1
|
Pringels L, Van Valckenborgh GJ, Segers P, Chevalier A, Stepman H, Wezenbeek E, Burssens A, Vanden Bossche L. Elevated fluid and glycosaminoglycan content in the Achilles tendon contribute to higher intratendinous pressures: Implications for Achilles tendinopathy. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:863-871. [PMID: 38582138 PMCID: PMC11336272 DOI: 10.1016/j.jshs.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/17/2024] [Accepted: 02/29/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Tendinopathy alters the compositional properties of the Achilles tendon by increasing fluid and glycosaminoglycan content. It has been speculated that these changes may affect intratendinous pressure, but the extent of this relationship remains unclear. Therefore, we aimed to investigate the impact of elevated fluid and glycosaminoglycan content on Achilles tendon intratendinous pressure and to determine whether hyaluronidase (HYAL) therapy can intervene in this potential relationship. METHODS Twenty paired fresh-frozen cadaveric Achilles tendons were mounted in a tensile-testing machine and loaded up to 5% strain. Intratendinous resting (at 0% strain) and dynamic pressure (at 5% strain) were assessed using the microcapillary infusion technique. First, intratendinous pressure was measured under native conditions before and after infusion of 2 mL physiological saline. Next, 80 mg of glycosaminoglycans were administered bilaterally to the paired tendons. The right tendons were additionally treated with 1500 units of HYAL. Finally, both groups were retested, and the glycosaminoglycan content was analyzed. RESULTS It was found that both elevated fluid and glycosaminoglycan content resulted in higher intratendinous resting and dynamic pressures (p < 0.001). HYAL treatment induced a 2.3-fold reduction in glycosaminoglycan content (p = 0.002) and restored intratendinous pressures. CONCLUSION The results of this study demonstrated that elevated fluid and glycosaminoglycan content in Achilles tendinopathy contribute to increased intratendinous resting and dynamic pressures, which can be explained by the associated increased volume and reduced permeability of the tendon matrix, respectively. HYAL degrades glycosaminoglycans sufficiently to lower intratendinous pressures and may, therefore, serve as a promising treatment.
Collapse
Affiliation(s)
- Lauren Pringels
- Department of Physical and Rehabilitation Medicine, Ghent University Hospital, Ghent 9000, Belgium; Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Ghent 9000, Belgium.
| | | | - Patrick Segers
- Department of Electronics and Information Systems, Ghent University, Ghent 9000, Belgium
| | - Amélie Chevalier
- Department of Electromechanics, University of Antwerp, Antwerp 2020, Belgium
| | - Hedwig Stepman
- Department of Laboratory Medicine, Ghent University Hospital, Ghent 9000, Belgium
| | - Evi Wezenbeek
- Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Ghent 9000, Belgium
| | - Arne Burssens
- Department of Orthopedic Surgery, Ghent University Hospital, Ghent 9000, Belgium
| | - Luc Vanden Bossche
- Department of Physical and Rehabilitation Medicine, Ghent University Hospital, Ghent 9000, Belgium; Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
2
|
Troop LD, Puetzer JL. Intermittent cyclic stretch of engineered ligaments drives hierarchical collagen fiber maturation in a dose- and organizational-dependent manner. Acta Biomater 2024; 185:296-311. [PMID: 39025395 PMCID: PMC11381169 DOI: 10.1016/j.actbio.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Hierarchical collagen fibers are the primary source of strength in tendons and ligaments; however, these fibers largely do not regenerate after injury or with repair, resulting in limited treatment options. We previously developed a static culture system that guides ACL fibroblasts to produce native-sized fibers and early fascicles by 6 weeks. These constructs are promising ligament replacements, but further maturation is needed. Mechanical cues are critical for development in vivo and in engineered tissues; however, the effect on larger fiber and fascicle formation is largely unknown. Our objective was to investigate whether intermittent cyclic stretch, mimicking rapid muscle activity, drives further maturation in our system to create stronger engineered replacements and to explore whether cyclic loading has differential effects on cells at different degrees of collagen organization to better inform engineered tissue maturation protocols. Constructs were loaded with an established intermittent cyclic loading regime at 5 or 10 % strain for up to 6 weeks and compared to static controls. Cyclic loading drove cells to increase hierarchical collagen organization, collagen crimp, and tissue tensile properties, ultimately producing constructs that matched or exceeded immature ACL properties. Further, the effect of loading on cells varied depending on degree of organization. Specifically, 10 % load drove early improvements in tensile properties and composition, while 5 % load was more beneficial later in culture, suggesting a shift in mechanotransduction. This study provides new insight into how cyclic loading affects cell-driven hierarchical fiber formation and maturation, which will help to develop better rehabilitation protocols and engineer stronger replacements. STATEMENT OF SIGNIFICANCE: Collagen fibers are the primary source of strength and function in tendons and ligaments throughout the body. These fibers have limited regenerate after injury, with repair, and in engineered replacements, reducing treatment options. Cyclic load has been shown to improve fibril level alignment, but its effect at the larger fiber and fascicle length-scale is largely unknown. Here, we demonstrate intermittent cyclic loading increases cell-driven hierarchical fiber formation and tissue mechanics, producing engineered replacements with similar organization and mechanics as immature ACLs. This study provides new insight into how cyclic loading affects cell-driven fiber maturation. A better understanding of how mechanical cues regulate fiber formation will help to develop better engineered replacements and rehabilitation protocols to drive repair after injury.
Collapse
Affiliation(s)
- Leia D Troop
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Jennifer L Puetzer
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, United States; Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA 23284, United States.
| |
Collapse
|
3
|
Ashton DM, Blaker CL, Hartnell N, Haubruck P, Liu Y, Hefferan SA, Little CB, Clarke EC. The Biomechanical, Biochemical, and Morphological Properties of 19 Human Cadaveric Lower Limb Tendons and Ligaments: An Open-Access Data Set. Am J Sports Med 2024; 52:2391-2401. [PMID: 38910352 DOI: 10.1177/03635465241260054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
BACKGROUND Methodological heterogeneity hinders data comparisons across isolated studies of tendon and ligament properties, limiting clinical understanding and affecting the development and evaluation of replacement materials. PURPOSE To create an open-access data set on the morphological, biomechanical, and biochemical properties of clinically important tendons and ligaments of the lower limb, using consistent methodologies, to enable direct tendon/ligament comparisons. STUDY DESIGN Descriptive laboratory study. METHODS Nineteen distinct lower limb tendons and ligaments were retrieved from 8 fresh-frozen human cadavers (5 male, 3 female; aged 49-65 years) including Achilles, tibialis posterior, tibialis anterior, fibularis (peroneus) longus, fibularis (peroneus) brevis, flexor hallucis longus, extensor hallucis longus, plantaris, flexor digitorum longus, quadriceps, patellar, semitendinosus, and gracilis tendons; anterior cruciate, posterior cruciate, medial collateral, and lateral collateral ligaments; and 10 mm-wide grafts from the contralateral quadriceps and patellar tendons. Outcomes included morphology (tissue length, ultrasound-quantified cross-sectional area [CSAUS], and major and minor axes), biomechanics (failure load, ultimate tensile strength [UTS], failure strain, and elastic modulus), and biochemistry (sulfated glycosaminoglycan [sGAG] and hydroxyproline contents). Tissue differences were analyzed using mixed-model regression. RESULTS There was a range of similarities and differences between tendons and ligaments across outcomes. A key finding relating to potential graft tissue suitability was the comparable failure loads, UTS, CSAUS, sGAG, and hydroxyproline present between hamstring tendons (a standard graft source) and 5 tendons not typically used for grafting: fibularis (peroneus) longus and brevis, flexor and extensor hallucis longus, and flexor digitorum longus tendons. CONCLUSION This study of lower limb tendons and ligaments has enabled direct comparison of morphological, biomechanical, and biochemical human tissue properties-key factors in the selection of suitable graft tissues. This analysis has identified 6 potential new donor tissues with properties comparable to currently used grafts. CLINICAL RELEVANCE This extensive data set reduces the need to utilize data from incompatible sources, which may aid surgical decisions (eg, evidence to expand the range of tendons considered suitable for use as grafts) and may provide congruent design inputs for new biomaterials and computational models. The complete data set has been provided to facilitate further investigations, with the capacity to expand the resource to include additional outcomes and tissues.
