1
|
Shahbad R, Kamenskiy A, Razian SA, Jadidi M, Desyatova A. Effects of age, elastin density, and glycosaminoglycan accumulation on the delamination strength of human thoracic and abdominal aortas. Acta Biomater 2024:S1742-7061(24)00593-2. [PMID: 39396627 DOI: 10.1016/j.actbio.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/19/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Aortic dissection is a life-threatening condition caused by layer separation. Despite extensive research, the relationship between the aortic wall's structural integrity and dissection risk remains unclear. Glycosaminoglycan (GAG) accumulation and elastin loss are suspected to play significant roles. We investigated how age-related changes in aortic structure affect dissection susceptibility. Peeling tests were performed on longitudinal and circumferential thoracic (TA) and abdominal aortic (AA) strips from 35 donors aged 13-76 years (mean 38 ± 15 years, 34 % female). GAG, elastin, collagen, and smooth muscle cell (SMC) contents were assessed using bidirectional histology. Young TAs resisted longitudinal peeling better than circumferential, with delamination strengths of 65.4 mN/mm and 44.2 mN/mm, respectively. Delamination strength decreased with age in both directions, more rapidly longitudinally, equalizing at ∼20-25 mN/mm in older TAs. Delamination strength in AAs was 22 % higher than in TAs. No sex differences were observed. GAG density increased, while elastin density decreased by 2.5 % and 4 % per decade, respectively. Collagen density did not change with age, while SMC density decreased circumferentially. GAGs partially mediated the reduction in longitudinal delamination strength due to aging, while circumferential strength reduction was not mediated by changes in either GAG or elastin densities. This study explains why aortic dissections are more common in TAs, especially in older individuals, and why they typically propagate spirally. TAs exhibit lower delamination strength compared to AAs and experience strength reduction with age, a phenomenon linked to increased GAG accumulation and elastin loss. These findings enhance our understanding of the pathophysiological mechanisms behind aortic dissection. STATEMENT OF SIGNIFICANCE: This work explores the age-dependent relationships between delamination strength in human aortas and wall structural content. We investigated 35 human aortas from donors aged 13 to 76 years, providing new insights into the biomechanical and histological factors that influence aortic dissection risk. Our findings elucidate how variations in elastin, glycosaminoglycan, collagen, and smooth muscle cell densities impact the structural integrity of the aorta, contributing significantly to the understanding of aortic dissection mechanisms.
Collapse
Affiliation(s)
- Ramin Shahbad
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA
| | - Alexey Kamenskiy
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA
| | | | - Majid Jadidi
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA
| | | |
Collapse
|
2
|
Petřivý Z, Horný L, Tichý P. Traction-separation law parameters for the description of age-related changes in the delamination strength of the human descending thoracic aorta. Biomech Model Mechanobiol 2024:10.1007/s10237-024-01871-1. [PMID: 38985231 DOI: 10.1007/s10237-024-01871-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
Aortic dissection is a life-threatening disease that consists in the development of a tear in the wall of the aorta. The initial tear propagates as a discontinuity leading to separation within the aortic wall, which can result in the creation of a so-called false lumen. A fatal threat occurs if the rupture extends through the whole thickness of the aortic wall, as blood may then leak. It is generally accepted that the dissection, which can sometime extend along the entire length of the aorta, propagates via a delamination mechanism. The aim of the present paper is to provide experimentally validated parameters of a mathematical model for the description of the wall's cohesion. A model of the peeling experiment was built in Abaqus. The delamination interface was described by a piecewise linear traction-separation law. The bulk behavior of the aorta was assumed to be nonlinearly elastic, anisotropic, and incompressible. Our simulations resulted in estimates of the material parameters for the traction-separation law of the human descending thoracic aorta, which were obtained by minimizing the differences between the FEM predictions and the delamination force given by the regression of the peeling experiments. The results show that the stress at damage initiation, Tc, should be understood as an age-dependent quantity, and under the assumptions of our model this dependence can be expressed by linear regression as Tc = - 13.03·10-4·Age + 0.2485 if the crack front advances in the axial direction, and Tc = - 7.58·10-4·Age + 0.1897 if the crack front advances in the direction of the aortic circumference (Tc [MPa], Age [years]). Other model parameters were the stiffness K and the separation at failure, δf-δc (K = 0.5 MPa/mm, δf-δc = 0.1 mm). The material parameters provided by our study can be used in numerical simulations of the biomechanics of dissection propagation through the aorta especially when age-associated phenomena are studied.
Collapse
Affiliation(s)
- Zdeněk Petřivý
- Faculty of Mechanical Engineering, Czech Technical University in Prague, Technická 4, 160 00, Prague, Czech Republic
| | - Lukáš Horný
- Faculty of Mechanical Engineering, Czech Technical University in Prague, Technická 4, 160 00, Prague, Czech Republic.
| | - Petr Tichý
- Faculty of Mechanical Engineering, Czech Technical University in Prague, Technická 4, 160 00, Prague, Czech Republic
| |
Collapse
|
3
|
Zhang Z, Xu X, Li T, Xin YF, Tong J. Region-specific delamination strength of ascending thoracic aortic aneurysm of elderly hypertensive patients with bicuspid and tricuspid aortic valves. Med Eng Phys 2024; 126:104157. [PMID: 38621853 DOI: 10.1016/j.medengphy.2024.104157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/18/2024] [Accepted: 03/16/2024] [Indexed: 04/17/2024]
Abstract
Both ageing and hypertension are clinical factors that may lead to a higher propensity for dissection or rupture of ascending thoracic aortic aneurysms (ATAAs). This study sought to investigate effect of valve morphology on regional delamination strength of ATAAs in the elderly hypertensive patients. Whole fresh ATAA samples were harvested from 23 hypertensive patients (age, 71 ± 8 years) who underwent elective aortic surgery. Peeling tests were performed to measure region-specific delamination strengths of the ATAAs, which were compared between patients with bicuspid aortic valve (BAV) and tricuspid aortic valve (TAV). The regional delamination strengths of the ATAAs were further correlated with patient ages and aortic diameters for BAV and TAV groups. In the anterior and right lateral regions, the longitudinal delamination strengths of the ATAAs were statistically significantly higher for BAV patients than TAV patients (33 ± 7 vs. 23 ± 8 mN/mm, p = 0.01; 30 ± 7 vs. 19 ± 9 mN/mm, p = 0.02). For both BAV and TAV patients, the left lateral region exhibited significantly higher delamination strengths in both directions than the right lateral region. Histology revealed that disruption of elastic fibers in the right lateral region of the ATAAs was more severe for the TAV patients than the BAV patients. A strong inverse correlation between longitudinal delamination strength and age was identified in the right lateral region of the ATAAs of the TAV patients. Results suggest that TAV-ATAAs are more vulnerable to aortic dissection than BAV-ATAAs for the elderly hypertensive patients. Regardless of valve morphotypes, the right lateral region may be a special quadrant which is more likely to initiate dissection when compared with other regions.
