrates with a smaller counter-rotating vortex, not previously reported, in the auricle. Vena cava flow was highly helical. RA turbulent kinetic energy (TKE) (P=0.027) and time-averaged wall shear stress (WSS) (P<0.001) increased with SVC flow. WSS was lower in the auricle (2 Pa, P<0.001). WSS in the vena cava were equal at IVC/SVC =65/35%. The model was highly sensitive to the reconstruction domain with cropped geometries lacking helicity in the vena cavae, altering RA flow. RA flow was not significantly affected by constant inlets or hematocrit. The rotational flow conventionally described in the RA is confirmed however a new, smaller vortex was also recorded in the auricle. When IVC flow dominates, as is normal, TKE in the RA is reduced and WSS in the vena cavae equalize. Significant helicity exists in the vena cava, a result of distal geometry and this geometry appears crucial to accurately simulating RA flow.
Collapse
Affiliation(s)
- Louis P Parker
- FLOW and BioMEx, Department of Engineering Mechanics, Royal Institute of Technology, KTH, Stockholm, Sweden
| | - Anders Svensson Marcial
- Department of Clinical Science, Intervention and Technology at Karolinska Institute, Division of Medical Imaging and Technology, Stockholm, Sweden.,Department of Radiology, Karolinska University Hospital in Huddinge, Stockholm, Sweden
| | - Torkel B Brismar
- Department of Clinical Science, Intervention and Technology at Karolinska Institute, Division of Medical Imaging and Technology, Stockholm, Sweden.,Department of Radiology, Karolinska University Hospital in Huddinge, Stockholm, Sweden
| | - Lars Mikael Broman
- ECMO Centre Karolinska, Pediatric Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Lisa Prahl Wittberg
- FLOW and BioMEx, Department of Engineering Mechanics, Royal Institute of Technology, KTH, Stockholm, Sweden
| |
Collapse
|
13
|
Kim B, Nguyen P, Loke YH, Cleveland V, Liu X, Mass P, Hibino N, Olivieri L, Krieger A. CorFix: Virtual Reality Cardiac Surgical Planning Software for Designing Patient-Specific Vascular Grafts: Development and Pilot Usability Study (Preprint). JMIR Cardio 2021; 6:e35488. [PMID: 35713940 PMCID: PMC9250062 DOI: 10.2196/35488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
Background Patients with single ventricle heart defects receive 3 stages of operations culminating in the Fontan procedure. During the Fontan procedure, a vascular graft is sutured between the inferior vena cava and pulmonary artery to divert deoxygenated blood flow to the lungs via passive flow. Customizing the graft configuration can maximize the long-term benefits. However, planning patient-specific procedures has several challenges, including the ability for physicians to customize grafts and evaluate their hemodynamic performance. Objective The aim of this study was to develop a virtual reality (VR) Fontan graft modeling and evaluation software for physicians. A user study was performed to achieve 2 additional goals: (1) to evaluate the software when used by medical doctors and engineers, and (2) to explore the impact of viewing hemodynamic simulation results in numerical and graphical formats. Methods A total of 5 medical professionals including 4 physicians (1 fourth-year resident, 1 third-year cardiac fellow, 1 pediatric intensivist, and 1 pediatric cardiac surgeon) and 1 biomedical engineer voluntarily participated in the study. The study was pre-scripted to minimize the variability of the interactions between the experimenter and the participants. All participants were trained to use the VR gear and our software, CorFix. Each participant designed 1 bifurcated and 1 tube-shaped Fontan graft for a single patient. A hemodynamic performance evaluation was then completed, allowing the participants to further modify their tube-shaped design. The design time and hemodynamic performance for each graft design were recorded. At the end of the study, all participants were provided surveys to evaluate the usability and learnability of the software and rate the intensity of VR sickness. Results The average times for creating 1 bifurcated and 1 tube-shaped graft after a single 10-minute training session were 13.40 and 5.49 minutes, respectively, with 3 out 5 bifurcated and 1 out of 5 tube-shaped graft designs being in the benchmark range of hepatic flow distribution. Reviewing hemodynamic performance results and modifying the tube-shaped design took an average time of 2.92 minutes. Participants who modified their tube-shaped graft designs were able to improve the nonphysiologic wall shear stress (WSS) percentage by 7.02%. All tube-shaped graft designs improved the WSS percentage compared to the native surgical case of the patient. None of the designs met the benchmark indexed power loss. Conclusions VR graft design software can quickly be taught to physicians with no engineering background or VR experience. Improving the CorFix system could improve performance of the users in customizing and optimizing grafts for patients. With graphical visualization, physicians were able to improve WSS percentage of a tube-shaped graft, lowering the chance of thrombosis. Bifurcated graft designs showed potential strength in better flow split to the lungs, reducing the risk for pulmonary arteriovenous malformations.