Collapse
Affiliation(s)
- Dylan M Ashton
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Sydney Musculoskeletal Health, Faculty of Medicine and Health, University of Sydney, St. Leonards, New South Wales, Australia
| | - Carina L Blaker
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Sydney Musculoskeletal Health, Faculty of Medicine and Health, University of Sydney, St. Leonards, New South Wales, Australia
| | - Nicholas Hartnell
- Bone Ligament and Tendon Pty Ltd, Bowral, New South Wales, Australia
| | - Patrick Haubruck
- Heidelberg Trauma Research Group, Centre for Orthopaedics, Trauma Surgery and Spinal Cord Injury, Trauma and Reconstructive Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Sydney Musculoskeletal Health, Faculty of Medicine and Health, University of Sydney, St. Leonards, New South Wales, Australia
| | - Ying Liu
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Sydney Musculoskeletal Health, Faculty of Medicine and Health, University of Sydney, St. Leonards, New South Wales, Australia
| | - Samantha A Hefferan
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Sydney Musculoskeletal Health, Faculty of Medicine and Health, University of Sydney, St. Leonards, New South Wales, Australia
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Sydney Musculoskeletal Health, Faculty of Medicine and Health, University of Sydney, St. Leonards, New South Wales, Australia
| | - Elizabeth C Clarke
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Sydney Musculoskeletal Health, Faculty of Medicine and Health, University of Sydney, St. Leonards, New South Wales, Australia
| |
Collapse
|
4
|
Blaker CL, Ashton DM, Hartnell N, Little CB, Clarke EC. Tendon biomechanical properties are altered by storage duration but not freeze-thaw temperatures or cycles. J Orthop Res 2024; 42:1180-1189. [PMID: 38245841 DOI: 10.1002/jor.25783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/11/2023] [Accepted: 12/24/2023] [Indexed: 01/22/2024]
Abstract
Tendon allograft and xenograft processing often involves one or more steps of freezing and thawing. As failure strength is an important graft consideration, this study aimed to evaluate effects on failure properties when varying freeze-thaw conditions. Kangaroo tendons, a potential xenograft source, were used to evaluate changes in ultimate tensile strength (UTS), failure strain and elastic modulus after exposure to different freezer-storage temperatures (-20°C vs. -80°C), storage durations (1, 3, 6, 9, or 12 months), number of freeze-thaw cycles (1, 2, 3, 4, 5, or 10), or freeze-thaw temperature ranges (including freezing in liquid nitrogen to thawing at 37°C). Tendons stored for 6 or more months had significantly increased UTS and elastic modulus compared with 1 or 3 months of storage. This increase occurred irrespective of the freezing temperature (-20°C vs. -80°C) or the number of freeze-thaw cycles (1 vs. 10). In contrast, UTS, failure strain and the elastic modulus were no different between storage temperatures, number of freeze-thaw cycles and multiple freeze-thaw cycles across a range of freeze and thaw temperatures. Common freeze-thaw protocols did not negatively affect failure properties, providing flexibility for graft testing, storage, transportation and decellularisation procedures. However, the change in properties with the overall storage duration has implications for assessing the consistent performance of grafts stored for short versus extended periods of time (<6 months vs. >6 months), and the interpretation of data obtained from tissues of varying or unknown storage durations.
Collapse
Affiliation(s)
- Carina L Blaker
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, New South Wales, Australia
- Sydney Musculoskeletal Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Dylan M Ashton
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, New South Wales, Australia
- Sydney Musculoskeletal Health, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Christopher B Little
- Sydney Musculoskeletal Health, The University of Sydney, Sydney, New South Wales, Australia
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, New South Wales, Australia
| | - Elizabeth C Clarke
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, New South Wales, Australia
- Sydney Musculoskeletal Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Troop LD, Puetzer JL. Intermittent Cyclic Stretch of Engineered Ligaments Drives Hierarchical Collagen Fiber Maturation in a Dose- and Organizational-Dependent Manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.06.588420. [PMID: 38645097 PMCID: PMC11030411 DOI: 10.1101/2024.04.06.588420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Hierarchical collagen fibers are the primary source of strength in tendons and ligaments, however these fibers do not regenerate after injury or with repair, resulting in limited treatment options. We previously developed a culture system that guides ACL fibroblasts to produce native-sized fibers and fascicles by 6 weeks. These constructs are promising ligament replacements, but further maturation is needed. Mechanical cues are critical for development in vivo and in engineered tissues; however, the effect on larger fiber and fascicle formation is largely unknown. Our objective was to investigate whether intermittent cyclic stretch, mimicking rapid muscle activity, drives further maturation in our system to create stronger engineered replacements and to explore whether cyclic loading has differential effects on cells at different degrees of collagen organization to better inform engineered tissue maturation protocols. Constructs were loaded with an established intermittent cyclic loading regime at 5 or 10% strain for up to 6 weeks and compared to static controls. Cyclic loading drove cells to increase hierarchical collagen organization, collagen crimp, and tissue mechanics, ultimately producing constructs that matched or exceeded immature ACL properties. Further, the effect of loading on cells varied depending on degree of organization. Specifically, 10% load drove early improvements in mechanics and composition, while 5% load was more beneficial later in culture, suggesting a cellular threshold response and a shift in mechanotransduction. This study provides new insight into how cyclic loading affects cell-driven hierarchical fiber formation and maturation, which will help to develop better rehabilitation protocols and engineer stronger replacements.