Collapse
Affiliation(s)
- Zhi Zhang
- Institute for Biomedical Engineering and Nano Science, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaojuan Xu
- Institute for Biomedical Engineering and Nano Science, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, China
| | - Tieyan Li
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuan-Feng Xin
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Jianhua Tong
- Institute for Biomedical Engineering and Nano Science, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Mosquea Gomez ER, Mehta B. When the Tree Branch Affects the Fruits: A Case of Celiac Artery Dissection. Cureus 2024; 16:e56695. [PMID: 38646304 PMCID: PMC11032513 DOI: 10.7759/cureus.56695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 04/23/2024] Open
Abstract
Arterial dissection is a laceration of an artery or arterial bed, that can extend to contiguous arteries and lead to accumulation of blood providing a great risk for thrombi formation, and possible ischemic events. Celiac artery dissection is a very rare pathology, with an unknown prevalence and a pathophysiology that still needs to be elucidated. Diagnosis has increased in the last decade due to higher imaging modalities and accessibility of such that provide simpler identification, as well as which treatment should be applied to a particular patient. In this case report, we present a 44-year-old male with abdominal pain, found to have on computed tomography angiography (CTA) a dissection of the celiac artery with extension to the splenic artery, causing multiple splenic infarcts, demonstrating that such lesions can be the cause of unexplained thrombosis in a certain patient population. Due to its complex presentation, management can differ based on the characteristics of the dissection as well as organ involvement, these modalities range from anticoagulation to surgical or endoscopic intervention. This case highlights the rare occurrence of an isolated dissection at a visceral artery causing thrombosis in a relatively healthy patient.
Collapse
Affiliation(s)
| | - Bijal Mehta
- Internal Medicine, Hackensack Meridian Mountainside Medical Center, Montclair, USA
| |
Collapse
|
5
|
Atkinson G, Bianco R, Di Gregoli K, Johnson JL. The contribution of matrix metalloproteinases and their inhibitors to the development, progression, and rupture of abdominal aortic aneurysms. Front Cardiovasc Med 2023; 10:1248561. [PMID: 37799778 PMCID: PMC10549934 DOI: 10.3389/fcvm.2023.1248561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/07/2023] [Indexed: 10/07/2023] Open
Abstract
Abdominal aortic aneurysms (AAAs) account for up to 8% of deaths in men aged 65 years and over and 2.2% of women. Patients with AAAs often have atherosclerosis, and intimal atherosclerosis is generally present in AAAs. Accordingly, AAAs are considered a form of atherosclerosis and are frequently referred to as atherosclerotic aneurysms. Pathological observations advocate inflammatory cell infiltration alongside adverse extracellular matrix degradation as key contributing factors to the formation of human atherosclerotic AAAs. Therefore, macrophage production of proteolytic enzymes is deemed responsible for the damaging loss of ECM proteins, especially elastin and fibrillar collagens, which characterise AAA progression and rupture. Matrix metalloproteinases (MMPs) and their regulation by tissue inhibitors metalloproteinases (TIMPs) can orchestrate not only ECM remodelling, but also moderate the proliferation, migration, and apoptosis of resident aortic cells, alongside the recruitment and subsequent behaviour of inflammatory cells. Accordingly, MMPs are thought to play a central regulatory role in the development, progression, and eventual rupture of abdominal aortic aneurysms (AAAs). Together, clinical and animal studies have shed light on the complex and often diverse effects MMPs and TIMPs impart during the development of AAAs. This dichotomy is underlined from evidence utilising broad-spectrum MMP inhibition in animal models and clinical trials which have failed to provide consistent protection from AAA progression, although more encouraging results have been observed through deployment of selective inhibitors. This review provides a summary of the supporting evidence connecting the contribution of individual MMPs to AAA development, progression, and eventual rupture. Topics discussed include structural, functional, and cell-specific diversity of MMP members; evidence from animal models of AAA and comparisons with findings in humans; the dual role of MMPs and the requirement to selectively target individual MMPs; and the advances in identifying aberrant MMP activity. As evidenced, our developing understanding of the multifaceted roles individual MMPs perform during the progression and rupture of AAAs, should motivate clinical trials assessing the therapeutic potential of selective MMP inhibitors, which could restrict AAA-related morbidity and mortality worldwide.
Collapse
Affiliation(s)
| | | | | | - Jason L. Johnson
- Laboratory of Cardiovascular Pathology, Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
6
|
Wang X, Carpenter HJ, Ghayesh MH, Kotousov A, Zander AC, Amabili M, Psaltis PJ. A review on the biomechanical behaviour of the aorta. J Mech Behav Biomed Mater 2023; 144:105922. [PMID: 37320894 DOI: 10.1016/j.jmbbm.2023.105922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/14/2023] [Accepted: 05/20/2023] [Indexed: 06/17/2023]
Abstract
Large aortic aneurysm and acute and chronic aortic dissection are pathologies of the aorta requiring surgery. Recent advances in medical intervention have improved patient outcomes; however, a clear understanding of the mechanisms leading to aortic failure and, hence, a better understanding of failure risk, is still missing. Biomechanical analysis of the aorta could provide insights into the development and progression of aortic abnormalities, giving clinicians a powerful tool in risk stratification. The complexity of the aortic system presents significant challenges for a biomechanical study and requires various approaches to analyse the aorta. To address this, here we present a holistic review of the biomechanical studies of the aorta by categorising articles into four broad approaches, namely theoretical, in vivo, experimental and combined investigations. Experimental studies that focus on identifying mechanical properties of the aortic tissue are also included. By reviewing the literature and discussing drawbacks, limitations and future challenges in each area, we hope to present a more complete picture of the state-of-the-art of aortic biomechanics to stimulate research on critical topics. Combining experimental modalities and computational approaches could lead to more comprehensive results in risk prediction for the aortic system.
Collapse
Affiliation(s)
- Xiaochen Wang
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Harry J Carpenter
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Mergen H Ghayesh
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Andrei Kotousov
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Anthony C Zander
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Marco Amabili
- Department of Mechanical Engineering, McGill University, Montreal H3A 0C3, Canada
| | - Peter J Psaltis
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia 5005, Australia; Department of Cardiology, Central Adelaide Local Health Network, Adelaide, South Australia 5000, Australia; Vascular Research Centre, Heart Health Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, South Australia 5000, Australia
| |
Collapse
|
7
|
Wang X, Ghayesh MH, Kotousov A, Zander AC, Dawson JA, Psaltis PJ. Fluid-structure interaction study for biomechanics and risk factors in Stanford type A aortic dissection. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023:e3736. [PMID: 37258411 DOI: 10.1002/cnm.3736] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 04/04/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023]
Abstract
Aortic dissection is a life-threatening condition with a rising prevalence in the elderly population, possibly as a consequence of the increasing population life expectancy. Untreated aortic dissection can lead to myocardial infarction, aortic branch malperfusion or occlusion, rupture, aneurysm formation and death. This study aims to assess the potential of a biomechanical model in predicting the risks of a non-dilated thoracic aorta with Stanford type A dissection. To achieve this, a fully coupled fluid-structure interaction model was developed under realistic blood flow conditions. This model of the aorta was developed by considering three-dimensional artery geometry, multiple artery layers, hyperelastic artery wall, in vivo-based physiological time-varying blood velocity profiles, and non-Newtonian blood behaviours. The results demonstrate that in a thoracic aorta with Stanford type A dissection, the wall shear stress (WSS) is significantly low in the ascending aorta and false lumen, leading to potential aortic dilation and thrombus formation. The results also reveal that the WSS is highly related to blood flow patterns. The aortic arch region near the brachiocephalic and left common carotid artery is prone to rupture, showing a good agreement with the clinical reports. The results have been translated into their potential clinical relevance by revealing the role of the stress state, WSS and flow characteristics as the main parameters affecting lesion progression, including rupture and aneurysm. The developed model can be tailored for patient-specific studies and utilised as a predictive tool to estimate aneurysm growth and initiation of wall rupture inside the human thoracic aorta.
