1
|
Kettlety SA, Finley JM, Leech KA. Within-session propulsion asymmetry changes have a limited effect on gait asymmetry post-stroke. J Neuroeng Rehabil 2025; 22:9. [PMID: 39844188 PMCID: PMC11756213 DOI: 10.1186/s12984-025-01553-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Biomechanical gait impairments, such as reduced paretic propulsion, are common post-stroke. Studies have used biofeedback to increase paretic propulsion and reduce propulsion asymmetry, but it is unclear if these changes impact overall gait asymmetry. There is an implicit assumption that reducing propulsion asymmetry will improve overall gait symmetry, as paretic propulsion has been related to numerous biomechanical impairments. However, no work has investigated the impact of reducing propulsion asymmetry on overall gait asymmetry. We aimed to understand how within-session changes in propulsion asymmetry affect overall gait asymmetry in individuals post-stroke, operationalized as the combined gait asymmetry metric (CGAM). We hypothesized that decreasing propulsion asymmetry would reduce CGAM. METHODS Participants completed twenty minutes of biofeedback training designed to increase paretic propulsion. We calculated the change in propulsion asymmetry magnitude (Δ|PA|) and the change in CGAM (ΔCGAM) during biofeedback relative to baseline. Then, we fit a robust linear mixed-effects model with ΔCGAM as the outcome and a fixed effect for Δ|PA|. RESULTS We found a positive association between Δ|PA| and ΔCGAM (β = 2.6, p = 0.002). The average Δ|PA| was -0.09, suggesting that, on average, we would expect a CGAM change of 0.2, which is 0.5% of the average baseline CGAM value. CONCLUSIONS Reducing propulsive asymmetry using biofeedback is unlikely to produce substantial reductions in overall gait asymmetry, suggesting that biofeedback-based approaches to reduce propulsion asymmetry may need to be combined with other interventions to improve overall gait asymmetry. CLINICAL TRIAL REGISTRATION NCT04411303.
Collapse
Affiliation(s)
- Sarah A Kettlety
- Division of Biokinesiology and Physical Therapy, University of Southern California, 1540 Alcazar St., CHP 155, Los Angeles, CA, 90089-9006, USA
| | - James M Finley
- Division of Biokinesiology and Physical Therapy, University of Southern California, 1540 Alcazar St., CHP 155, Los Angeles, CA, 90089-9006, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Kristan A Leech
- Division of Biokinesiology and Physical Therapy, University of Southern California, 1540 Alcazar St., CHP 155, Los Angeles, CA, 90089-9006, USA.
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Kettlety SA, Finley JM, Leech KA. Within-session propulsion asymmetry changes have a limited effect on gait asymmetry post-stroke. RESEARCH SQUARE 2024:rs.3.rs-5053605. [PMID: 39764092 PMCID: PMC11703335 DOI: 10.21203/rs.3.rs-5053605/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Biomechanical gait impairments, such as reduced paretic propulsion, are common post-stroke. Studies have used biofeedback to increase paretic propulsion and reduce propulsion asymmetry, but it is unclear if these changes impact overall gait asymmetry. There is an implicit assumption that reducing propulsion asymmetry will improve overall gait symmetry, as paretic propulsion has been related to numerous biomechanical impairments. However, no work has investigated the impact of reducing propulsion asymmetry on overall gait asymmetry. We aimed to understand how within-session changes in propulsion asymmetry affect overall gait asymmetry, operationalized as the combined gait asymmetry metric (CGAM). We hypothesized that decreasing propulsion asymmetry would reduce CGAM. Methods. Participants completed twenty minutes of biofeedback training designed to increase paretic propulsion. We calculated the change in propulsion asymmetry magnitude ( Δ | PA | ) and the change in CGAM (ΔCGAM) during biofeedback relative to baseline. Then, we fit a robust linear mixed-effects model with ΔCGAM as the outcome and a fixed effect for Δ | PA | . Results. We found a positive association between Δ | PA | and ΔCGAM (β = 2.6, p = 0.002). The average Δ | PA | was - 0.09, suggesting that, on average, we would expect a CGAM change of 0.2, which is 0.5% of the average baseline CGAM value. Conclusions. Reducing propulsive asymmetry using biofeedback is unlikely to produce substantial reductions in overall gait asymmetry, suggesting that biofeedback-based approaches to reduce propulsion asymmetry may need to be combined with other interventions to improve overall gait asymmetry. Clinical Trial Registration. NCT04411303.