Collapse
Affiliation(s)
- Leia D. Troop
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23284, United States
| | - Jennifer L. Puetzer
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23284, United States
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, 23284, United States
| |
Collapse
|
6
|
Pringels L, Cook JL, Witvrouw E, Burssens A, Vanden Bossche L, Wezenbeek E. Exploring the role of intratendinous pressure in the pathogenesis of tendon pathology: a narrative review and conceptual framework. Br J Sports Med 2023; 57:1042-1048. [PMID: 36323498 PMCID: PMC10423488 DOI: 10.1136/bjsports-2022-106066] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2022] [Indexed: 02/07/2023]
Abstract
Despite the high prevalence of tendon pathology in athletes, the underlying pathogenesis is still poorly understood. Various aetiological theories have been presented and rejected in the past, but the tendon cell response model still holds true. This model describes how the tendon cell is the key regulator of the extracellular matrix and how pathology is induced by a failed adaptation to a disturbance of tissue homeostasis. Such failure has been attributed to various kinds of stressors (eg, mechanical, thermal and ischaemic), but crucial elements seem to be missing to fully understand the pathogenesis. Importantly, a disturbance of tissue pressure homeostasis has not yet been considered a possible factor, despite it being associated with numerous pathologies. Therefore, we conducted an extensive narrative literature review on the possible role of intratendinous pressure in the pathogenesis of tendon pathology. This review explores the current understanding of pressure dynamics and the role of tissue pressure in the pathogenesis of other disorders with structural similarities to tendons. By bridging these insights with known structural changes that occur in tendon pathology, a conceptual model was constituted. This model provides an overview of the possible mechanism of how an increase in intratendinous pressure might be involved in the development and progression of tendon pathology and contribute to tendon pain. In addition, some therapies that could reduce intratendinous pressure and accelerate tendon healing are proposed. Further experimental research is encouraged to investigate our hypotheses and to initiate debate on the relevance of intratendinous pressure in tendon pathology.
Collapse
Affiliation(s)
- Lauren Pringels
- Department of Physical and Rehabilitation Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Ghent, Belgium
| | - Jill L Cook
- La Trobe Sport and Exercise Medicine Research Centre, La Trobe University, Melbourne, Victoria, Australia
| | - Erik Witvrouw
- Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Ghent, Belgium
| | - Arne Burssens
- Department of Orthopaedic Surgery, Ghent University Hospital, Ghent, Belgium
| | - Luc Vanden Bossche
- Department of Physical and Rehabilitation Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Ghent, Belgium
| | - Evi Wezenbeek
- Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Ghent, Belgium
| |
Collapse
|
7
|
Ashton DM, Blaker CL, Hartnell N, Haubruck P, Hefferan SA, Little CB, Clarke EC. Challenging the Perceptions of Human Tendon Allografts: Influence of Donor Age, Sex, Height, and Tendon on Biomechanical Properties. Am J Sports Med 2023; 51:768-778. [PMID: 36594505 DOI: 10.1177/03635465221143385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND The use of allograft tendons has increased for primary and revision anterior cruciate ligament reconstruction, but allograft supply is currently limited to a narrow range of tendons and donors up to the age of 65 years. Expanding the range of donors and tendons could help offset an increasing clinical demand. PURPOSE To investigate the effects of donor age, sex, height, and specific tendon on the mechanical properties of a range of human lower leg tendons. STUDY DESIGN Descriptive laboratory study. METHODS Nine tendons were retrieved from 39 fresh-frozen human cadaveric lower legs (35 donors [13 female, 22 male]; age, 49-99 years; height, 57-85 inches [145-216 cm]) including: Achilles tendon, tibialis posterior and anterior, fibularis longus and brevis, flexor and extensor hallucis longus, plantaris, and flexor digitorum longus. Tendons underwent tensile loading to failure measuring cross-sectional area (CSA), maximum load, strain at failure, ultimate tensile strength, and elastic modulus. Results from 332 tendons were analyzed using mixed-effects linear regression, accounting for donor age, sex, height, and weight. RESULTS Mechanical properties were significantly different among tendons and were substantially greater than the effects of donor characteristics. Significant effects of donor sex, age, and height were limited to specific tendons: Achilles tendon, tibialis posterior, and tibialis anterior. All other tendons were unaffected. The Achilles tendon was most influenced by donor variables: greater CSA in men (β = 15.45 mm2; Šidák adjusted P < .0001), decreased maximum load with each year of increased age (β = -17.20 N per year; adjusted P = .0253), and increased CSA (β = 1.92 mm2 per inch; adjusted P < .0001) and maximum load (β = 86.40 N per inch; adjusted P < .0001) with each inch of increased height. CONCLUSION Mechanical properties vary significantly across different human tendons. The effects of donor age, sex, and height are relatively small, are limited to specific tendons, and affect different tendons uniquely. The findings indicate that age negatively affected only the Achilles tendon (maximum load) and challenge the exclusion of donors aged >65 years across all tendon grafts. CLINICAL RELEVANCE The findings support including a broader range of tendons for use as allografts for anterior cruciate ligament reconstruction and reviewing the current exclusion criterion of donors aged >65 years.
Collapse
Affiliation(s)
- Dylan M Ashton
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Kolling Institute; Northern Sydney Local Health District; Sydney Musculoskeletal Health, Faculty of Medicine and Health, University of Sydney, St Leonards, Australia
| | - Carina L Blaker
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Kolling Institute; Northern Sydney Local Health District; Sydney Musculoskeletal Health, Faculty of Medicine and Health, University of Sydney, St Leonards, Australia
| | | | - Patrick Haubruck
- Heidelberg Trauma Research Group, Centre for Orthopaedics, Trauma Surgery and Spinal Cord Injury, Trauma and Reconstructive Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute; Northern Sydney Local Health District; Sydney Musculoskeletal Health, Faculty of Medicine and Health, University of Sydney, St Leonards, Australia
| | - Samantha A Hefferan
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Kolling Institute; Northern Sydney Local Health District; Sydney Musculoskeletal Health, Faculty of Medicine and Health, University of Sydney, St Leonards, Australia
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute; Northern Sydney Local Health District; Sydney Musculoskeletal Health, Faculty of Medicine and Health, University of Sydney, St Leonards, Australia
| | | |
Collapse
|
8
|
Lehner C, Spitzer G, Langthaler P, Jakubecova D, Klein B, Weissenbacher N, Wagner A, Gehwolf R, Trinka E, Iglseder B, Paulweber B, Aigner L, Couillard-Després S, Weiss R, Tempfer H, Traweger A. Allergy-induced systemic inflammation impairs tendon quality. EBioMedicine 2022; 75:103778. [PMID: 35007819 PMCID: PMC8749446 DOI: 10.1016/j.ebiom.2021.103778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 02/04/2023] Open
Abstract
Background Treatment of degenerating tendons still presents a major challenge, since the aetiology of tendinopathies remains poorly understood. Besides mechanical overuse, further known predisposing factors include rheumatoid arthritis, diabetes, obesity or smoking all of which combine with a systemic inflammation. Methods To determine whether the systemic inflammation accompanying these conditions contributes to the onset of tendinopathy, we studied the effect of a systemic inflammation induced by an allergic episode on tendon properties. To this end, we induced an allergic response in mice by exposing them to a timothy grass pollen allergen and subsequently analysed both their flexor and Achilles tendons. Additionally, we analysed data from a health survey comprising data from more than 10.000 persons for an association between the occurrence of an allergy and tendinopathy. Findings Biomechanical testing and histological analysis revealed that tendons from allergic mice not only showed a significant reduction of both elastic modulus and tensile stress, but also alterations of the tendon matrix. Moreover, treatment of 3D tendon-like constructs with sera from allergic mice resulted in a matrix-remodelling expression profile and the expression of macrophage-associated markers and matrix metalloproteinase 2 (MMP2) was increased in allergic Achilles tendons. Data from the human health study revealed that persons suffering from an allergy have an increased propensity to develop a tendinopathy. Interpretation Our study demonstrates that the presence of a systemic inflammation accompanying an allergic condition negatively impacts on tendon structure and function. Funding This study was financially supported by the Fund for the Advancement of Scientific Research at Paracelsus Medical University (PMU-FFF E-15/22/115-LEK), by the Land Salzburg, the Salzburger Landeskliniken (SALK, the Health Care Provider of the University Hospitals Landeskrankenhaus and Christian Doppler Klinik), the Paracelsus Medical University, Salzburg and by unrestricted grants from Bayer, AstraZeneca, Sanofi-Aventis, Boehringer-Ingelheim.