Collapse
Affiliation(s)
- Xiaochen Wang
- School of Mechanical Engineering, University of Adelaide, Adelaide, Australia
| | - Mergen H Ghayesh
- School of Mechanical Engineering, University of Adelaide, Adelaide, Australia
| | - Andrei Kotousov
- School of Mechanical Engineering, University of Adelaide, Adelaide, Australia
| | - Anthony C Zander
- School of Mechanical Engineering, University of Adelaide, Adelaide, Australia
| | - Joseph A Dawson
- Department of Vascular & Endovascular Surgery, Royal Adelaide Hospital, Adelaide, Australia
- Trauma Surgery Unit, Royal Adelaide Hospital, Adelaide, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Peter J Psaltis
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Vascular Research Centre, Lifelong Health Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, Australia
- Department of Cardiology, Central Adelaide Local Health Network, Adelaide, Australia
| |
Collapse
|
8
|
Tong J, Xin YF, Zhang Z, Xu X, Li T. Effect of hypertension on the delamination and tensile strength of ascending thoracic aortic aneurysm with a focus on right lateral region. J Biomech 2023; 154:111615. [PMID: 37178496 DOI: 10.1016/j.jbiomech.2023.111615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Hypertension is a major predisposing factor to initiate thoracic aortopathy. The objective of this study is to investigate effect of hypertension on delamination and tensile strength of ascending thoracic aortic aneurysms (ATAAs). A total of 35 fresh ATAA samples were harvested from 19 hypertensive and 16 non-hypertensive patients during elective aortic surgery. Peeling tests with two extension rates were performed to determine delamination strength, while uniaxial tensile (UT) tests were employed to measure failure stresses. The delamination strength and failure stresses of the ATAAs were further correlated with patient ages for hypertensive and non-hypertensive groups. The delamination strength to peel apart the ATAA tissue along the longitudinal direction was statistically significantly lower for the hypertensive patients than that of the non-hypertensive patients (35 ± 11 vs. 49 ± 9 mN/mm, p = 0.02). A higher delamination strength was measured if peeling was performed with a higher extension rate. The circumferential failure stresses were significantly lower for the hypertensive ATAAs than those of the non-hypertensive ATAAs (1.03 ± 0.27 vs. 1.43 ± 0.38 MPa, p = 0.02). Histology showed that laminar structures of elastic fibers were mainly disrupted in the hypertensive ATAAs. The longitudinal delamination strength of the ATAAs was significantly decreased and strongly correlated with ages for the hypertensive patients. Strong inverse correlations were also identified between the circumferential and longitudinal failure stresses of the ATAAs and ages for the hypertensive patients. Results suggest that the ATAAs of the elderly hypertensive patients may have a higher propensity for dissection or rupture. The dissection properties of the ATAA tissue are rate dependent.
Collapse
Affiliation(s)
- Jianhua Tong
- Institute for Biomedical Engineering and Nano Science, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China.
| | - Yuan-Feng Xin
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Zhi Zhang
- Institute for Biomedical Engineering and Nano Science, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Xiaojuan Xu
- Institute for Biomedical Engineering and Nano Science, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China; Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, PR China
| | - Tieyan Li
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China
| |
Collapse
|
9
|
Is location a significant parameter in the layer dependent dissection properties of the aorta? Biomech Model Mechanobiol 2022; 21:1887-1901. [PMID: 36057051 DOI: 10.1007/s10237-022-01627-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 08/07/2022] [Indexed: 11/02/2022]
Abstract
Proper characterisation of biological tissue is key to understanding the effect of the biomechanical environment in the physiology and pathology of the cardiovascular system. Aortic dissection in particular is a prevalent and sometimes fatal disease that still lacks a complete comprehension of its progression. Its development and outcome, however, depend on the location in the vessel. Dissection properties of arteries are frequently studied via delamination tests, such as the T-peel test and the mixed-mode peel test. So far, a study that performs both tests throughout different locations of the aorta, as well as dissecting several interfaces, is missing. This makes it difficult to extract conclusions in terms of vessel heterogeneity, as a standardised experimental procedure cannot be assured for different studies in literature. Therefore, both dissection tests have been here performed on healthy porcine aortas, dissecting three interfaces of the vessels, i.e., the intima-media, the media-adventitia and the media within itself, considering different locations of the aorta, the ascending thoracic aorta (ATA), the descending thoracic aorta and the infrarenal abdominal aorta (IAA). Significant differences were found for both, layers and location. In particular, dissection forces in the ATA were the highest and the separation of the intima-media interface required significantly the lowest force. Moreover, dissection in the longitudinal direction of the vessel generally required more force than in the circumferential one. These results emphasise the need to characterise aortic tissue considering the specific location and dissected layer of the vessel.
Collapse
|
10
|
Horný L, Roubalová L, Kronek J, Chlup H, Adámek T, Blanková A, Petřivý Z, Suchý T, Tichý P. Correlation between age, location, orientation, loading velocity and delamination strength in the human aorta. J Mech Behav Biomed Mater 2022; 133:105340. [PMID: 35785636 DOI: 10.1016/j.jmbbm.2022.105340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/10/2022] [Accepted: 06/25/2022] [Indexed: 11/15/2022]
Abstract
Aortic dissection is a biomechanical phenomenon associated with a failure of internal cohesion, which manifests itself through the delamination of the aortic wall. The goal of this study is to deepen our knowledge of the delamination strength of the aorta. To achieve this, 661 peeling experiments were carried out with strips of the human aorta collected from 46 cadavers. The samples were ordered into groups with respect to (1) anatomical location, (2) orientation of the sample, and (3) extension rate used within the experiment. The obtained results are in accordance with the hypothesis that delamination resistance is not sensitive to the extension rates 0.1, 1, 10, and 50 mms-1. We arrived at this conclusion for all positions along the aorta investigated in our study. These were the thoracic ascending (AAs), thoracic descending (ADs), and the abdominal aorta (AAb), simultaneously considering both the longitudinal (L) as well as the circumferential (C) orientations of the samples. On the other hand, our results showed that the delamination strength differs significantly with respect to the anatomical position and orientation of the sample. The medians of the delamination strength were as follows, 4.1 in AAs-L, 3.2 in AAs-C, 3.1 in ADs-L, 2.4 in ADs-C, AAb-L in 3.6, and 2.7 in AAb-C case (all values are in 0.01·Nmm-1). This suggests that resistance to crack propagation should be an anisotropic property and that the aorta is inhomogeneous along its length from the point of view of delamination resistance. Finally, correlation analysis proved that the delamination strength of the human aorta significantly decreases with age.