Collapse
Affiliation(s)
- Byeol Kim
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Phong Nguyen
- Department of Computer Science, University of Maryland, College Park, MD, United States
| | - Yue-Hin Loke
- Division of Cardiology, Children's National Hospital, Washington, DC, United States
| | - Vincent Cleveland
- Division of Cardiology, Children's National Hospital, Washington, DC, United States
| | - Xiaolong Liu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Paige Mass
- Division of Cardiology, Children's National Hospital, Washington, DC, United States
| | - Narutoshi Hibino
- Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Laura Olivieri
- Division of Cardiology, Children's National Hospital, Washington, DC, United States
| | - Axel Krieger
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
14
|
Salman HE, Kamal RY, Yalcin HC. Numerical Investigation of the Fetal Left Heart Hemodynamics During Gestational Stages. Front Physiol 2021; 12:731428. [PMID: 34566694 PMCID: PMC8458957 DOI: 10.3389/fphys.2021.731428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/17/2021] [Indexed: 11/23/2022] Open
Abstract
Flow-driven hemodynamic forces on the cardiac tissues have critical importance, and have a significant role in the proper development of the heart. These mechanobiological mechanisms govern the cellular responses for the growth and remodeling of the heart, where the altered hemodynamic environment is believed to be a major factor that is leading to congenital heart defects (CHDs). In order to investigate the mechanobiological development of the normal and diseased hearts, identification of the blood flow patterns and wall shear stresses (WSS) on these tissues are required for an accurate hemodynamic assessment. In this study, we focus on the left heart hemodynamics of the human fetuses throughout the gestational stages. Computational fetal left heart models are created for the healthy fetuses using the ultrasound images at various gestational weeks. Realistic inflow boundary conditions are implemented in the models using the Doppler ultrasound measurements for resolving the specific blood flow waveforms in the mitral valve. Obtained results indicate that WSS and vorticity levels in the fetal left heart decrease with the development of the fetus. The maximum WSS around the mitral valve is determined around 36 Pa at the gestational week of 16. This maximum WSS decreases to 11 Pa at the gestational week of 27, indicating nearly three-times reduction in the peak shear stress. These findings reveal the highly dynamic nature of the left heart hemodynamics throughout the development of the human fetus and shed light into the relevance of hemodynamic environment and development of CHDs.
Collapse
Affiliation(s)
- Huseyin Enes Salman
- Department of Mechanical Engineering, TOBB University of Economics and Technology, Ankara, Turkey
| | - Reema Yousef Kamal
- Pediatric Cardiology Division, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | | |
Collapse
|
15
|
Engineering Perspective on Cardiovascular Simulations of Fontan Hemodynamics: Where Do We Stand with a Look Towards Clinical Application. Cardiovasc Eng Technol 2021; 12:618-630. [PMID: 34114202 DOI: 10.1007/s13239-021-00541-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 04/30/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Cardiovascular simulations for patients with single ventricles undergoing the Fontan procedure can assess patient-specific hemodynamics, explore surgical advances, and develop personalized strategies for surgery and patient care. These simulations have not yet been broadly accepted as a routine clinical tool owing to a number of limitations. Numerous approaches have been explored to seek innovative solutions for improving methodologies and eliminating these limitations. PURPOSE This article first reviews the current state of cardiovascular simulations of Fontan hemodynamics. Then, it will discuss the technical progress of Fontan simulations with the emphasis of its clinical impact, noting that substantial improvements have been made in the considerations of patient-specific anatomy, flow, and blood rheology. The article concludes with insights into potential future directions involving clinical validation, uncertainty quantification, and computational efficiency. The advancements in these aspects could promote the clinical usage of Fontan simulations, facilitating its integration into routine clinical practice.
Collapse
|
16
|
Wei ZA, Ratnayaka K, Si B, Singh-Gryzbon S, Cetatoiu MA, Fogel MA, Slesnick T, Yoganathan AP, Nigro JJ. An Anterior Anastomosis for the Modified Fontan Connection: A Hemodynamic Analysis. Semin Thorac Cardiovasc Surg 2021; 33:816-823. [PMID: 33662555 DOI: 10.1053/j.semtcvs.2021.01.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 12/25/2022]
Abstract
This hemodynamic feasibility study examined total cavopulmonary connection (TCPC) designs connecting the extracardiac conduit to the anterior surface of pulmonary arteries (PAs) or superior vena cava (SVC) rather than to the inferior PA surface (traditional TCPC). The study involved twenty-five consecutive Fontan patients meeting inclusion criteria from a single institution. A virtual surgical platform mimicked the completed traditional TCPC and generated three anterior anastomosis designs: Anterior-PA, Middle-SVC, and SVC-Inn (Inn: innominate vein). Hemodynamic performance of anterior anastomosis designs was compared with the traditional TCPC regarding indexed power loss (iPL) and hepatic flow distribution (HFD). Compared to the traditional TCPC, the Anterior-PA design produces a similar iPL. The Middle-SVC design is also similar, though the iPL difference is positively correlated with the anastomosing height. The SVC-Inn design had significantly more iPL. The three anterior anastomosis designs did not have a significant difference in HFD (from traditional TCPC). Pulmonary flow distribution (PFD) has a stronger correlation with HFD from the anterior anastomosis designs than the traditional TCPC. This hemodynamic feasibility study examined anterior anastomosis, extracardiac TCPC designs that may offer surgeons clinical dexterity. The Anterior-PA design may be equivalent to the traditional TCPC. Fontan extracardiac conduit anastomosis just superior to the PAs (Middle-SVC) also preserves hemodynamic performance and avoids direct PA anastomosis. These designs could simplify surgical Fontan completion, and may particularly benefit patients requiring surgical dissection, having atypical PA orientation, or after PA stent angioplasty.