Collapse
Affiliation(s)
- Christine Lehner
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury & Tissue Regeneration Center Salzburg, Paracelsus Medical University, Strubergasse 22, Salzburg 5020, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| | - Gabriel Spitzer
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury & Tissue Regeneration Center Salzburg, Paracelsus Medical University, Strubergasse 22, Salzburg 5020, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Patrick Langthaler
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Centre for Cognitive Neuroscience, Affiliated member of the European Reference Network EpiCARE, Austria; Department of Mathematics, Paris Lodron University of Salzburg, Salzburg, Austria; Team Biostatistics and Big Medical Data, IDA Lab Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Dominika Jakubecova
- Institute of Experimental Neuroregeneration, Spinal Cord Injury & Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Barbara Klein
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Nadja Weissenbacher
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury & Tissue Regeneration Center Salzburg, Paracelsus Medical University, Strubergasse 22, Salzburg 5020, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Andrea Wagner
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury & Tissue Regeneration Center Salzburg, Paracelsus Medical University, Strubergasse 22, Salzburg 5020, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Renate Gehwolf
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury & Tissue Regeneration Center Salzburg, Paracelsus Medical University, Strubergasse 22, Salzburg 5020, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Eugen Trinka
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Centre for Cognitive Neuroscience, Affiliated member of the European Reference Network EpiCARE, Austria; Department of Public Health, Health Services Research and Health Technology Assessment, UMIT-University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria; Neuroscience Institute, Christian Doppler University Hospital, Paracelsus Medical University and Centre for Cognitive Neuroscience Salzburg, Austria
| | - Bernhard Iglseder
- Department of Geriatric Medicine, Christian Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Bernhard Paulweber
- Department of Internal Medicine, St. Johanns University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Ludwig Aigner
- Austrian Cluster for Tissue Regeneration, Vienna, Austria; Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Sebastien Couillard-Després
- Austrian Cluster for Tissue Regeneration, Vienna, Austria; Institute of Experimental Neuroregeneration, Spinal Cord Injury & Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Richard Weiss
- Department of Biosciences, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Herbert Tempfer
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury & Tissue Regeneration Center Salzburg, Paracelsus Medical University, Strubergasse 22, Salzburg 5020, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Andreas Traweger
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury & Tissue Regeneration Center Salzburg, Paracelsus Medical University, Strubergasse 22, Salzburg 5020, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
9
|
Johnson SA, Biscoe EW, Eilertson KE, Lutter JD, Schneider RK, Roberts GD, Cary JA, Frisbie DD. Tissue predictability of elastography is low in collagenase induced deep digital flexor tendinopathy. Vet Radiol Ultrasound 2021; 63:111-123. [PMID: 34585463 DOI: 10.1111/vru.13026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 01/03/2023] Open
Abstract
Elastography is an emerging imaging modality for characterizing tendon injury in horses, but its ability to differentiate tissue deformability relative to treatment group and biochemical properties using a prospective, experimental study design remain unknown. Objectives of the current study were to (a) to investigate differences in glycosaminoglycan, DNA, and soluble collagen levels in mesenchymal stem cell (MSC) treated limbs compared to untreated control limbs utilizing a collagenase model of tendinopathy; (b) compare elastographic features between treatment groups; and (c) determine tissue-level predictive capabilities of elastography in relation to biochemical outcomes. Bone marrow was collected for MSC culture and expansion. Tendinopathy of both forelimb deep digital flexor tendons (DDFTs) was induced with collagenase under ultrasonographic guidance. One randomly assigned limb was treated with intra-lesional MSC injection with the opposite limb serving as an untreated control. Horses were placed into a controlled exercise program with elastographic evaluations performed baseline (0) and 14, 60, 90, and 214 days post-treatment. Postmortem biochemical analysis was performed. MSC-treated limbs demonstrated significantly less (42%) glycosaminoglycan (P = .006). Significant differences in elastographic region of interest (ROI) percent hardness, ROI color histogram, and subjective lesion stiffness were appreciated between treatment groups at various study time points. Elastographic outcome parameters were weak predictors of biochemical tissue analysis, with all R2 values ≤ 0.50. Within this range of differences in glycosaminoglycan content between treatment groups, elastography outcomes did not predict biochemical differences. Tissue-specific differences between DDFTs treated with MSCs compared to controls were apparent biochemically, but not predicted by elastography.
Collapse
Affiliation(s)
- Sherry A Johnson
- Department of Clinical Sciences, Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | | | - Kirsten E Eilertson
- Graybill Statistics & Data Science Laboratory, Department of Statistics, Colorado State University, Fort Collins, Colorado, USA
| | - John D Lutter
- Kansas State University Veterinary Health Center 1800 Denison Ave, Manhattan, Kansas, USA
| | | | - Gregory D Roberts
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Julie A Cary
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - David D Frisbie
- Department of Clinical Sciences, Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
10
|
STRESS-STRAIN DISTRIBUTION IN THE MODEL OF RETROCALCANEAL BURSITIS BY USING HEEL-ELEVATION INSOLES. EUREKA: HEALTH SCIENCES 2020. [DOI: 10.21303/2504-5679.2020.001444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this study is the analysis of the equivalent stress on the rear foot structures in retrocalcaneal bursitis, when using heel-elevation insoles of different heights (10 mm and 20 mm). Methods – mathematical calculations of the Achilles force required in the heel-off of the gait stance phase in the conditions of lifting the heel by 10 mm and 20 mm. A 3D-simulation foot model with an enlarged retrocalcaneal bursa was created. The analysis was carried out by the finite element method to calculate and study the stress and strain in the rear foot structures. Results. When using a 10.0 mm height heel-elevation insole, the calf muscle strength, which must be applied to the heel-off of the gait stance phase, was 19.0 % less than without support and 26.8 % less in 20.0 mm insole. Accordingly, analyzing the simulation results in terms of von-Mises stress, the maximum stress observed on the Achilles tendon decreases by 20.0 % and by 30.0 %. The total deformations maximum in the model when using heel-elevation insoles decreased up to 18.1 % and they were localized not in the tendon, but in the bone structures of subtalar joint. The maximum values of the total deformation of the model in the case of 10.0 mm and 20.0 mm heel-elevation insoles were 91.67 mm (–20.2 %) and 80.04 mm (–30.3 %), respectively, compared 114.92 mm in the absence of insoles. When using insole with a height of 10.0 mm, the stress in the retrocalcaneal bursa decreased by 20.0 % and was equal to 14.92 MPa compared to 18.66 MPa, and when using a 20.0 mm insoles - by 30.0 %. Conclusions. It was found that when using 10.0–20.0 mm heel-elevation insoles, the stress distribution in the rear foot structures was significantly reduced by an average of 20.0-30.0 % and correlated with the height of the insoles.