Collapse
Affiliation(s)
- Lukáš Horný
- Czech Technical University in Prague, Faculty of Mechanical Engineering, Technická 4, 160 00, Prague, Czech Republic.
| | - Lucie Roubalová
- Czech Technical University in Prague, Faculty of Mechanical Engineering, Technická 4, 160 00, Prague, Czech Republic
| | - Jakub Kronek
- Czech Technical University in Prague, Faculty of Mechanical Engineering, Technická 4, 160 00, Prague, Czech Republic
| | - Hynek Chlup
- Czech Technical University in Prague, Faculty of Mechanical Engineering, Technická 4, 160 00, Prague, Czech Republic
| | - Tomáš Adámek
- Regional Hospital Liberec, Department of Forensic Medicine and Toxicology, Husova 357/10, 460 63, Liberec, Czech Republic
| | - Alžběta Blanková
- Regional Hospital Liberec, Department of Forensic Medicine and Toxicology, Husova 357/10, 460 63, Liberec, Czech Republic
| | - Zdeněk Petřivý
- Czech Technical University in Prague, Faculty of Mechanical Engineering, Technická 4, 160 00, Prague, Czech Republic
| | - Tomáš Suchý
- Czech Technical University in Prague, Faculty of Mechanical Engineering, Technická 4, 160 00, Prague, Czech Republic; Institute of Rock Structure and Mechanics of The Czech Academy of Sciences, V Holešovičkách 94/41, 182 09, Prague, Czech Republic
| | - Petr Tichý
- Czech Technical University in Prague, Faculty of Mechanical Engineering, Technická 4, 160 00, Prague, Czech Republic
| |
Collapse
|
11
|
Cikach FS, Germano E, Roselli EE, Svensson LG. Ascending aorta mechanics and dimensions in aortopathy – from science to application. Indian J Thorac Cardiovasc Surg 2022; 38:7-13. [PMID: 35463697 PMCID: PMC8980982 DOI: 10.1007/s12055-020-01092-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/04/2020] [Indexed: 10/22/2022] Open
Abstract
The ascending aorta has a unique microstructure and biomechanical properties that allow it to absorb energy during systole and return energy during diastole (Windkessel effect). Derangements in aortic architecture can result in changes to biomechanics and inefficiencies in function. Ultimately biomechanical failure may occur resulting in aortic dissection or rupture. By measuring aortic biomechanics with either in vivo or ex vivo methods, one may be able to predict tissue failure in patients with aortic disease such as aneurysms. An understanding of the biomechanical changes that lead to these tissue-level failures may help guide therapy, disease surveillance, surgical intervention, and aid in the development of new treatments for this deadly condition.
Collapse
|
12
|
Fleischmann D, Afifi RO, Casanegra AI, Elefteriades JA, Gleason TG, Hanneman K, Roselli EE, Willemink MJ, Fischbein MP. Imaging and Surveillance of Chronic Aortic Dissection: A Scientific Statement From the American Heart Association. Circ Cardiovasc Imaging 2022; 15:e000075. [PMID: 35172599 DOI: 10.1161/hci.0000000000000075] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
All patients surviving an acute aortic dissection require continued lifelong surveillance of their diseased aorta. Late complications, driven predominantly by chronic false lumen degeneration and aneurysm formation, often require surgical, endovascular, or hybrid interventions to treat or prevent aortic rupture. Imaging plays a central role in the medical decision-making of patients with chronic aortic dissection. Accurate aortic diameter measurements and rigorous, systematic documentation of diameter changes over time with different imaging equipment and modalities pose a range of practical challenges in these complex patients. Currently, no guidelines or recommendations for imaging surveillance in patients with chronic aortic dissection exist. In this document, we present state-of-the-art imaging and measurement techniques for patients with chronic aortic dissection and clarify the need for standardized measurements and reporting for lifelong surveillance. We also examine the emerging role of imaging and computer simulations to predict aortic false lumen degeneration, remodeling, and biomechanical failure from morphological and hemodynamic features. These insights may improve risk stratification, individualize contemporary treatment options, and potentially aid in the conception of novel treatment strategies in the future.
Collapse
|
13
|
Critical Pressure of Intramural Delamination in Aortic Dissection. Ann Biomed Eng 2022; 50:183-194. [PMID: 35044571 PMCID: PMC8957392 DOI: 10.1007/s10439-022-02906-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/01/2022] [Indexed: 02/03/2023]
Abstract
Computational models of aortic dissection can examine mechanisms by which this potentially lethal condition develops and propagates. We present results from phase-field finite element simulations that are motivated by a classical but seldom repeated experiment. Initial simulations agreed qualitatively and quantitatively with data, yet because of the complexity of the problem it was difficult to discern trends. Simplified analytical models were used to gain further insight. Together, simplified and phase-field models reveal power-law-based relationships between the pressure that initiates an intramural tear and key geometric and mechanical factors-insult surface area, wall stiffness, and tearing energy. The degree of axial stretch and luminal pressure similarly influence the pressure of tearing, which was ~88 kPa for healthy and diseased human aortas having sub-millimeter-sized initial insults, but lower for larger tear sizes. Finally, simulations show that the direction a tear propagates is influenced by focal regions of weakening or strengthening, which can drive the tear towards the lumen (dissection) or adventitia (rupture). Additional data on human aortas having different predisposing disease conditions will be needed to extend these results further, but the present findings show that physiologic pressures can propagate initial medial defects into delaminations that can serve as precursors to dissection.
Collapse
|
14
|
Yin M, Ban E, Rego BV, Zhang E, Cavinato C, Humphrey JD, Em Karniadakis G. Simulating progressive intramural damage leading to aortic dissection using DeepONet: an operator-regression neural network. J R Soc Interface 2022; 19:20210670. [PMID: 35135299 PMCID: PMC8826120 DOI: 10.1098/rsif.2021.0670] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/23/2021] [Indexed: 12/28/2022] Open
Abstract
Aortic dissection progresses mainly via delamination of the medial layer of the wall. Notwithstanding the complexity of this process, insight has been gleaned by studying in vitro and in silico the progression of dissection driven by quasi-static pressurization of the intramural space by fluid injection, which demonstrates that the differential propensity of dissection along the aorta can be affected by spatial distributions of structurally significant interlamellar struts that connect adjacent elastic lamellae. In particular, diverse histological microstructures may lead to differential mechanical behaviour during dissection, including the pressure-volume relationship of the injected fluid and the displacement field between adjacent lamellae. In this study, we develop a data-driven surrogate model of the delamination process for differential strut distributions using DeepONet, a new operator-regression neural network. This surrogate model is trained to predict the pressure-volume curve of the injected fluid and the damage progression within the wall given a spatial distribution of struts, with in silico data generated using a phase-field finite-element model. The results show that DeepONet can provide accurate predictions for diverse strut distributions, indicating that this composite branch-trunk neural network can effectively extract the underlying functional relationship between distinctive microstructures and their mechanical properties. More broadly, DeepONet can facilitate surrogate model-based analyses to quantify biological variability, improve inverse design and predict mechanical properties based on multi-modality experimental data.