Collapse
|
3
|
Pradines M, Jabouille F, Fontenas E, Baba Aissa I, Gault-Colas C, Baude M, Guihard M, Gros K, Gracies JM. Does spastic myopathy determine active movement and ambulation speed in chronic spastic paresis?-A cross-sectional study on plantar flexors. PLoS One 2024; 19:e0310969. [PMID: 39446866 PMCID: PMC11500935 DOI: 10.1371/journal.pone.0310969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/10/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Functional correlates of spastic myopathy, the muscle disorder of spastic paresis, are unknown. OBJECTIVE To explore reciprocal relationships between clinical and structural parameters of plantar flexors with i) ambulation speed, ii) dorsiflexion and plantarflexion torques in chronic hemiparesis. METHODS Cross-sectional trial in chronic stroke-induced hemiparesis (>6 months). Plantar flexors were quantified through i) the Five Step Assessment: maximal extensibility (XV1), active range of dorsiflexion (XA); ii) ultrasonography: fascicle length (Lf) and thickness (Th) of medial gastrocnemius (GAS) and soleus (SOL), knee extended in an isokinetic ergometer, ankle at 80% XV1-GAS. Maximal isometric torques in plantar flexion (PF) and dorsiflexion (DF) and maximal barefoot 10-meter ambulation speed were collected. Relationships between structural, biomechanical, clinical and functional parameters were explored using non-parametric testing (Spearman). RESULTS Twenty-one subjects (age 58.0±8.4, mean±SD, time since lesion 7.8±5.7 years) were recruited, with the following characteristics: ambulation speed, 0.77±0.37m/sec; XV1-SOL 92.7±10.3°; XV1-GAS 91.3±9.6°; XA-SOL 86.9±10.0°; XA-GAS 7676±14.2°; LfGAS, 58.2±18.3mm; ThGAS, 17.1±3.6 mm; LfSOL, 36.0±9.6 mm; ThSOL, 13.8±3.3mm; PF peak-torque 46.5±34.1Nm, DF peak-torque, 20.1±19.1Nm. XA-SOL and XA-GAS strongly correlated with XV1-SOL and XV1-GAS respectively (ρ = 0.74, p = 4E-04; resp ρ = 0.60, p = 0.0052). Ambulation speed moderately correlated with LfGAS (ρ = 0.51, p = 0.054), ThGAS (ρ = 0.58, p = 0.02) and LfSOL (ρ = 0.63, p = 0.009). DF and PF peak-torques both correlated with LfGAS (ρ = 0.53, p = 0.04) a; resp. ρ = 0.71, p = 0.0015). CONCLUSION In chronic hemiparesis, active dorsiflexion is mostly determined by plantar flexor extensibility. Plantar flexor fascicle shortening is associated with reduced ambulation speed and ankle torques. Attempts to restore plantar flexor extensibility might be important objectives for gait rehabilitation in chronic hemiparesis.
Collapse
Affiliation(s)
- Maud Pradines
- UR 7377 BIOTN, Laboratoire Analyse et Restauration du Mouvement, Université Paris Est Créteil (UPEC), Créteil, France
- AP-HP, Service de Rééducation Neurolocomotrice, Unité de Neurorééducation, Hôpitaux Universitaires Henri Mondor, Créteil, France
| | - François Jabouille
- UR 7377 BIOTN, Laboratoire Analyse et Restauration du Mouvement, Université Paris Est Créteil (UPEC), Créteil, France
| | - Enguerran Fontenas
- UR 7377 BIOTN, Laboratoire Analyse et Restauration du Mouvement, Université Paris Est Créteil (UPEC), Créteil, France
| | - Idriss Baba Aissa
- UR 7377 BIOTN, Laboratoire Analyse et Restauration du Mouvement, Université Paris Est Créteil (UPEC), Créteil, France
| | - Caroline Gault-Colas
- AP-HP, Service de Rééducation Neurolocomotrice, Unité de Neurorééducation, Hôpitaux Universitaires Henri Mondor, Créteil, France
| | - Marjolaine Baude
- UR 7377 BIOTN, Laboratoire Analyse et Restauration du Mouvement, Université Paris Est Créteil (UPEC), Créteil, France
- AP-HP, Service de Rééducation Neurolocomotrice, Unité de Neurorééducation, Hôpitaux Universitaires Henri Mondor, Créteil, France
| | - Marina Guihard
- UR 7377 BIOTN, Laboratoire Analyse et Restauration du Mouvement, Université Paris Est Créteil (UPEC), Créteil, France
| | - Karine Gros
- Chaire "Handicap, Emploi et Santé au Travail", Université Paris-Est Créteil, Créteil, France
| | - Jean-Michel Gracies
- UR 7377 BIOTN, Laboratoire Analyse et Restauration du Mouvement, Université Paris Est Créteil (UPEC), Créteil, France
- AP-HP, Service de Rééducation Neurolocomotrice, Unité de Neurorééducation, Hôpitaux Universitaires Henri Mondor, Créteil, France
| |
Collapse
|
4
|