Collapse
|
11
|
Prabutzki P, Leopold J, Schubert S, Schiller J, Nimptsch A. De novo synthesis of phospholipids and sphingomyelin in multipotent stromal cells - Monitoring studies by mass spectrometry. Chem Phys Lipids 2020; 232:104965. [PMID: 32888915 DOI: 10.1016/j.chemphyslip.2020.104965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/16/2020] [Accepted: 08/23/2020] [Indexed: 02/07/2023]
Abstract
Musculoskeletal diseases are extremely widespread and a significant burden on the health systems of the industrialized countries. The use of mesenchymal stromal cells is a promising approach to cure cartilage and tendon injuries, which often also occur in younger people as consequences of sport accidents. Although particular interest is on the collagen and the glycosaminoglycan composition of the tendon and potential alterations compared to healthy tissue, there is nowadays also increasing evidence that some selected phospholipids (PL) are potential mediators of tissue regeneration. Therefore, PL (and potential changes thereof) attract increasing interest in this field. We have used positive and negative ion matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) to elucidate the lipid compositions of human mesenchymal stromal cells in dependence on the composition of the cell culture medium and the cultivation time. The de novo biosynthesis of PL was monitored by adding 13C labeled glucose or deuterated palmitic acid (d31-PA) to the cells and the incorporation of 13C or 2H into the different PL classes was investigated by electrospray ionization (ESI) mass spectrometry (MS). It is remarkable that all PL classes (for instance, phosphatidylcholine and -inositol) exhibited 13C incorporation - but not the sphingomyelin (SM) which is the most abundant sphingolipid in the majority of human tissues and body fluids. Using suitable internal standards it could be shown, that only 12C-containing SM is de novo generated while no 13C-labeled SM could be monitored - independent of the cultivation time, which was varied between 7 and 28 days. SM impurities stemming from the cell culture medium and the used MALDI matrix compounds (2,5-dihydroxybenzoic acid (DHB) or 9-aminoacridine (9-AA)) could be ruled out. However, incorporation of deuterated palmitic acid (d31-PA) could be observed for multiple PL, including SM. Therefore, it is suggested that there must exist another, so far unknown SM biosynthesis pathway. This pathway does not make use of glucose but relies on the use of other molecules as energy sources. Potential pathways to explain the experimental observations are discussed.
Collapse
Affiliation(s)
- Patricia Prabutzki
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Leipzig, Germany
| | - Jenny Leopold
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Leipzig, Germany
| | - Susanna Schubert
- Leipzig University, Saxonian Incubator for Clinical Translation, Philipp-Rosenthal-Straße 55, D-04103, Leipzig, Germany
| | - Jürgen Schiller
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Leipzig, Germany
| | - Ariane Nimptsch
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Leipzig, Germany.
| |
Collapse
|
12
|
Kim SJ, Oh HW, Chang JW, Kim SJ. Recovery of Tendon Characteristics by Inhibition of Aberrant Differentiation of Tendon-Derived Stem Cells from Degenerative Tendinopathy. Int J Mol Sci 2020; 21:ijms21082687. [PMID: 32294907 PMCID: PMC7215446 DOI: 10.3390/ijms21082687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 11/16/2022] Open
Abstract
The inhibition of the aberrant differentiation of tendon-derived stem cells (TDSCs) is a major target for the regeneration of damaged tendon tissues, as tendinopathy can be caused by the aberrant differentiation of TDSCs. We investigated whether the possible aberrant differentiation of TDSCs can be prevented by using adequate inhibitors. TDSCs extracted from chemically induced tendinopathy and injury-with-overuse tendinopathy models were cultured with 18α-glycyrrhetinic acid (AGA) and T0070907 to block osteogenic differentiation and adipogenic differentiation, respectively. The optimal dose of AGA decreased the osteogenic-specific marker Runx2 (Runt-related transcription factor 2), and T0070907 blocked the adipogenic-specific marker peroxisome proliferator-activated receptor gamma (PPARγ) in mRNA levels. We also found that AGA induced tenogenic differentiation in mRNA levels. However, T0070907 did not affect the tenogenic differentiation and regenerative capacity of TDSCs. We expect that optimal doses of AGA and T0070907 can prevent tendinopathy by inhibiting osteogenic and adipogenic differentiation, respectively. In addition, AGA and T0070907 may play important roles in the treatment of tendinopathy.
Collapse
Affiliation(s)
- Sun Jeong Kim
- Department of Physical and Rehabilitation Medicine, Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
- R&D Center, ENCell Co. Ltd., Seoul 06072, Korea
| | - Hae Won Oh
- Division of Health Policy and Administration, School of Public Health, University of Illinois, Chicago, IL 60612, USA;
| | - Jong Wook Chang
- R&D Center, ENCell Co. Ltd., Seoul 06072, Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Korea
- Correspondence: (J.W.C.); (S.J.K.); Tel.: +82-2-3410-6048 (J.W.C.); +82-2-576-0100 (S.J.K.)
| | - Sang Jun Kim
- Seoul Jun Research Center, Seoul Jun Rehabilitation Clinic, Seoul 06737, Korea
- Correspondence: (J.W.C.); (S.J.K.); Tel.: +82-2-3410-6048 (J.W.C.); +82-2-576-0100 (S.J.K.)
| |
Collapse
|
13
|
Zappia J, Joiret M, Sanchez C, Lambert C, Geris L, Muller M, Henrotin Y. From Translation to Protein Degradation as Mechanisms for Regulating Biological Functions: A Review on the SLRP Family in Skeletal Tissues. Biomolecules 2020; 10:E80. [PMID: 31947880 PMCID: PMC7023458 DOI: 10.3390/biom10010080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/19/2019] [Accepted: 12/26/2019] [Indexed: 12/27/2022] Open
Abstract
The extracellular matrix can trigger cellular responses through its composition and structure. Major extracellular matrix components are the proteoglycans, which are composed of a core protein associated with glycosaminoglycans, among which the small leucine-rich proteoglycans (SLRPs) are the largest family. This review highlights how the codon usage pattern can be used to modulate cellular response and discusses the biological impact of post-translational events on SLRPs, including the substitution of glycosaminoglycan moieties, glycosylation, and degradation. These modifications are listed, and their impacts on the biological activities and structural properties of SLRPs are described. We narrowed the topic to skeletal tissues undergoing dynamic remodeling.