Collapse
Affiliation(s)
- Zhenglun Alan Wei
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia; Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts
| | - Kanishka Ratnayaka
- Division of Pediatric Cardiology, Rady Children's Hospital and UC San Diego School of Medicine, San Diego, California
| | - Biao Si
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Shelly Singh-Gryzbon
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | | | - Mark A Fogel
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Timothy Slesnick
- Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Ajit P Yoganathan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia.
| | - John J Nigro
- Division of Cardiovascular Surgery, Rady Children's Hospital and UC San Diego School of Medicine, San Diego, California
| |
Collapse
|
17
|
Medero R, Ruedinger K, Rutkowski D, Johnson K, Roldán-Alzate A. In Vitro Assessment of Flow Variability in an Intracranial Aneurysm Model Using 4D Flow MRI and Tomographic PIV. Ann Biomed Eng 2020; 48:2484-2493. [PMID: 32524379 PMCID: PMC7821079 DOI: 10.1007/s10439-020-02543-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/01/2020] [Indexed: 01/10/2023]
Abstract
Aneurysm rupture has been suggested to be related to aneurysm geometry, morphology, and complex flow activity; therefore, understanding aneurysm-specific hemodynamics is crucial. 4D Flow MRI has been shown to be a feasible tool for assessing hemodynamics in intracranial aneurysms with high spatial resolution. However, it requires averaging over multiple heartbeats and cannot account for cycle-to-cycle hemodynamics variations. This study aimed to assess cycle-to-cycle flow dynamics variations in a patient-specific intracranial aneurysm model using tomographic particle image velocimetry (tomo-PIV) at a high image rate under pulsatile flow conditions. Time-resolved and time-averaged velocity flow fields within the aneurysm sac and estimations of wall shear stress (WSS) were compared with those from 4D Flow MRI. A one-way ANOVA showed a significant difference between cardiac cycles (p value < 0.0001); however, differences were not significant after PIV temporal and spatial resolution was matched to that of MRI (p value 0.9727). This comparison showed the spatial resolution to be the main contributor to assess cycle-to-cycle variability. Furthermore, the comparison with 4D Flow MRI between velocity components, streamlines, and estimated WSS showed good qualitative and quantitative agreement. This study showed the feasibility of patient-specific in-vitro experiments using tomo-PIV to assess 4D Flow MRI with high repeatability in the measurements.
Collapse
Affiliation(s)
- Rafael Medero
- Department of Mechanical Engineering, University of Wisconsin-Madison,Department of Radiology, University of Wisconsin-Madison
| | - Katrina Ruedinger
- Department of Biomedical Engineering, University of Wisconsin-Madison,School of Medicine and Public Health, University of Wisconsin-Madison
| | - David Rutkowski
- Department of Mechanical Engineering, University of Wisconsin-Madison,Department of Radiology, University of Wisconsin-Madison
| | - Kevin Johnson
- Department of Medical Physics, University of Wisconsin-Madison
| | - Alejandro Roldán-Alzate
- Department of Mechanical Engineering, University of Wisconsin-Madison,Department of Radiology, University of Wisconsin-Madison,Department of Biomedical Engineering, University of Wisconsin-Madison
| |
Collapse
|
18
|
Kang SL, Armstrong A, Krings G, Benson L. Three-dimensional rotational angiography in congenital heart disease: Present status and evolving future. CONGENIT HEART DIS 2019; 14:1046-1057. [PMID: 31483574 DOI: 10.1111/chd.12838] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/23/2019] [Accepted: 08/16/2019] [Indexed: 01/17/2023]
Abstract
Three-dimensional rotational angiography (3D-RA) enables volumetric imaging through rotation of the C-arm of an angiographic system and real-time 3D reconstruction during cardiac catheterization procedures. In the field of congenital heart disease (CHD), 3D-RA has gained considerable traction, owing to its capability for enhanced visualization of spatial relationships in complex cardiac morphologies and real time image guidance in an intricate interventional environment. This review provides an overview of the current applications, strengths, and limitations of 3D-RA acquisition in the management of CHD and potential future directions. In addition, issues of dosimetry, radiation exposure, and optimization strategies will be reviewed. Further implementation of 3D-RA will be driven by patient benefits relative to existing 3D imaging capabilities and fusion techniques balanced against radiation exposure.