Donlin MC, Higginson JS. Adaptive Functional Electrical Stimulation Delivers Stimulation Amplitudes Based on Real-Time Gait Biomechanics. J Med Device 2024; 18:021002. [PMID: 38784383 PMCID: PMC11110825 DOI: 10.1115/1.4065479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Functional electrical stimulation (FES) is often used in poststroke gait rehabilitation to decrease foot drop and increase forward propulsion. However, not all stroke survivors experience clinically meaningful improvements in gait function following training with FES. The purpose of this work was to develop and validate a novel adaptive FES (AFES) system to improve dorsiflexor (DF) and plantarflexor (PF) stimulation timing and iteratively adjust the stimulation amplitude at each stride based on measured gait biomechanics. Stimulation timing was determined by a series of bilateral footswitches. Stimulation amplitude was calculated based on measured dorsiflexion angle and peak propulsive force, where increased foot drop and decreased paretic propulsion resulted in increased stimulation amplitudes. Ten individuals with chronic poststroke hemiparesis walked on an adaptive treadmill with adaptive FES for three 2-min trials. Stimulation was delivered at the correct time to the dorsiflexor muscles during 95% of strides while stimulation was delivered to the plantarflexor muscles at the correct time during 84% of strides. Stimulation amplitudes were correctly calculated and delivered for all except two strides out of nearly 3000. The adaptive FES system responds to real-time gait biomechanics as intended, and further individualization to subject-specific impairments and rehabilitation goals may lead to improved rehabilitation outcomes.
Collapse
Affiliation(s)
- Margo C. Donlin
- Department of Biomedical Engineering, University of Delaware, 540 S. College Ave, Suite 201, Newark, DE 19713
- University of Delaware
| | - Jill S. Higginson
- Departments of Mechanical and Biomedical Engineering, University of Delaware, 540 S. College Ave., Suite 201, Newark, DE 19713
| |
Collapse
|
5
|
Hinton EH, Bierner S, Reisman DS, Likens A, Knarr BA. Paretic propulsion changes with handrail Use in individuals post-stroke. Heliyon 2024; 10:e26924. [PMID: 38463863 PMCID: PMC10920377 DOI: 10.1016/j.heliyon.2024.e26924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 03/12/2024] Open
Abstract
Background Roughly 800,000 people experience a stroke every year in the United States, and about 30% of people require walking assistance (walker, cane, etc.) after a stroke. Gait training on a treadmill is a common rehabilitation activity for individuals post-stroke and handrails are typically used to assist with walking during this training, however individual interaction with these handrails are not usually considered and quantitatively reported. Individuals may exert force onto the handrails to aid with propulsive force, but the relationship between limb propulsive force and handrail propulsive force are not known. Research question How do individuals post-stroke alter paretic propulsive force when using an assistive device, such as handrails on a treadmill? Methods Twenty-one individuals post-stroke (eight current assistive device users and thirteen individuals who do not use an assistive device) walked on a treadmill for 3 min during three conditions: no handrail use, light handrail use (<5% BW) and self-selected handrail use. Three multilevel models were used to compare percent handrail, paretic and nonparetic propulsion between handrail conditions and assistive device groups. Results The handrail propulsive impulse was more during the self-selected handrail condition compared to the light handrail condition (p = 0.002). The assistive device use group and the handrail condition fixed effects significantly improved the model fit for paretic propulsive impulse (p = 0.01). The interaction between assistive device use group and handrail condition significantly improved the model fit for nonparetic propulsive impulse (p < 0.001). Significance These results suggest that handrail use may impact paretic propulsive impulse. Our initial results suggest that if the goal of rehabilitation treadmill training is to increase the paretic propulsive impulse, having the clinician encourage walking with the handrails may be optimal to promote paretic propulsion.