Collapse
Affiliation(s)
- Minglang Yin
- Center for Biomedical Engineering, Brown University, Providence, RI 02912, USA
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - Ehsan Ban
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Bruno V. Rego
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Enrui Zhang
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
| | - Cristina Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - George Em Karniadakis
- School of Engineering, Brown University, Providence, RI 02912, USA
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
| |
Collapse
|
15
|
Tong J, Abudupataer M, Xu X, Zhang Z, Li J, Lai H, Wang C, Zhu K. OUP accepted manuscript. Interact Cardiovasc Thorac Surg 2022; 35:6548224. [PMID: 35285896 PMCID: PMC9297518 DOI: 10.1093/icvts/ivac068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/09/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jianhua Tong
- Institute for Biomedical Engineering and Nano Science, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Corresponding authors. Tongji University School of Medicine, Chifeng Road 67, Shanghai 200092, China. Tel: +86-21-65988029; e-mail: (J. Tong); Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China. Tel: +86-21-64041990; e-mail: (C. Wang); Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China. Tel: +86-21-64041990; e-mail: (K. Zhu)
| | - Mieradilijiang Abudupataer
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, and Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Xiaojuan Xu
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, China
| | - Zhi Zhang
- Institute for Biomedical Engineering and Nano Science, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Li
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, and Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Hao Lai
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, and Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, and Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- Corresponding authors. Tongji University School of Medicine, Chifeng Road 67, Shanghai 200092, China. Tel: +86-21-65988029; e-mail: (J. Tong); Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China. Tel: +86-21-64041990; e-mail: (C. Wang); Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China. Tel: +86-21-64041990; e-mail: (K. Zhu)
| | - Kai Zhu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, and Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- Corresponding authors. Tongji University School of Medicine, Chifeng Road 67, Shanghai 200092, China. Tel: +86-21-65988029; e-mail: (J. Tong); Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China. Tel: +86-21-64041990; e-mail: (C. Wang); Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China. Tel: +86-21-64041990; e-mail: (K. Zhu)
| |
Collapse
|
16
|
Ban E, Cavinato C, Humphrey JD. Differential propensity of dissection along the aorta. Biomech Model Mechanobiol 2021; 20:895-907. [PMID: 33464476 PMCID: PMC8159901 DOI: 10.1007/s10237-021-01418-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022]
Abstract
Aortic dissections progress, in part, by delamination of the wall. Previous experiments on cut-open segments of aorta demonstrated that fluid injected within the wall delaminates the aorta in two distinct modes: stepwise progressive tearing in the abdominal aorta and a more prevalent sudden mode of tearing in the thoracic aorta that can also manifest in other regions. A microstructural understanding that delineates these two modes of tearing has remained wanting. We implemented a phase-field finite-element model of the aortic wall, motivated in part by two-photon imaging, and found correlative relations for the maximum pressure prior to tearing as a function of local geometry and material properties. Specifically, the square of the pressure of tearing relates directly to both tissue stiffness and the critical energy of tearing and inversely to the square root of the torn area; this correlation explains the sudden mode of tearing and, with the microscopy, suggests a mechanism for progressive tearing. Microscopy also confirmed that thick interlamellar radial struts are more abundant in the abdominal region of the aorta, where progressive tearing was observed previously. The computational results suggest that structurally significant radial struts increase tearing pressure by two mechanisms: confining the fluid by acting as barriers to flow and increasing tissue stiffness by holding the adjacent lamellae together. Collectively, these two phase-field models provide new insights into the mechanical factors that can influence intramural delaminations that promote aortic dissection.
Collapse
Affiliation(s)
- Ehsan Ban
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA.
| | - Cristina Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
17
|
Brunet J, Pierrat B, Badel P. Review of Current Advances in the Mechanical Description and Quantification of Aortic Dissection Mechanisms. IEEE Rev Biomed Eng 2021; 14:240-255. [PMID: 31905148 DOI: 10.1109/rbme.2019.2950140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Aortic dissection is a life-threatening event associated with a very poor outcome. A number of complex phenomena are involved in the initiation and propagation of the disease. Advances in the comprehension of the mechanisms leading to dissection have been made these last decades, thanks to improvements in imaging and experimental techniques. However, the micro-mechanics involved in triggering such rupture events remains poorly described and understood. It constitutes the primary focus of the present review. Towards the goal of detailing the dissection phenomenon, different experimental and modeling methods were used to investigate aortic dissection, and to understand the underlying phenomena involved. In the last ten years, research has tended to focus on the influence of microstructure on initiation and propagation of the dissection, leading to a number of multiscale models being developed. This review brings together all these materials in an attempt to identify main advances and remaining questions.
Collapse
|
18
|
Kawamura Y, Murtada SI, Gao F, Liu X, Tellides G, Humphrey JD. Adventitial remodeling protects against aortic rupture following late smooth muscle-specific disruption of TGFβ signaling. J Mech Behav Biomed Mater 2021; 116:104264. [PMID: 33508556 DOI: 10.1016/j.jmbbm.2020.104264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/21/2020] [Accepted: 12/09/2020] [Indexed: 01/30/2023]
Abstract
Altered signaling through transforming growth factor-beta (TGFβ) increases the risk of aortic dissection in patients, which has been confirmed in mouse models. It is well known that altered TGFβ signaling affects matrix turnover, but there has not been a careful examination of associated changes in structure-function relations. In this paper, we present new findings on the rupture potential of the aortic wall following late postnatal smooth muscle cell (SMC)-specific disruption of type I and II TGFβ receptors in a mouse model with demonstrated dissection susceptibility. Using a combination of custom computer-controlled biaxial tests and quantitative histology and immunohistochemistry, we found that loss of TGFβ signaling in SMCs compromises medial properties but induces compensatory changes in the adventitia that preserve wall strength above that which is needed to resist in vivo values of wall stress. These findings emphasize the different structural defects that lead to aortic dissection and rupture - compromised medial integrity and insufficient adventitial strength, respectively. Relative differences in these two defects, in an individual subject at a particular time, likely reflects the considerable phenotypic diversity that is common in clinical presentations of thoracic aortic dissection and rupture. There is, therefore, a need to move beyond examinations of bulk biological assays and wall properties to cell- and layer-specific studies that delineate pathologic and compensatory changes in wall biology and composition, and thus the structural integrity of the aortic wall that can dictate differences between life and death.
Collapse
Affiliation(s)
- Y Kawamura
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - S-I Murtada
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - F Gao
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - X Liu
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - G Tellides
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - J D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
19
|
Mahutga RR, Barocas VH. Investigation of Pathophysiological Aspects of Aortic Growth, Remodeling, and Failure Using a Discrete-Fiber Microstructural Model. J Biomech Eng 2020; 142:111007. [PMID: 32766738 PMCID: PMC7580844 DOI: 10.1115/1.4048031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/27/2020] [Indexed: 01/03/2023]
Abstract
Aortic aneurysms are inherently unpredictable. One can never be sure whether any given aneurysm may rupture or dissect. Clinically, the criteria for surgical intervention are based on size and growth rate, but it remains difficult to identify a high-risk aneurysm, which may require intervention before the cutoff criteria, versus an aneurysm than can be treated safely by more conservative measures. In this work, we created a computational microstructural model of a medial lamellar unit (MLU) incorporating (1) growth and remodeling laws applied directly to discrete, individual fibers, (2) separate but interacting fiber networks for collagen, elastin, and smooth muscle, (3) active and passive smooth-muscle cell mechanics, and (4) failure mechanics for all three fiber types. The MLU model was then used to study different pathologies and microstructural anomalies that may play a role in vascular growth and failure. Our model recapitulated many aspects of arterial remodeling under hypertension with no underlying genetic syndrome including remodeling dynamics, tissue mechanics, and failure. Syndromic effects (smooth muscle cell (SMC) dysfunction or elastin fragmentation) drastically changed the simulated remodeling process, tissue behavior, and tissue strength. Different underlying pathologies were able to produce similarly dilatated vessels with different failure properties, providing a partial explanation for the imperfect nature of aneurysm size as a predictor of outcome.