Collapse
Affiliation(s)
- Sok-Leng Kang
- Division of Cardiology, The Labatt Family Heart Center, The Hospital for Sick Children, The University of Toronto School of Medicine, Toronto, Canada
| | - Aimee Armstrong
- The Heart Center, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio
| | - Gregor Krings
- Children's Heart Center, Utrecht University, Utrecht, Netherlands
| | - Lee Benson
- Division of Cardiology, The Labatt Family Heart Center, The Hospital for Sick Children, The University of Toronto School of Medicine, Toronto, Canada
| |
Collapse
|
19
|
Pewowaruk R, Roldán-Alzate A. 4D Flow MRI Estimation of Boundary Conditions for Patient Specific Cardiovascular Simulation. Ann Biomed Eng 2019; 47:1786-1798. [PMID: 31069584 DOI: 10.1007/s10439-019-02285-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022]
Abstract
Accurate image based cardiovascular simulations require patient specific boundary conditions (BCs) for inlets, outlets and vessel wall mechanical properties. While inlet BCs are typically determined non-invasively, invasive pressure catheterization is often used to determine patient specific outlet BCs and vessel wall mechanical properties. A method using 4D Flow MRI to non-invasively determine both patient specific outlet BCs and vessel wall mechanical properties is presented and results for both in vitro validation with a latex tube and an in vivo pulmonary artery stenosis (PAS) stent intervention are presented. For in vitro validation, acceptable agreement is found between simulation using BCs from 4D Flow MRI and benchtop measurements. For the PAS virtual intervention, simulation correctly predicts flow distribution with 9% error compared to MRI. Using 4D Flow MRI to noninvasively determine patient specific BCs increases the ability to use image based simulations as pressure catheterization is not always performed.
Collapse
Affiliation(s)
- Ryan Pewowaruk
- Biomedical Engineering, University of Wisconsin - Madison, 1111 Highland Ave, Room 2476 WIMR 2, Madison, WI, 53705, USA
| | - Alejandro Roldán-Alzate
- Biomedical Engineering, University of Wisconsin - Madison, 1111 Highland Ave, Room 2476 WIMR 2, Madison, WI, 53705, USA. .,Mechanical Engineering, University of Wisconsin - Madison, 1111 Highland Ave, Room 2476 WIMR 2, Madison, WI, 53705, USA. .,Department of Radiology, University of Wisconsin - Madison, 1111 Highland Ave, Room 2476 WIMR 2, Madison, WI, 53705, USA.
| |
Collapse
|
20
|
Accuracy evaluation of blood flow distribution in the Fontan circulation: effects of resolution and velocity noise. J Vis (Tokyo) 2018. [DOI: 10.1007/s12650-018-0536-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
21
|
D'Souza GA, Banerjee RK, Taylor MD. Evaluation of pulmonary artery stenosis in congenital heart disease patients using functional diagnostic parameters: An in vitro study. J Biomech 2018; 81:58-67. [PMID: 30293825 DOI: 10.1016/j.jbiomech.2018.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/23/2018] [Accepted: 09/13/2018] [Indexed: 02/03/2023]
Abstract
Congenital pulmonary artery (PA) stenosis is often associated with abnormal PA hemodynamics including increased pressure drop (Δp) and reduced asymmetric flow (Q), which may result in right ventricular dysfunction. We propose functional diagnostic parameters, pressure drop coefficient (CDP), energy loss (Eloss), and normalized energy loss (E¯loss) to characterize pulmonary hemodynamics, and evaluate their efficacy in delineating stenosis severity using in vitro experiments. Subject-specific test sections including the main PA (MPA) bifurcating into left and right PAs (LPA, RPA) with a discrete LPA stenosis were manufactured from cross-sectional imaging and 3D printing. Three clinically-relevant stenosis severities, 90% area stenosis (AS), 80% AS, and 70% AS, were evaluated at different cardiac outputs (COs). A benchtop flow loop simulating pulmonary hemodynamics was used to measure Q and Δp within the test sections. The experimental Δp-Q characteristics along with clinical data were used to obtain pathophysiologic conditions and compute the diagnostic parameters. The pathophysiologic QLPA decreased as the stenosis severity increased at a fixed CO. CDPLPA, Eloss,LPA (absolute), and E¯loss,LPA (absolute) increased with an increase in LPA stenosis severity at a fixed CO. Importantly, CDPLPA and E¯loss,LPA had reduced variability with CO, and distinct values for each LPA stenosis severity. Under variable CO, a) CDPLPA values were 14.5-21.0 (70% AS), 60.7- 2.2 (80% AS), ≥ 261.6 (90% AS), and b) E¯loss,LPA values (in mJ per QLPA) were -501.9 to -1023.8 (70% AS), -1247.6 to -1773.0 (80% AS), -1934.5 (90% AS). Hence, CDPLPA and E¯loss,LPA are expected to assess the true functional severity of PA stenosis.