Collapse
|
6
|
Downer KE, Pariser KM, Donlin MC, Higginson JS. How Important is Position in Adaptive Treadmill Control? J Biomech Eng 2024; 146:011006. [PMID: 37851541 PMCID: PMC10680982 DOI: 10.1115/1.4063823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
To more closely mimic overground walking, researchers are developing adaptive treadmills (ATMs) that update belt speed in real-time based on user gait mechanics. Many existing ATM control schemes are solely based on position on the belt and do not respond to changes in gait mechanics, like propulsive forces, that result in increased overground walking speed. To target natural causal mechanisms to alter speed, we developed an ATM controller that adjusts speed via changes in position, step length, and propulsion. Gains on each input dictate the impact of the corresponding parameter on belt speed. The study objective was to determine the effect of modifying the position gain on self-selected walking speed, measures of propulsion, and step length. Twenty-two participants walked at their self-selected speed with four ATM controllers, each with a unique position gain. Walking speed, anterior and posterior ground reaction force peaks and impulses, net impulse, and step length were compared between conditions. Smaller position gains promoted more equivalent anterior and posterior impulses, resulting in a net impulse closer to zero (p = 0.0043), a characteristic of healthy gait. Walking speed, anterior and posterior ground reaction force peaks and impulses, and step length did not change between conditions (all p > 0.05). These results suggest that reducing the importance of position in the ATM controller may promote more balanced anterior and posterior impulses, possibly improving the efficacy of the ATM for gait rehabilitation by emphasizing changes in gait mechanics instead of position to naturally adjust speed.
Collapse
Affiliation(s)
- Kaitlyn E. Downer
- Department of Mechanical Engineering, University of Delaware, 540 S. College Avenue, STAR Health Sciences Complex, Rm 201, Newark, DE 19713; Department of Mechanical and Aerospace Engineering, University of Florida, 1929 Stadium Dr, Nuclear Sciences Building, Rm 209, Gainesville, FL 32611
| | - Kayla M. Pariser
- Department of Mechanical Engineering, University of Delaware, 540 S. College Avenue, STAR Health Sciences Complex, Rm 201, Newark, DE 19713
| | - Margo C. Donlin
- Department of Biomedical Engineering, University of Delaware, 540 S. College Avenue, STAR Health Sciences Complex, Rm 201, Newark, DE 19713
| | - Jill S. Higginson
- Department of Mechanical Engineering, University of Delaware, 540 S. College Avenue, STAR Health Sciences Complex, Rm 201, Newark, DE 19713; Department of Biomedical Engineering, University of Delaware, 540 S. College Avenue, STAR Health Sciences Complex, Rm 201, Newark, DE 19713
| |
Collapse
|
7
|
Moradian N, Ko M, Hurt CP, Brown DA. Effects of backward-directed resistance on propulsive force generation during split-belt treadmill walking in non-impaired individuals. Front Hum Neurosci 2023; 17:1214967. [PMID: 38111676 PMCID: PMC10725924 DOI: 10.3389/fnhum.2023.1214967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 11/14/2023] [Indexed: 12/20/2023] Open
Abstract
Introduction Backward-directed resistance is the resistance applied in the opposite direction of the individual's walking motion. Progressive application of backward-directed resistance during walking at a target speed engages adaptive motor control to maintain that speed. During split-belt walking, a motor control strategy must be applied that allows the person to keep up with the two belts to maintain their position on the treadmill. This situation becomes more challenging when progressive resistance is applied since each limb needs to adapt to the greater resistance to maintain the position. We propose that strategies aimed at changing relative propulsion forces with each limb may explain the motor control strategy used. This study aimed to identify the changes in propulsive force dynamics that allow individuals to maintain their position while walking on an instrumented split-belt treadmill with progressively increasing backward-directed resistance. Methods We utilized an instrumented split-belt treadmill while users had to overcome a set of increasing backward-directed resistance through the center of mass. Eighteen non-impaired participants (mean age = 25.2 ± 2.51) walked against five levels of backward resistance (0, 5, 10, 15, and 20% of participant's body weight) in two different modalities: single-belt vs. split-belt treadmill. On the single-belt mode, the treadmill's pace was the participant's comfortable walking speed (CWS). In split-belt mode, the dominant limb's belt pace was half of the CWS, and the non-dominant limb's belt speed was at the CWS. Results We assessed differences between single-belt vs. split-belt conditions in the slope of the linear relationship between change in propulsive impulse relative to change of backward resistance amount. In split-belt conditions, the slower limb showed a significantly steeper increase in propulsion generation compared to the fast limb across resistance levels. Discussion As a possible explanation, the slow limb also exhibited a significantly increased slope of the change in trailing limb angle (TLA), which was strongly correlated to the propulsive impulse slope values. We conclude that the motor control strategy used to maintain position on a split-belt treadmill when challenged with backward-directed resistance is to increase the propulsive forces of the slow limb relative to the fast limb by progressively increasing the TLA. Clinical trial registration ClinicalTrials.gov, identifier NCT04877249.