Collapse
Affiliation(s)
- Ryan R. Mahutga
- Department of Biomedical Engineering, University of Minnesota—Twin Cities, Minneapolis, MN 55455
| | - Victor H. Barocas
- Department of Biomedical Engineering, University of Minnesota—Twin Cities, 7-105 Nils Hasselmo Hall, 312 Church St SE, Minneapolis, MN 55455
| |
Collapse
|
20
|
Biomechanical characterization of a chronic type a dissected human aorta. J Biomech 2020; 110:109978. [DOI: 10.1016/j.jbiomech.2020.109978] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/05/2020] [Accepted: 07/29/2020] [Indexed: 11/23/2022]
|
21
|
Wang R, Yu X, Zhang Y. Mechanical and structural contributions of elastin and collagen fibers to interlamellar bonding in the arterial wall. Biomech Model Mechanobiol 2020; 20:93-106. [PMID: 32705413 DOI: 10.1007/s10237-020-01370-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/15/2020] [Indexed: 12/25/2022]
Abstract
The artery relies on interlamellar structural components, mainly elastin and collagen fibers, for maintaining its integrity and resisting dissection propagation. In this study, the contribution of arterial elastin and collagen fibers to interlamellar bonding was studied through mechanical testing, multiphoton imaging and finite element modeling. Steady-state peeling experiments were performed on porcine aortic media and the purified elastin network in the circumferential (Circ) and longitudinal (Long) directions. The peeling force and energy release rate associated with mode-I failure are much higher for aortic media than for the elastin network. Also, longitudinal peeling exhibits a higher energy release rate and strength than circumferential peeling for both the aortic media and elastin. Multiphoton imaging shows the recruitment of both elastin and collagen fibers within the interlamellar space and points to in-plane anisotropy of fiber distributions as a potential mechanism for the direction-dependent phenomena of peeling tests. Three-dimensional finite element models based on cohesive zone model (CZM) of fracture were created to simulate the peeling tests with the interlamellar energy release rate and separation distance at damage initiation obtained directly from peeling test. Our experimental results show that the separation distance at damage initiation is 80 μm for aortic media and 40 μm for elastin. The damage initiation stress was estimated from the model for aortic media (Circ: 60 kPa; Long: 95 kPa) and elastin (Circ: 9 kPa; Long: 14 kPa). The interlamellar separation distance at complete failure was estimated to be 3 - 4 mm for both media and elastin. Furthermore, elastin and collagen fibers both play an important role in bonding of the arterial wall, while collagen has a higher contribution than elastin to interlamellar stiffness, strength and toughness. These results on microstructural interlamellar failure shed light on the pathological development and progression of aortic dissection.
Collapse
Affiliation(s)
- Ruizhi Wang
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Xunjie Yu
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Yanhang Zhang
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA. .,Department of Biomedical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA. .,Divison of Materials Science & Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA.
| |
Collapse
|
22
|
Dong P, Mozafari H, Prabhu D, Bezerra HG, Wilson DL, Gu L. Optical Coherence Tomography-Based Modeling of Stent Deployment in Heavily Calcified Coronary Lesion. J Biomech Eng 2020; 142:051012. [PMID: 31654052 PMCID: PMC7104774 DOI: 10.1115/1.4045285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/27/2019] [Indexed: 12/12/2022]
Abstract
In this work, a heavily calcified coronary artery model was reconstructed from optical coherence tomography (OCT) images to investigate the impact of calcification characteristics on stenting outcomes. The calcification was quantified at various cross sections in terms of angle, maximum thickness, and area. The stent deployment procedure, including the crimping, expansion, and recoil, was implemented. The influence of calcification characteristics on stent expansion, malapposition, and lesion mechanics was characterized. Results have shown that the minimal lumen area following stenting occurred at the cross section with the greatest calcification angle. The calcification angle constricted the stretchability of the lesion and thus resulted in a small lumen area. The maximum principal strain and von Mises stress distribution patterns in both the fibrotic tissue and artery were consistent with the calcification profiles. The radially projected region of the calcification tends to have less strain and stress. The peak strain and stress of the fibrotic tissue occurred near the interface with the calcification. It is also the region with a high risk of tissue dissection and strut malapposition. In addition, the superficial calcification with a large angle aggregated the malapposition at the middle of the calcification arc. These detailed mechanistic quantifications could be used to provide a fundamental understanding of the role of calcification in stent expansions, as well as to exploit their potential for enhanced pre- and post-stenting strategies.
Collapse
Affiliation(s)
- Pengfei Dong
- Department of Mechanical and Materials Engineering,University
of Nebraska-Lincoln,Lincoln, NE 68588
| | - Hozhabr Mozafari
- Department of Mechanical and Materials Engineering,University
of Nebraska-Lincoln,Lincoln, NE 68588
| | - David Prabhu
- Department of Biomedical Engineering,Case Western Reserve
University,Cleveland, OH 44106
| | - Hiram G. Bezerra
- Department of Medicine-Cardiovascular Medicine, Cardiovascular
Imaging Core Laboratory, Harrington Heart & Vascular Institute,
University Hospitals Cleveland Medical Center, Cleveland, OH
44106
| | - David L. Wilson
- Department of Biomedical Engineering,Case Western Reserve
University,Cleveland, OH 44106
| | - Linxia Gu
- Department of Mechanical and Materials Engineering,University
of Nebraska-Lincoln,Lincoln, NE 68588;Department of Biomedical and
Chemical Engineering and Sciences,Florida Institute of
Technology,Melbourne, FL 32901
e-mail:
| |
Collapse
|
23
|
Myneni M, Rao A, Jiang M, Moreno MR, Rajagopal KR, Benjamin CC. Segmental Variations in the Peel Characteristics of the Porcine Thoracic Aorta. Ann Biomed Eng 2020; 48:1751-1767. [PMID: 32152801 DOI: 10.1007/s10439-020-02489-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/03/2020] [Indexed: 10/24/2022]
Abstract
Aortic dissection occurs predominantly in the thoracic aorta and the mechanisms for the initiation and propagation of the tear in aortic dissection are not well understood. We study the tearing characteristics of the porcine thoracic aorta using a peeling test and we estimate the peeling energy per unit area in the ascending and the descending segments. The stretch and the peel force per unit width undergone by the peeled halves of a rectangular specimen are measured. We find that there can be significant variation in the stretch within the specimen and the stretch between the markers in the specimen varies with the dynamics of peeling. We found that in our experiment the stretch achieved in the peeled halves was such that it was in the range of the stretch at which the stress-stretch curve for the uniaxial experiment starts deviating from linearity. Higher peeling energy per unit area is required in the ascending aorta compared to the descending aorta. Longitudinal specimens required higher peeling energy per unit area when compared to the circumferential specimens.