Collapse
Affiliation(s)
- Jérémie Zappia
- Bone and Cartilage Research Unit, Arthropôle Liège, Center for Interdisciplinary research on Medicines (CIRM) Liège, Liège University, Institute of Pathology, CHU Sart-Tilman, 4000 Liège, Belgium; (J.Z.); (C.S.); (C.L.)
| | - Marc Joiret
- Biomechanics Research Unit, B34 GIGA-R, In Silico Medicine, Liège University, CHU Sart-Tilman, 4000 Liège, Belgium; (M.J.); (L.G.)
| | - Christelle Sanchez
- Bone and Cartilage Research Unit, Arthropôle Liège, Center for Interdisciplinary research on Medicines (CIRM) Liège, Liège University, Institute of Pathology, CHU Sart-Tilman, 4000 Liège, Belgium; (J.Z.); (C.S.); (C.L.)
| | - Cécile Lambert
- Bone and Cartilage Research Unit, Arthropôle Liège, Center for Interdisciplinary research on Medicines (CIRM) Liège, Liège University, Institute of Pathology, CHU Sart-Tilman, 4000 Liège, Belgium; (J.Z.); (C.S.); (C.L.)
| | - Liesbet Geris
- Biomechanics Research Unit, B34 GIGA-R, In Silico Medicine, Liège University, CHU Sart-Tilman, 4000 Liège, Belgium; (M.J.); (L.G.)
| | - Marc Muller
- Laboratory for Organogenesis and Regeneration (LOR), GIGA-Research, Liège University, Avenue de l’Hôpital, B-4000 Liège, Belgium;
| | - Yves Henrotin
- Bone and Cartilage Research Unit, Arthropôle Liège, Center for Interdisciplinary research on Medicines (CIRM) Liège, Liège University, Institute of Pathology, CHU Sart-Tilman, 4000 Liège, Belgium; (J.Z.); (C.S.); (C.L.)
- Physical therapy and Rehabilitation department, Princess Paola Hospital, Vivalia, B-6900 Marche-en-Famenne, Belgium
- Artialis SA, GIGA Tower, Level 3, CHU Sart-Tilman, 4000 Liège, Belgium
| |
Collapse
|
14
|
Choi RK, Smith MM, Smith S, Little CB, Clarke EC. Functionally distinct tendons have different biomechanical, biochemical and histological responses to in vitro unloading. J Biomech 2019; 95:109321. [DOI: 10.1016/j.jbiomech.2019.109321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/02/2019] [Accepted: 08/15/2019] [Indexed: 01/29/2023]
|
15
|
Tsang AS, Dart AJ, Biasutti SA, Jeffcott LB, Smith MM, Little CB. Effects of tendon injury on uninjured regional tendons in the distal limb: An in-vivo study using an ovine tendinopathy model. PLoS One 2019; 14:e0215830. [PMID: 31013317 PMCID: PMC6478347 DOI: 10.1371/journal.pone.0215830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/09/2019] [Indexed: 12/11/2022] Open
Abstract
Following injury to a tendon little is known about potential for pathology to develop in other regional tendons from overloading or altered function. The aim of this study was to investigate the gene expression and histopathological changes that occur 1) within the deep digital flexor tendon (DDFT) after injury to the superficial digital flexor tendon (SDFT) and 2) within the flexor tendons (SDFT and DDFT) after injury to the extensor tendons. Merino wethers [Ovis aries] (n = 18) were divided into three equal groups and underwent either partial transection of the SDFT, complete transection of the extensor tendons or were left as non-operated controls. Tendons were harvested and sampled regionally for gene expression (real time PCR) and histologic analysis eight weeks after surgery. Transection of the SDFT resulted in increased expression of collagen III, versican, biglycan, lumican and MMP1 (P<0.026 for all genes) within the DDFT. There was no effect of transecting the extensor tendons on the expression of any gene tested in either the SDFT or the DDFT. The DDFT had elevated histopathology scores induced by transection of the SDFT, eight weeks previously. There were minimal histological differences in either the SDFT or DDFT after transection of the extensor tendons. Transection of the SDFT results in a mild, subclinical tendinopathy within the DDFT with potential implications on treatment and rehabilitation of SDFT injuries. Injury to the extensor tendons has minimal measured effect on the SDFT or DDFT.
Collapse
Affiliation(s)
- Albert S. Tsang
- Research and Clinical Training Unit, University Veterinary Teaching Hospital, Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, Australia
- * E-mail:
| | - Andrew J. Dart
- Research and Clinical Training Unit, University Veterinary Teaching Hospital, Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, Australia
| | - Sara A. Biasutti
- Research and Clinical Training Unit, University Veterinary Teaching Hospital, Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, Australia
| | - Leo B. Jeffcott
- Research and Clinical Training Unit, University Veterinary Teaching Hospital, Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, Australia
| | - Margaret M. Smith
- Raymond Purves Bone and Joint Research Laboratories, The Kolling Institute, Sydney Medical School, University of Sydney, Sydney, Australia
- The Institute of Bone and Joint Research, Royal North Shore Hospital, Sydney, Australia
| | - Christopher B. Little
- Raymond Purves Bone and Joint Research Laboratories, The Kolling Institute, Sydney Medical School, University of Sydney, Sydney, Australia
- The Institute of Bone and Joint Research, Royal North Shore Hospital, Sydney, Australia
| |
Collapse
|
16
|
Shim VB, Hansen W, Newsham-West R, Nuri L, Obst S, Pizzolato C, Lloyd DG, Barrett RS. Influence of altered geometry and material properties on tissue stress distribution under load in tendinopathic Achilles tendons – A subject-specific finite element analysis. J Biomech 2019; 82:142-148. [DOI: 10.1016/j.jbiomech.2018.10.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/17/2018] [Accepted: 10/20/2018] [Indexed: 12/19/2022]
|
17
|
Le Vien NT, Van Thien Phu L, Phuong NTT, Hanh TTH, Dao DTA. Release of chondroitin sulfate form the chicken keel cartilage by protamex hydrolysis. VIETNAM JOURNAL OF CHEMISTRY 2018. [DOI: 10.1002/vjch.201800054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nguyen Thi Le Vien
- Department of Food Technology; Vietnam National University; HCM University of Technology, 268 Ly Thuong Kiet Street, Ward 14, District 10, HCMC Viet Nam
| | - Luu Van Thien Phu
- Department of Food Technology; Vietnam National University; HCM University of Technology, 268 Ly Thuong Kiet Street, Ward 14, District 10, HCMC Viet Nam
| | - Nguyen Thi Thanh Phuong
- Department of Food Technology; Vietnam National University; HCM University of Technology, 268 Ly Thuong Kiet Street, Ward 14, District 10, HCMC Viet Nam
| | - Tran Thi Hong Hanh
- Department of Food Technology; Vietnam National University; HCM University of Technology, 268 Ly Thuong Kiet Street, Ward 14, District 10, HCMC Viet Nam
| | - Dong Thi Anh Dao
- Department of Food Technology; Vietnam National University; HCM University of Technology, 268 Ly Thuong Kiet Street, Ward 14, District 10, HCMC Viet Nam