Collapse
Affiliation(s)
- Negar Moradian
- Department of Physical Therapy, School of Health Professions, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Mansoo Ko
- Department of Physical Therapy, School of Health Professions, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Christopher P. Hurt
- Department of Physical Therapy, School of Health Professions, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - David A. Brown
- Department of Physical Therapy, School of Health Professions, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
8
|
Pimentel RE, Sawicki GS, Franz JR. Simulations suggest walking with reduced propulsive force would not mitigate the energetic consequences of lower tendon stiffness. PLoS One 2023; 18:e0293331. [PMID: 37883368 PMCID: PMC10602298 DOI: 10.1371/journal.pone.0293331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Aging elicits numerous effects that impact both musculoskeletal structure and walking function. Tendon stiffness (kT) and push-off propulsive force (FP) both impact the metabolic cost of walking and are diminished by age, yet their interaction has not been studied. We combined experimental and computational approaches to investigate whether age-related changes in function (adopting smaller FP) may be adopted to mitigate the metabolic consequences arising from changes in structure (reduced kT). We recruited 12 young adults and asked them to walk on a force-sensing treadmill while prompting them to change FP (±20% & ±40% of typical) using targeted biofeedback. In models driven by experimental data from each of those conditions, we altered the kT of personalized musculoskeletal models across a physiological range (2-8% strain) and simulated individual-muscle metabolic costs for each kT and FP combination. We found that kT and FP independently affect walking metabolic cost, increasing with higher kT or as participants deviated from their typical FP. Our results show no evidence for an interaction between kT and FP in younger adults walking at fixed speeds. We also reveal complex individual muscle responses to the kT and FP landscape. For example, although total metabolic cost increased by 5% on average with combined reductions in kT and FP, the triceps surae muscles experienced a 7% local cost reduction on average. Our simulations suggest that reducing FP during walking would not mitigate the metabolic consequences of lower kT. Wearable devices and rehabilitative strategies can focus on either kT or FP to reduce age-related increases in walking metabolic cost.
Collapse
Affiliation(s)
- Richard E. Pimentel
- Joint Department of Biomedical Engineering, UNC Chapel Hill and NC State University, Chapel Hill, North Carolina, United States of America
| | - Gregory S. Sawicki
- Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, Georgia, United States of America
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, Georgia, United States of America
| | - Jason R. Franz
- Joint Department of Biomedical Engineering, UNC Chapel Hill and NC State University, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
9
|
Pan YT, Kang I, Joh J, Kim P, Herrin KR, Kesar TM, Sawicki GS, Young AJ. Effects of Bilateral Assistance for Hemiparetic Gait Post-Stroke Using a Powered Hip Exoskeleton. Ann Biomed Eng 2023; 51:410-421. [PMID: 35963920 PMCID: PMC9867666 DOI: 10.1007/s10439-022-03041-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 07/28/2022] [Indexed: 01/26/2023]
Abstract
Hemiparetic gait due to stroke is characterized by an asymmetric gait due to weakness in the paretic lower limb. These inter-limb asymmetries increase the biomechanical demand and reduce walking speed, leading to reduced community mobility and quality of life. With recent progress in the field of wearable technologies, powered exoskeletons have shown great promise as a potential solution for improving gait post-stroke. While previous studies have adopted different exoskeleton control methodologies for restoring gait post-stroke, the results are highly variable due to limited understanding of the biomechanical effect of exoskeletons on hemiparetic gait. In this study, we investigated the effect of different hip exoskeleton assistance strategies on gait function and gait biomechanics of individuals post-stroke. We found that, compared to walking without a device, powered assistance from hip exoskeletons improved stroke participants' self-selected overground walking speed by 17.6 ± 2.5% and 11.1 ± 2.7% with a bilateral and unilateral assistance strategy, respectively (p < 0.05). Furthermore, both bilateral and unilateral assistance strategies significantly increased the paretic and non-paretic step length (p < 0.05). Our findings suggest that powered assistance from hip exoskeletons is an effective means to increase walking speed post-stroke and tuning the balance of assistance between non-paretic and paretic limbs (i.e., a bilateral strategy) may be most effective to maximize performance gains.