Collapse
Affiliation(s)
- Manoj Myneni
- Department of Mechanical Engineering, Texas A&M University, 100 Mechanical Engineering Office Building, College Station, TX, 77843-3123, USA
| | - Akshay Rao
- Department of Mechanical Engineering, Texas A&M University, 100 Mechanical Engineering Office Building, College Station, TX, 77843-3123, USA
| | - Mingliang Jiang
- Department of Mechanical Engineering, Texas A&M University, 100 Mechanical Engineering Office Building, College Station, TX, 77843-3123, USA
| | - Michael R Moreno
- Department of Mechanical Engineering, Texas A&M University, 100 Mechanical Engineering Office Building, College Station, TX, 77843-3123, USA
| | - K R Rajagopal
- Department of Mechanical Engineering, Texas A&M University, 100 Mechanical Engineering Office Building, College Station, TX, 77843-3123, USA
| | - Chandler C Benjamin
- Department of Mechanical Engineering, Texas A&M University, 100 Mechanical Engineering Office Building, College Station, TX, 77843-3123, USA.
| |
Collapse
|
24
|
Ahmadzadeh H, Rausch MK, Humphrey JD. Particle-based computational modelling of arterial disease. J R Soc Interface 2019; 15:20180616. [PMID: 30958237 DOI: 10.1098/rsif.2018.0616] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Accumulated glycosaminoglycans (GAGs) can sequester water and induce swelling within the intra-lamellar spaces of the medial layer of an artery. It is increasingly believed that stress concentrations caused by focal swelling can trigger the damage and delamination that is often seen in thoracic aortic disease. Here, we present computational simulations using an extended smoothed particle hydrodynamics approach to examine potential roles of pooled GAGs in initiating and propagating intra-lamellar delaminations. Using baseline models of the murine descending thoracic aorta, we first calculate stress distributions in a healthy vessel. Next, we examine increases in mechanical stress in regions surrounding GAG pools. The simulations show that smooth muscle activation can partially protect the wall from swelling-associated damage, consistent with experimental observations, but the wall can yet delaminate particularly in cases of smooth muscle dysfunction or absence. Moreover, pools of GAGs located at different but nearby locations can extend and coalesce, thus propagating a delamination. These findings, combined with a sensitivity study on the input parameters of the model, suggest that localized swelling can alter aortic mechanics in ways that eventually can cause catastrophic damage within the wall. There is, therefore, an increased need to consider roles of GAGs in aortic pathology.
Collapse
Affiliation(s)
- H Ahmadzadeh
- 1 Department of Biomedical Engineering, Yale University , New Haven, CT , USA
| | - M K Rausch
- 2 Departments of Aerospace Engineering and Engineering Mechanics and Biomedical Engineering, The University of Texas at Austin , Austin, TX , USA
| | - J D Humphrey
- 1 Department of Biomedical Engineering, Yale University , New Haven, CT , USA
| |
Collapse
|
25
|
Sherifova S, Holzapfel GA. Biomechanics of aortic wall failure with a focus on dissection and aneurysm: A review. Acta Biomater 2019; 99:1-17. [PMID: 31419563 PMCID: PMC6851434 DOI: 10.1016/j.actbio.2019.08.017] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 12/12/2022]
Abstract
Aortic dissections and aortic aneurysms are fatal events characterized by structural changes to the aortic wall. The maximum diameter criterion, typically used for aneurysm rupture risk estimations, has been challenged by more sophisticated biomechanically motivated models in the past. Although these models are very helpful for the clinicians in decision-making, they do not attempt to capture material failure. Following a short overview of the microstructure of the aorta, we analyze the failure mechanisms involved in the dissection and rupture by considering also traumatic rupture. We continue with a literature review of experimental studies relevant to quantify tissue strength. More specifically, we summarize more extensively uniaxial tensile, bulge inflation and peeling tests, and we also specify trouser, direct tension and in-plane shear tests. Finally we analyze biomechanically motivated models to predict rupture risk. Based on the findings of the reviewed studies and the rather large variations in tissue strength, we propose that an appropriate material failure criterion for aortic tissues should also reflect the microstructure in order to be effective. STATEMENT OF SIGNIFICANCE: Aortic dissections and aortic aneurysms are fatal events characterized by structural changes to the aortic wall. Despite the advances in medical, biomedical and biomechanical research, the mortality rates of aneurysms and dissections remain high. The present review article summarizes experimental studies that quantify the aortic wall strength and it discusses biomechanically motivated models to predict rupture risk. We identified contradictory observations and a large variation within and between data sets, which may be due to biological variations, different sample sizes, differences in experimental protocols, etc. Based on the findings of the reviewed literature and the rather large variations in tissue strength, it is proposed that an appropriate criterion for aortic failure should also reflect the microstructure.
Collapse
Affiliation(s)
- Selda Sherifova
- Institute of Biomechanics, Graz University of Technology, Stremayrgasse 16/2, 8010 Graz, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Stremayrgasse 16/2, 8010 Graz, Austria; Department of Structural Engineering, Norwegian Institute of Science and Technology (NTNU), 7491 Trondheim, Norway.
| |
Collapse
|
26
|
Ahmadzadeh H, Rausch MK, Humphrey JD. Modeling lamellar disruption within the aortic wall using a particle-based approach. Sci Rep 2019; 9:15320. [PMID: 31653875 PMCID: PMC6814784 DOI: 10.1038/s41598-019-51558-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/03/2019] [Indexed: 12/20/2022] Open
Abstract
Aortic dissections associate with medial degeneration, thus suggesting a need to understand better the biophysical interactions between the cells and matrix that constitute the middle layer of the aortic wall. Here, we use a recently extended "Smoothed Particle Hydrodynamics" formulation to examine potential mechanisms of aortic delamination arising from smooth muscle cell (SMC) dysfunction or apoptosis, degradation of or damage to elastic fibers, and pooling of glycosaminoglycans (GAGs), with associated losses of medial collagen in the region of the GAGs. First, we develop a baseline multi-layered model for the healthy aorta that delineates medial elastic lamellae and intra-lamellar constituents. Next, we examine stress fields resulting from the disruption of individual elastic lamellae, lost SMC contractility, and GAG production within an intra-lamellar space, focusing on the radial transferal of loading rather than on stresses at the tip of the delaminated tissue. Results suggest that local disruptions of elastic lamellae transfer excessive loads to nearby intra-lamellar constituents, which increases cellular vulnerability to dysfunction or death. Similarly, lost SMC function and accumulations of GAGs increase mechanical stress on nearby elastic lamellae, thereby increasing the chance of disruption. Overall these results suggest a positive feedback loop between lamellar disruption and cellular dropout with GAG production and lost medial collagen that is more pronounced at higher distending pressures. Independent of the initiating event, this feedback loop can catastrophically propagate intramural delamination.