| |
Collapse
|
18
|
Shu CC, Smith MM, Appleyard RC, Little CB, Melrose J. Achilles and tail tendons of perlecan exon 3 null heparan sulphate deficient mice display surprising improvement in tendon tensile properties and altered collagen fibril organisation compared to C57BL/6 wild type mice. PeerJ 2018; 6:e5120. [PMID: 30042881 PMCID: PMC6056265 DOI: 10.7717/peerj.5120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/07/2018] [Indexed: 02/02/2023] Open
Abstract
The aim of this study was to determine the role of the perlecan (Hspg2) heparan sulphate (HS) side chains on cell and matrix homeostasis in tail and Achilles tendons in 3 and 12 week old Hspg2 exon 3 null HS deficient (Hspg2Δ3 − ∕Δ3 −) and C57 BL/6 Wild Type (WT) mice. Perlecan has important cell regulatory and matrix organizational properties through HS mediated interactions with a range of growth factors and morphogens and with structural extracellular matrix glycoproteins which define tissue function and allow the resident cells to regulate tissue homeostasis. It was expected that ablation of the HS chains on perlecan would severely disrupt normal tendon organization and functional properties and it was envisaged that this study would better define the role of HS in normal tendon function and in tendon repair processes. Tail and Achilles tendons from each genotype were biomechanically tested (ultimate tensile stress (UTS), tensile modulus (TM)) and glycosaminoglycan (GAG) and collagen (hydroxyproline) compositional analyses were undertaken. Tenocytes were isolated from tail tendons from each mouse genotype and grown in monolayer culture. These cultures were undertaken in the presence of FGF-2 to assess the cell signaling properties of each genotype. Total RNA was isolated from 3–12 week old tail and Achilles tendons and qRT-PCR was undertaken to assess the expression of the following genes Vcan, Bgn, Dcn, Lum, Hspg2, Ltbp1, Ltbp2, Eln and Fbn1. Type VI collagen and perlecan were immunolocalised in tail tendon and collagen fibrils were imaged using transmission electron microscopy (TEM). FGF-2 stimulated tenocyte monolayers displayed elevated Adamts4, Mmp2, 3, 13 mRNA levels compared to WT mice. Non-stimulated tendon Col1A1, Vcan, Bgn, Dcn, Lum, Hspg2, Ltbp1, Ltbp2, Eln and Fbn1 mRNA levels showed no major differences between the two genotypes other than a decline with ageing while LTBP2 expression increased. Eln expression also declined to a greater extent in the perlecan exon 3 null mice (P < 0.05). Type VI collagen and perlecan were immunolocalised in tail tendon and collagen fibrils imaged using transmission electron microscopy (TEM). This indicated a more compact form of collagen localization in the perlecan exon 3 null mice. Collagen fibrils were also smaller by TEM, which may facilitate a more condensed fibril packing accounting for the superior UTS displayed by the perlecan exon 3 null mice. The amplified catabolic phenotype of Hspg2Δ3 − ∕Δ3 − mice may account for the age-dependent decline in GAG observed in tail tendon over 3 to 12 weeks. After Achilles tenotomy Hspg2Δ3 − ∕Δ3 − and WT mice had similar rates of recovery of UTS and TM over 12 weeks post operatively indicating that a deficiency of HS was not detrimental to tendon repair.
Collapse
Affiliation(s)
- Cindy C Shu
- Raymond Purves Bone and Joint Laboratory, Kolling Institute of Medical Research, University of Sydney, Australia
| | - Margaret M Smith
- Raymond Purves Bone and Joint Laboratory, Kolling Institute of Medical Research, University of Sydney, Australia
| | - Richard C Appleyard
- Murray Maxwell Biomechanics Laboratory, Royal North Shore Hospital, University of Sydney, St. Leonards, New South Wales, Australia.,Surgical Skills Laboratory, Australian School of Advanced Medicine, Macquarie University, Sydney, New South Wales, Australia
| | - Christopher B Little
- Raymond Purves Bone and Joint Laboratory, Kolling Institute of Medical Research, University of Sydney, Australia.,Sydney Medical School, Northern, University of Sydney, Sydney, Australia
| | - James Melrose
- Raymond Purves Bone and Joint Laboratory, Kolling Institute of Medical Research, University of Sydney, Australia.,Sydney Medical School, Northern, University of Sydney, Sydney, Australia.,Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
19
|
Jacquet-Guibon S, Dupays AG, Coudry V, Crevier-Denoix N, Leroy S, Siñeriz F, Chiappini F, Barritault D, Denoix JM. Randomized controlled trial demonstrates the benefit of RGTA® based matrix therapy to treat tendinopathies in racing horses. PLoS One 2018. [PMID: 29522564 PMCID: PMC5844532 DOI: 10.1371/journal.pone.0191796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A randomized controlled trial was performed on racing horses, to evaluate the efficacy of a new class of therapeutic agents in regenerative medicine—ReGeneraTing Agents® (RGTA®), to treat tendinopathies. Preliminary uncontrolled studies on tendon healing in racing horses with RGTA® (OTR4131)—Equitend® showed encouraging results, justifying performing a randomized, controlled, multicenter study with a two-year racing performance follow up. The objective of this study was to evaluate the effect of Equitend® versus placebo on acute superficial digital flexor tendonitis in racing French Standardbred Trotters (ST). Twenty-two ST were randomly and blindly assigned to receive with a ratio of 2 to 1, a single Equitend® (n = 14) or placebo (n = 8) intralesional injection under ultrasonographic guidance. Horses were evaluated over 4 months, by clinical and ultrasonographic evaluations (day 0, months 1, 2, 4), and their racing performances followed up over the 2 years after treatment. During the first month of treatment, a significant decrease in the cross-sectional area (CSA) was found in the Equitend® group (p = 0.04). After 4 months, the number of Equitend® treated horses with an improved CSA was significantly higher than the placebo-treated horses (p = 0.03571). The Equitend® group returned to their pre-injury performance level, racing in, and winning, significantly more races than the placebo group (p = 0.01399 and 0.0421, respectively). Furthermore, recurrence was significantly higher in the placebo group than in the Equitend® group (71.4% vs 16.6%, p = 0.02442). In conclusion, we measured a significant, short-term, reduction effect on CSA and demonstrated a long-term beneficial effect of intralesional injection of Equitend® for the treatment of superficial digital flexor tendonitis on racing ST, racing 2. 3 times more often than placebo, with 3.3 times fewer recurrences maintaining pre-injury performance level. This study may open the way for the development of a human treatment of tendonitis.