Collapse
Affiliation(s)
- Gavin A D'Souza
- Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Rupak K Banerjee
- Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH, USA.
| | - Michael D Taylor
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
22
|
Medero R, Hoffman C, Roldán-Alzate A. Comparison of 4D Flow MRI and Particle Image Velocimetry Using an In Vitro Carotid Bifurcation Model. Ann Biomed Eng 2018; 46:2112-2122. [PMID: 30112708 DOI: 10.1007/s10439-018-02109-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/27/2018] [Indexed: 01/13/2023]
Abstract
Four-dimensional (4D) Flow magnetic resonance imaging (MRI) enables the acquisition and assessment of complex hemodynamics in vivo from different vascular territories. This study investigated the viability of stereoscopic and tomographic particle image velocimetry (stereo- and tomo-PIV, respectively) as experimental validation techniques for 4D Flow MRI. The experiments were performed using continuous and pulsatile flows through an idealized carotid artery bifurcation model. Transverse and longitudinal planes were extracted from the acquired velocity data sets at different regions of interest and were analyzed with a point-by-point comparison. An overall root-mean-square error (RMSE) was calculated resulting in errors as low as 0.06 and 0.03 m/s when comparing 4D Flow MRI with stereo- and tomo-PIV, respectively. Quantitative agreement between techniques was determined by evaluating the relationship for individual velocity components and their magnitudes. These resulted in correlation coefficients (R2) of 4D Flow MRI with stereo- and tomo-PIV, as low as 0.76 and 0.73, respectively. The 3D velocity measurements from PIV showed qualitative agreement when compared to 4D Flow MRI, especially with tomo-PIV due to the addition of volumetric velocity measurements. These results suggest that tomo-PIV can be used as a validation technique for 4D Flow MRI, serving as the basis for future validation protocols.
Collapse
Affiliation(s)
- Rafael Medero
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA. .,Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA. .,, 1415 Engineering Drive, Madison, WI, 53706, USA.
| | - Carson Hoffman
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Alejandro Roldán-Alzate
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.,Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
23
|
Rijnberg FM, Hazekamp MG, Wentzel JJ, de Koning PJ, Westenberg JJ, Jongbloed MR, Blom NA, Roest AA. Energetics of Blood Flow in Cardiovascular Disease. Circulation 2018; 137:2393-2407. [DOI: 10.1161/circulationaha.117.033359] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | - Jolanda J. Wentzel
- Leiden University Medical Center, The Netherlands. Department of Biomechanical Engineering, Erasmus Medical Center, Rotterdam, The Netherlands (J.J.W.)
| | | | | | | | - Nico A. Blom
- Department of Pediatric Cardiology (N.A.B., A.A.W.R.)
| | | |
Collapse
|
24
|
Schäfer M, Kheyfets VO, Barker AJ, Stenmark K, Hunter KS, McClatchey PM, Buckner JK, Reece TB, Jazaeri O, Fenster BE. Reduced shear stress and associated aortic deformation in the thoracic aorta of patients with chronic obstructive pulmonary disease. J Vasc Surg 2017; 68:246-253. [PMID: 28986100 DOI: 10.1016/j.jvs.2017.06.110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/23/2017] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Central aortic stiffness and chronic obstructive pulmonary disease (COPD) are associated with increased incidence of devastating aortopathies. However, the exact mechanism leading to elevated aortic stiffness in patients with COPD is unknown. The purpose of this study was to quantify flow and shear hemodynamic indices, known markers of vascular remodeling, in the thoracic aorta of patients with mild to moderate COPD (n = 16) and to compare these results with an age-matched control group (n = 10). METHODS Four-dimensional flow magnetic resonance imaging has been applied to measure hemodynamic wall shear stress (WSS) at four specific planes along the ascending aorta, aortic arch, and proximal descending aorta for all subjects. Peak systolic WSS and time-averaged WSS, which respectively reflect magnitude and temporal shear variability, were calculated at standardized planes. Aortic deformation was measured by means of relative area change (RAC) at the midlevel of the ascending and descending aorta. RESULTS Compared with controls, patients with COPD had significantly reduced RAC in the mid ascending aorta (9% vs 18%; P < .0001) and descending aorta (15% vs 19%; P = .0206). Peak systolic WSS in COPD patients was significantly reduced in all considered planes, with the most dramatic difference occurring in the descending aorta (0.46 vs 0.86 N/m2; P < .0001). Peak systolic WSS and time-averaged WSS were both significantly correlated with aortic RAC at each evaluated plane. CONCLUSIONS Reduced flow shear metrics assessed at specific aortic regions correlated with RAC, a marker of aortic stiffness. Reduced hemodynamic WSS may then contribute to central aortic stiffening and perpetuate the risk for development of severe aortopathy.
Collapse
Affiliation(s)
- Michal Schäfer
- Department of Cardiology, National Jewish Health, Denver, Colo; Department of Bioengineering, University of Colorado Denver | Anschutz Medical Campus, Aurora, Colo.