Collapse
Affiliation(s)
- H Ahmadzadeh
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - M K Rausch
- Department of Aerospace Engineering and Engineering Mechanics, Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - J D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
27
|
Angouras DC, Kritharis EP, Sokolis DP. Regional distribution of delamination strength in ascending thoracic aortic aneurysms. J Mech Behav Biomed Mater 2019; 98:58-70. [DOI: 10.1016/j.jmbbm.2019.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/24/2019] [Accepted: 06/01/2019] [Indexed: 12/22/2022]
|
28
|
Holzapfel GA, Ogden RW, Sherifova S. On fibre dispersion modelling of soft biological tissues: a review. Proc Math Phys Eng Sci 2019; 475:20180736. [PMID: 31105452 PMCID: PMC6501667 DOI: 10.1098/rspa.2018.0736] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/26/2019] [Indexed: 01/04/2023] Open
Abstract
Collagen fibres within fibrous soft biological tissues such as artery walls, cartilage, myocardiums, corneas and heart valves are responsible for their anisotropic mechanical behaviour. It has recently been recognized that the dispersed orientation of these fibres has a significant effect on the mechanical response of the tissues. Modelling of the dispersed structure is important for the prediction of the stress and deformation characteristics in (patho)physiological tissues under various loading conditions. This paper provides a timely and critical review of the continuum modelling of fibre dispersion, specifically, the angular integration and the generalized structure tensor models. The models are used in representative numerical examples to fit sets of experimental data that have been obtained from mechanical tests and fibre structural information from second-harmonic imaging. In particular, patches of healthy and diseased aortic tissues are investigated, and it is shown that the predictions of the models fit very well with the data. It is straightforward to use the models described herein within a finite-element framework, which will enable more realistic (and clinically relevant) boundary-value problems to be solved. This also provides a basis for further developments of material models and points to the need for additional mechanical and microstructural data that can inform further advances in the material modelling.
Collapse
Affiliation(s)
- Gerhard A. Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
- Norwegian University of Science and Technology (NTNU), Faculty of Engineering Science and Technology, Trondheim, Norway
| | - Ray W. Ogden
- School of Mathematics and Statistics, University of Glasgow, Glasgow, Scotland, UK
| | - Selda Sherifova
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| |
Collapse
|
29
|
Al Kindi ST, Bakathir A, Al Azri F, Al Wahaibi K. Dissecting Aneurysm of the Internal Carotid Artery as a Complication of Facial Bone Trauma. Oman Med J 2019; 34:70-73. [PMID: 30671188 PMCID: PMC6330184 DOI: 10.5001/omj.2019.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The involvement of the internal carotid artery in dissecting aneurysm is rarely reported in the literature and may occur as a complication of trauma, surgery, and other medical conditions. We report a case of a 22-year-old male who was involved in a motor vehicle accident with associated multiple orthopedic and maxillofacial fractures. During surgical management, the patient was incidentally diagnosed with a dissecting aneurysm involving the right internal carotid artery.
Collapse
Affiliation(s)
- Sami Tahir Al Kindi
- Oral and Maxillofacial Surgery Residency Training Program, Oman Medical Specialty Board, Muscat, Oman
| | - Abdulaziz Bakathir
- Department of Dental and Maxillofacial Surgery, Sultan Qaboos University Hospital, Muscat, Oman
| | - Faisal Al Azri
- Department of Radiology and Molecular Imaging, Sultan Qaboos University Hospital, Muscat, Oman
| | | |
Collapse
|
30
|
Korenczuk CE, Votava LE, Dhume RY, Kizilski SB, Brown GE, Narain R, Barocas VH. Isotropic Failure Criteria Are Not Appropriate for Anisotropic Fibrous Biological Tissues. J Biomech Eng 2019; 139:2613842. [PMID: 28334369 DOI: 10.1115/1.4036316] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The von Mises (VM) stress is a common stress measure for finite element models of tissue mechanics. The VM failure criterion, however, is inherently isotropic, and therefore may yield incorrect results for anisotropic tissues, and the relevance of the VM stress to anisotropic materials is not clear. We explored the application of a well-studied anisotropic failure criterion, the Tsai–Hill (TH) theory, to the mechanically anisotropic porcine aorta. Uniaxial dogbones were cut at different angles and stretched to failure. The tissue was anisotropic, with the circumferential failure stress nearly twice the axial (2.67 ± 0.67 MPa compared to 1.46 ± 0.59 MPa). The VM failure criterion did not capture the anisotropic tissue response, but the TH criterion fit the data well (R2 = 0.986). Shear lap samples were also tested to study the efficacy of each criterion in predicting tissue failure. Two-dimensional failure propagation simulations showed that the VM failure criterion did not capture the failure type, location, or propagation direction nearly as well as the TH criterion. Over the range of loading conditions and tissue geometries studied, we found that problematic results that arise when applying the VM failure criterion to an anisotropic tissue. In contrast, the TH failure criterion, though simplistic and clearly unable to capture all aspects of tissue failure, performed much better. Ultimately, isotropic failure criteria are not appropriate for anisotropic tissues, and the use of the VM stress as a metric of mechanical state should be reconsidered when dealing with anisotropic tissues.
Collapse
|
31
|
Farotto D, Segers P, Meuris B, Vander Sloten J, Famaey N. The role of biomechanics in aortic aneurysm management: requirements, open problems and future prospects. J Mech Behav Biomed Mater 2018; 77:295-307. [DOI: 10.1016/j.jmbbm.2017.08.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/09/2017] [Accepted: 08/15/2017] [Indexed: 12/18/2022]
|
32
|
Tensile rupture of medial arterial tissue studied by X-ray micro-tomography on stained samples. J Mech Behav Biomed Mater 2017; 78:362-368. [PMID: 29207329 DOI: 10.1016/j.jmbbm.2017.11.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/14/2017] [Accepted: 11/21/2017] [Indexed: 01/01/2023]
Abstract
Detailed characterization of damage and rupture mechanics of arteries is one the current challenges in vascular biomechanics, which requires developing suitable experimental approaches. This paper introduces an approach using in situ tensile tests in an X-ray micro-tomography setup to observe mechanisms of damage initiation and progression in medial layers of porcine aortic samples. The technique requires the use of sodium polytungstate as a contrast agent, of which the conditions for use are detailed in this paper. Immersion of the samples during 24h in a 15g/L concentrated solution provided the best compromise for viewing musculo-elastic units in this tissue. The process of damage initiation, delamination and rupture of medial tissue under tensile loading was observed and can be described as an elementary process repeating several times until complete failure. This elementary process initiates with a sudden mode I fracture of a group of musculo-elastic units, followed by an elastic recoil of these units, causing mode II separation of these, hence a delamination plane. The presented experimental approach constitutes a basis for observation of other constituents, or for investigations on other tissues and damage mechanisms.
Collapse
|
33
|
Marino M, Korossis S. Cardiovascular biomechanics in health and disease. J Biomech 2016; 49:2319-20. [PMID: 27240751 DOI: 10.1016/j.jbiomech.2016.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michele Marino
- Institute of Continuum Mechanics, Leibniz Universität Hannover, Appelstraße 11, 30167 Hannover, Germany.
| | - Sotirios Korossis
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany.
| |
Collapse
|