Collapse
Affiliation(s)
- Sandrine Jacquet-Guibon
- Centre d’Imagerie et de Recherche sur les Affections Locomotrices Equines, Ecole Nationale vétérinaire d’Alfort, Maisons-Alfort, France
- Unité Sous Contrat 957, Biomécanique et Pathologie Locomotrice du Cheval, Institut National de la Recherche Agronomique, Ecole Nationale vétérinaire d’Alfort, Maisons-Alfort, France
- * E-mail:
| | | | - Virginie Coudry
- Centre d’Imagerie et de Recherche sur les Affections Locomotrices Equines, Ecole Nationale vétérinaire d’Alfort, Maisons-Alfort, France
- Unité Sous Contrat 957, Biomécanique et Pathologie Locomotrice du Cheval, Institut National de la Recherche Agronomique, Ecole Nationale vétérinaire d’Alfort, Maisons-Alfort, France
| | - Nathalie Crevier-Denoix
- Unité Sous Contrat 957, Biomécanique et Pathologie Locomotrice du Cheval, Institut National de la Recherche Agronomique, Ecole Nationale vétérinaire d’Alfort, Maisons-Alfort, France
| | | | - Fernando Siñeriz
- Organ, Tissue, Regeneration, Repair and Replacement Société Actions Simplifiés, Paris, France
| | - Franck Chiappini
- Organ, Tissue, Regeneration, Repair and Replacement Société Actions Simplifiés, Paris, France
| | - Denis Barritault
- Organ, Tissue, Regeneration, Repair and Replacement Société Actions Simplifiés, Paris, France
- Laboratoire de recherche sur la Croissance Cellulaire, Réparation, et Régénération Tissulaire, Faculté des Sciences, Université Paris-Est Créteil, Créteil, France
| | - Jean-Marie Denoix
- Centre d’Imagerie et de Recherche sur les Affections Locomotrices Equines, Ecole Nationale vétérinaire d’Alfort, Maisons-Alfort, France
- Unité Sous Contrat 957, Biomécanique et Pathologie Locomotrice du Cheval, Institut National de la Recherche Agronomique, Ecole Nationale vétérinaire d’Alfort, Maisons-Alfort, France
| |
Collapse
|
20
|
Roth SP, Burk J, Schiller J, Nimptsch A. De novo synthesis of glycosaminoglycans by equine multipotent mesenchymal stromal cells in vitro – Studied by stable isotopic labeling and matrix-assisted laser desorption ionization mass spectrometry. J Carbohydr Chem 2018. [DOI: 10.1080/07328303.2018.1428988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Susanne Pauline Roth
- Faculty of Veterinary Medicine, Equine Clinic & Hospital Leipzig, Leipzig University, Leipzig, Germany
- Saxonian Incubator for Clinical Translation, Leipzig University, Leipzig, Germany
| | - Janina Burk
- Faculty of Veterinary Medicine, Equine Clinic & Hospital Leipzig, Leipzig University, Leipzig, Germany
- Faculty of Veterinary Medicine, Institute of Veterinary Physiology, Leipzig University, Leipzig, Germany
| | - Jürgen Schiller
- Leipzig University, Institute for Medical Physics and Biophysics, Leipzig, Germany
| | - Ariane Nimptsch
- Leipzig University, Institute for Medical Physics and Biophysics, Leipzig, Germany
| |
Collapse
|
21
|
Fang F, Lake SP. Multiscale Mechanical Evaluation of Human Supraspinatus Tendon Under Shear Loading After Glycosaminoglycan Reduction. J Biomech Eng 2018; 139:2625661. [PMID: 28462418 DOI: 10.1115/1.4036602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Indexed: 12/15/2022]
Abstract
Proteoglycans (PGs) are broadly distributed within many soft tissues and, among other roles, often contribute to mechanical properties. Although PGs, consisting of a core protein and glycosaminoglycan (GAG) sidechains, were once hypothesized to regulate stress/strain transfer between collagen fibrils and help support load in tendon, several studies have reported no changes to tensile mechanics after GAG depletion. Since GAGs are known to help sustain nontensile loading in other tissues, we hypothesized that GAGs might help support shear loading in human supraspinatus tendon (SST), a commonly injured tendon which functions in a complex multiaxial loading environment. Therefore, the objective of this study was to determine whether GAGs contribute to the response of SST to shear, specifically in terms of multiscale mechanical properties and mechanisms of microscale matrix deformation. Results showed that chondroitinase ABC (ChABC) treatment digested GAGs in SST while not disrupting collagen fibers. Peak and equilibrium shear stresses decreased only slightly after ChABC treatment and were not significantly different from pretreatment values. Reduced stress ratios were computed and shown to be slightly greater after ChABC treatment compared to phosphate-buffered saline (PBS) incubation without enzyme, suggesting that these relatively small changes in stress values were not due strictly to tissue swelling. Microscale deformations were also not different after ChABC treatment. This study demonstrates that GAGs possibly play a minor role in contributing to the mechanical behavior of SST in shear, but are not a key tissue constituent to regulate shear mechanics.
Collapse
Affiliation(s)
- Fei Fang
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1185, St. Louis, MO 63130 e-mail:
| | - Spencer P Lake
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1185, St. Louis, MO 63130;Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1185, St. Louis, MO 63130;Department of Orthopaedic Surgery, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1185, St. Louis, MO 63130 e-mail:
| |
Collapse
|
22
|
Nuri L, Obst SJ, Newsham-West R, Barrett RS. Three-dimensional morphology and volume of the free Achilles tendon at rest and under load in people with unilateral mid-portion Achilles tendinopathy. Exp Physiol 2018; 103:358-369. [DOI: 10.1113/ep086673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Leila Nuri
- School of Allied Health Sciences, Menzies Health Institute Queensland; Griffith University; Gold Coast QLD 4222 Australia
| | - Steven J. Obst
- School of Health, Medical and Applied Sciences; Central Queensland University; Bundaberg QLD 4670 Australia
| | - Richard Newsham-West
- School of Allied Health Sciences, Menzies Health Institute Queensland; Griffith University; Gold Coast QLD 4222 Australia
| | - Rod S. Barrett
- School of Allied Health Sciences, Menzies Health Institute Queensland; Griffith University; Gold Coast QLD 4222 Australia
| |
Collapse
|
23
|
Spatiotemporal variations in gene expression, histology and biomechanics in an ovine model of tendinopathy. PLoS One 2017; 12:e0185282. [PMID: 29023489 PMCID: PMC5638251 DOI: 10.1371/journal.pone.0185282] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/08/2017] [Indexed: 11/20/2022] Open
Abstract
Flexor tendinopathy is a common problem affecting humans and animals. Tendon healing is poorly understood and the outcomes of conservative and surgical management are often suboptimal. While often considered a localized injury, recent evidence indicates that in the short term, tendinopathic changes are distributed widely throughout the tendon, remote from the lesion itself. Whether these changes persist throughout healing is unknown. The aim of this study was to document gene expression, histopathological and biomechanical changes that occur throughout the superficial digital flexor tendon (SDFT) up to 16 weeks post-injury, using an ovine surgical model of tendinopathy. Partial tendon transection was associated with decreased gene expression for aggrecan, decorin, fibromodulin, tissue inhibitors of metalloproteinases (TIMPS 1, 2 and 3), collagen I and collagen II. Gene expression for collagen III, lumican and matrix metalloproteinase 13 (MMP13) increased locally around the lesion site. Expression of collagen III and MMP13 decreased with time, but compared to controls, collagen III, MMP13 and lumican expression remained regionally high throughout the study. An increase in TIMP3 was observed over time. Histologically, operated tendons had higher pathology scores than controls, especially around the injured region. A chondroid phenotype was observed with increased cellular rounding and marked proteoglycan accumulation which only partially improved with time. Biomechanically, partial tendon transection resulted in a localized decrease in elastic modulus (in compression) but only at 8 weeks postoperatively. This study improves our understanding of tendon healing, demonstrating an early ‘peak’ in pathology characterized by altered gene expression and notable histopathological changes. Many of these pathological changes become more localized to the region of injury during healing. Collagen III and MMP13 expression levels remained high close to the lesion throughout the study and may reflect the production of tendon tissue with suboptimal biomechanical properties. Further studies evaluating the long-term response of tendon to injury (6–12 months) are warranted to provide additional information on tendon healing and provide further understanding of the mechanisms underlying the pathology observed in this study.
Collapse
|