| | - Vitaly O Kheyfets
- Department of Cardiology, National Jewish Health, Denver, Colo; Department of Bioengineering, University of Colorado Denver | Anschutz Medical Campus, Aurora, Colo
| | - Alex J Barker
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Ill
| | - Kurt Stenmark
- Cardiovascular Pulmonary Research Laboratories, Department of Medicine and Pediatrics, University of Colorado Denver | Anschutz Medical Campus, Aurora, Colo
| | - Kendall S Hunter
- Department of Cardiology, National Jewish Health, Denver, Colo; Department of Bioengineering, University of Colorado Denver | Anschutz Medical Campus, Aurora, Colo
| | - P Mason McClatchey
- Department of Bioengineering, University of Colorado Denver | Anschutz Medical Campus, Aurora, Colo
| | - J Kern Buckner
- Department of Cardiology, National Jewish Health, Denver, Colo
| | - T Brett Reece
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado Denver | Anschutz Medical Campus, Aurora, Colo
| | - Omid Jazaeri
- Division of Vascular and Endovascular Therapy, Department of Surgery, University of Colorado Denver | Anschutz Medical Campus, Aurora, Colo
| | - Brett E Fenster
- Department of Cardiology, National Jewish Health, Denver, Colo
| |
Collapse
|
25
|
Montalba C, Urbina J, Sotelo J, Andia ME, Tejos C, Irarrazaval P, Hurtado DE, Valverde I, Uribe S. Variability of 4D flow parameters when subjected to changes in MRI acquisition parameters using a realistic thoracic aortic phantom. Magn Reson Med 2017; 79:1882-1892. [DOI: 10.1002/mrm.26834] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/02/2017] [Accepted: 06/19/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Cristian Montalba
- Biomedical Imaging CenterPontificia Universidad Católica de ChileSantiago Chile
| | - Jesus Urbina
- Biomedical Imaging CenterPontificia Universidad Católica de ChileSantiago Chile
- Department of RadiologySchool of Medicine, Pontificia Universidad Católica de ChileSantiago Chile
| | - Julio Sotelo
- Biomedical Imaging CenterPontificia Universidad Católica de ChileSantiago Chile
- Department of Electrical EngineeringPontificia Universidad Católica de ChileSantiago Chile
| | - Marcelo E. Andia
- Biomedical Imaging CenterPontificia Universidad Católica de ChileSantiago Chile
- Department of RadiologySchool of Medicine, Pontificia Universidad Católica de ChileSantiago Chile
| | - Cristian Tejos
- Biomedical Imaging CenterPontificia Universidad Católica de ChileSantiago Chile
- Department of Electrical EngineeringPontificia Universidad Católica de ChileSantiago Chile
| | - Pablo Irarrazaval
- Biomedical Imaging CenterPontificia Universidad Católica de ChileSantiago Chile
- Department of Electrical EngineeringPontificia Universidad Católica de ChileSantiago Chile
| | - Daniel E. Hurtado
- Department of Structural and Geotechnical EngineeringPontificia Universidad Católica de ChileSantiago Chile
- Institute for Biological and Medical EngineeringSchools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de ChileSantiago Chile
| | - Israel Valverde
- Hospital Virgen del RocioUniversidad de SevillaSeville Spain
- Institute of Biomedicine of SevilleUniversidad de SevillaSeville Spain
| | - Sergio Uribe
- Biomedical Imaging CenterPontificia Universidad Católica de ChileSantiago Chile
- Department of RadiologySchool of Medicine, Pontificia Universidad Católica de ChileSantiago Chile
| |
Collapse
|
26
|
|
27
|
Patient-specific in vitro models for hemodynamic analysis of congenital heart disease - Additive manufacturing approach. J Biomech 2017; 54:111-116. [PMID: 28242061 DOI: 10.1016/j.jbiomech.2017.01.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 01/25/2017] [Accepted: 01/27/2017] [Indexed: 02/07/2023]
Abstract
Non-invasive hemodynamic assessment of total cavopulmonary connection (TCPC) is challenging due to the complex anatomy. Additive manufacturing (AM) is a suitable alternative for creating patient-specific in vitro models for flow measurements using four-dimensional (4D) Flow MRI. These in vitro systems have the potential to serve as validation for computational fluid dynamics (CFD), simulating different physiological conditions. This study investigated three different AM technologies, stereolithography (SLA), selective laser sintering (SLS) and fused deposition modeling (FDM), to determine differences in hemodynamics when measuring flow using 4D Flow MRI. The models were created using patient-specific MRI data from an extracardiac TCPC. These models were connected to a perfusion pump circulating water at three different flow rates. Data was processed for visualization and quantification of velocity, flow distribution, vorticity and kinetic energy. These results were compared between each model. In addition, the flow distribution obtained in vitro was compared to in vivo. The results showed significant difference in velocities measured at the outlets of the models that required internal support material when printing. Furthermore, an ultrasound flow sensor was used to validate flow measurements at the inlets and outlets of the in vitro models. These results were highly correlated to those measured with 4D Flow MRI. This study showed that commercially available AM technologies can be used to create patient-specific vascular models for in vitro hemodynamic studies at reasonable costs. However, technologies that do not require internal supports during manufacturing allow smoother internal surfaces, which makes them better suited for flow analyses.
Collapse
|
28
|
Lawley CM, Broadhouse KM, Callaghan FM, Winlaw DS, Figtree GA, Grieve SM. 4D flow magnetic resonance imaging: role in pediatric congenital heart disease. Asian Cardiovasc Thorac Ann 2017; 26:28-37. [PMID: 28185475 DOI: 10.1177/0218492317694248] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Imaging-based evaluation of cardiac structure and function remains paramount in the diagnosis and monitoring of congenital heart disease in childhood. Accurate measurements of intra- and extracardiac hemodynamics are required to inform decision making, allowing planned timing of interventions prior to deterioration of cardiac function. Four-dimensional flow magnetic resonance imaging is a nonionizing noninvasive technology that allows accurate and reproducible delineation of blood flow at any anatomical location within the imaging volume of interest, and also permits derivation of physiological parameters such as kinetic energy and wall shear stress. Four-dimensional flow is the focus of a great deal of attention in adult medicine, however, the translation of this imaging technique into the pediatric population has been limited to date. A more broad-scaled application of 4-dimensional flow in pediatric congenital heart disease stands to increase our fundamental understanding of the cause and significance of abnormal blood flow patterns, may improve risk stratification, and inform the design and use of surgical and percutaneous correction techniques. This paper seeks to outline the application of 4-dimensional flow in the assessment and management of the pediatric population affected by congenital heart disease.
Collapse
Affiliation(s)
- Claire M Lawley
- 1 Sydney Translational Imaging Laboratory, Sydney Heart Research Institute, Charles Perkins Centre, University of Sydney, Sydney, Australia.,2 North Shore Heart Research Group, Kolling Institute of Medical Research, Sydney Medical School Northern, University of Sydney, Sydney, Australia.,3 Clinical Population Perinatal Health Research, Kolling Institute, University of Sydney, Sydney, Australia
| | - Kathryn M Broadhouse
- 1 Sydney Translational Imaging Laboratory, Sydney Heart Research Institute, Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - Fraser M Callaghan
- 1 Sydney Translational Imaging Laboratory, Sydney Heart Research Institute, Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - David S Winlaw
- 4 Heart Centre for Children & University of Sydney, The Children's Hospital at Westmead, Sydney, Australia
| | - Gemma A Figtree
- 1 Sydney Translational Imaging Laboratory, Sydney Heart Research Institute, Charles Perkins Centre, University of Sydney, Sydney, Australia.,2 North Shore Heart Research Group, Kolling Institute of Medical Research, Sydney Medical School Northern, University of Sydney, Sydney, Australia
| | - Stuart M Grieve
- 1 Sydney Translational Imaging Laboratory, Sydney Heart Research Institute, Charles Perkins Centre, University of Sydney, Sydney, Australia.,2 North Shore Heart Research Group, Kolling Institute of Medical Research, Sydney Medical School Northern, University of Sydney, Sydney, Australia.,5 Department of Radiology, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
29
|
Rutkowski DR, Reeder SB, Fernandez LA, Roldán-Alzate A. Surgical planning for living donor liver transplant using 4D flow MRI, computational fluid dynamics and in vitro experiments. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION 2017; 6:545-555. [PMID: 30094106 DOI: 10.1080/21681163.2017.1278619] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study used magnetic resonance imaging (MRI), computational fluid dynamics (CFD) modeling, and in vitro experiments to predict patient-specific alterations in hepatic hemodynamics in response to partial hepatectomy in living liver donors. 4D Flow MRI was performed on three donors before and after hepatectomy and models of the portal venous system were created. Virtual surgery was performed to simulate (1) surgical resection and (2) post-surgery vessel dilation. CFD simulations were conducted using in vivo flow data for boundary conditions. CFD results showed good agreement with in vivo data, and in vitro experimental values agreed well with imaging and simulation results. The post-surgery models predicted an increase in all measured hemodynamic parameters, and the dilated virtual surgery model predicted post-surgery conditions better than the model that only simulated resection. The methods used in this study have potential significant value for the surgical planning process for the liver and other vascular territories.
Collapse
Affiliation(s)
- David R Rutkowski
- Mechanical Engineering, University of Wisconsin-Madison Madison, WI, United States.,Radiology, University of Wisconsin-Madison Madison, WI, United States
| | - Scott B Reeder
- Radiology, University of Wisconsin-Madison Madison, WI, United States.,Medical Physics, University of Wisconsin-Madison Madison, WI, United States.,Biomedical Engineering, University of Wisconsin-Madison Madison, WI, United States.,Medicine, University of Wisconsin-Madison Madison, WI, United States.,Emergency Medicine, University of Wisconsin-Madison Madison, WI, United States
| | | | - Alejandro Roldán-Alzate
- Mechanical Engineering, University of Wisconsin-Madison Madison, WI, United States.,Radiology, University of Wisconsin-Madison Madison, WI, United States.,Biomedical Engineering, University of Wisconsin-Madison Madison, WI, United States
| |
Collapse
|
30
|
Wei ZA, Trusty PM, Tree M, Haggerty CM, Tang E, Fogel M, Yoganathan AP. Can time-averaged flow boundary conditions be used to meet the clinical timeline for Fontan surgical planning? J Biomech 2016; 50:172-179. [PMID: 27855985 DOI: 10.1016/j.jbiomech.2016.11.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 11/15/2022]
Abstract
Cardiovascular simulations have great potential as a clinical tool for planning and evaluating patient-specific treatment strategies for those suffering from congenital heart diseases, specifically Fontan patients. However, several bottlenecks have delayed wider deployment of the simulations for clinical use; the main obstacle is simulation cost. Currently, time-averaged clinical flow measurements are utilized as numerical boundary conditions (BCs) in order to reduce the computational power and time needed to offer surgical planning within a clinical time frame. Nevertheless, pulsatile blood flow is observed in vivo, and its significant impact on numerical simulations has been demonstrated. Therefore, it is imperative to carry out a comprehensive study analyzing the sensitivity of using time-averaged BCs. In this study, sensitivity is evaluated based on the discrepancies between hemodynamic metrics calculated using time-averaged and pulsatile BCs; smaller discrepancies indicate less sensitivity. The current study incorporates a comparison between 3D patient-specific CFD simulations using both the time-averaged and pulsatile BCs for 101 Fontan patients. The sensitivity analysis involves two clinically important hemodynamic metrics: hepatic flow distribution (HFD) and indexed power loss (iPL). Paired demographic group comparisons revealed that HFD sensitivity is significantly different between single and bilateral superior vena cava cohorts but no other demographic discrepancies were observed for HFD or iPL. Multivariate regression analyses show that the best predictors for sensitivity involve flow pulsatilities, time-averaged flow rates, and geometric characteristics of the Fontan connection. These predictors provide patient-specific guidelines to determine the effectiveness of analyzing patient-specific surgical options with time-averaged BCs within a clinical time frame.
Collapse
Affiliation(s)
- Zhenglun Alan Wei
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 387 Technology Circle, Suite 232, Atlanta, GA 30313-2412, USA
| | - Phillip M Trusty
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 387 Technology Circle, Suite 232, Atlanta, GA 30313-2412, USA
| | - Mike Tree
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | | - Elaine Tang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Mark Fogel
- Division of Cardiology, Children׳s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ajit P Yoganathan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 387 Technology Circle, Suite 232, Atlanta, GA 30313-2412, USA.
| |
Collapse
|
31
|
Biglino G, Cosentino D, Steeden JA, De Nova L, Castelli M, Ntsinjana H, Pennati G, Taylor AM, Schievano S. Using 4D Cardiovascular Magnetic Resonance Imaging to Validate Computational Fluid Dynamics: A Case Study. Front Pediatr 2015; 3:107. [PMID: 26697416 PMCID: PMC4677094 DOI: 10.3389/fped.2015.00107] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 11/25/2015] [Indexed: 11/30/2022] Open
Abstract
Computational fluid dynamics (CFD) can have a complementary predictive role alongside the exquisite visualization capabilities of 4D cardiovascular magnetic resonance (CMR) imaging. In order to exploit these capabilities (e.g., for decision-making), it is necessary to validate computational models against real world data. In this study, we sought to acquire 4D CMR flow data in a controllable, experimental setup and use these data to validate a corresponding computational model. We applied this paradigm to a case of congenital heart disease, namely, transposition of the great arteries (TGA) repaired with arterial switch operation. For this purpose, a mock circulatory loop compatible with the CMR environment was constructed and two detailed aortic 3D models (i.e., one TGA case and one normal aortic anatomy) were tested under realistic hemodynamic conditions, acquiring 4D CMR flow. The same 3D domains were used for multi-scale CFD simulations, whereby the remainder of the mock circulatory system was appropriately summarized with a lumped parameter network. Boundary conditions of the simulations mirrored those measured in vitro. Results showed a very good quantitative agreement between experimental and computational models in terms of pressure (overall maximum % error = 4.4% aortic pressure in the control anatomy) and flow distribution data (overall maximum % error = 3.6% at the subclavian artery outlet of the TGA model). Very good qualitative agreement could also be appreciated in terms of streamlines, throughout the cardiac cycle. Additionally, velocity vectors in the ascending aorta revealed less symmetrical flow in the TGA model, which also exhibited higher wall shear stress in the anterior ascending aorta.
Collapse
Affiliation(s)
- Giovanni Biglino
- Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science, Great Ormond Street Hospital for Children, NHS Foundation Trust , London , UK
| | - Daria Cosentino
- Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science, Great Ormond Street Hospital for Children, NHS Foundation Trust , London , UK
| | - Jennifer A Steeden
- Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science, Great Ormond Street Hospital for Children, NHS Foundation Trust , London , UK
| | - Lorenzo De Nova
- Laboratory of Biological Structures Mechanics (LAbS), Politecnico di Milano , Milan , Italy
| | - Matteo Castelli
- Laboratory of Biological Structures Mechanics (LAbS), Politecnico di Milano , Milan , Italy
| | - Hopewell Ntsinjana
- Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science, Great Ormond Street Hospital for Children, NHS Foundation Trust , London , UK
| | - Giancarlo Pennati
- Laboratory of Biological Structures Mechanics (LAbS), Politecnico di Milano , Milan , Italy
| | - Andrew M Taylor
- Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science, Great Ormond Street Hospital for Children, NHS Foundation Trust , London , UK
| | - Silvia Schievano
- Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science, Great Ormond Street Hospital for Children, NHS Foundation Trust , London , UK
| |
Collapse
|