Collapse
Affiliation(s)
- Yi-Tsen Pan
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Inseung Kang
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - James Joh
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Patrick Kim
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kinsey R Herrin
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Trisha M Kesar
- Division of Physical Therapy, Emory University, Atlanta, GA, 30322, USA
- Department of Rehabilitation Medicine, Emory University, Atlanta, GA, 30307, USA
| | - Gregory S Sawicki
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Biological Science, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Aaron J Young
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
10
|
Patathong T, Klaewkasikum K, Woratanarat P, Rattanasiri S, Anothaisintawee T, Woratanarat T, Thakkinstian A. The efficacy of gait rehabilitations for the treatment of incomplete spinal cord injury: a systematic review and network meta-analysis. J Orthop Surg Res 2023; 18:60. [PMID: 36683024 PMCID: PMC9869518 DOI: 10.1186/s13018-022-03459-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 12/16/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Recent pieces of evidence about the efficacy of gait rehabilitation for incomplete spinal cord injury remain unclear. We aimed to estimate the treatment effect and find the best gait rehabilitation to regain velocity, distance, and Walking Index Spinal Cord Injury (WISCI) among incomplete spinal cord injury patients. METHOD PubMed and Scopus databases were searched from inception to October 2022. Randomized controlled trials (RCTs) were included in comparison with any of the following: conventional physical therapy, treadmill, functional electrical stimulation and robotic-assisted gait training, and reported at least one outcome. Two reviewers independently selected the studies and extracted the data. Meta-analysis was performed using random-effects or fixed-effect model according to the heterogeneity. Network meta-analysis (NMA) was indirectly compared with all interventions and reported as pooled unstandardized mean difference (USMD) and 95% confidence interval (CI). Surface under the cumulative ranking curve (SUCRA) was calculated to identify the best intervention. RESULTS We included 17 RCTs (709 participants) with the mean age of 43.9 years. Acute-phase robotic-assisted gait training significantly improved the velocity (USMD 0.1 m/s, 95% CI 0.05, 0.14), distance (USMD 64.75 m, 95% CI 27.24, 102.27), and WISCI (USMD 3.28, 95% CI 0.12, 6.45) compared to conventional physical therapy. In NMA, functional electrical stimulation had the highest probability of being the best intervention for velocity (66.6%, SUCRA 82.1) and distance (39.7%, SUCRA 67.4), followed by treadmill, functional electrical stimulation plus treadmill, robotic-assisted gait training, and conventional physical therapy, respectively. CONCLUSION Functional electrical stimulation seems to be the best treatment to improve walking velocity and distance for incomplete spinal cord injury patients. However, a large-scale RCT is required to study the adverse events of these interventions. TRIAL REGISTRATION PROSPERO number CRD42019145797.
Collapse
Affiliation(s)
- Tanyaporn Patathong
- grid.10223.320000 0004 1937 0490Department of Orthopedics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 270 Rama VI Road, Payathai, Ratchathewi, Bangkok, 10400 Thailand
| | - Krongkaew Klaewkasikum
- grid.10223.320000 0004 1937 0490Department of Orthopedics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 270 Rama VI Road, Payathai, Ratchathewi, Bangkok, 10400 Thailand
| | - Patarawan Woratanarat
- grid.10223.320000 0004 1937 0490Department of Orthopedics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 270 Rama VI Road, Payathai, Ratchathewi, Bangkok, 10400 Thailand
| | - Sasivimol Rattanasiri
- grid.10223.320000 0004 1937 0490Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400 Thailand
| | - Thunyarat Anothaisintawee
- grid.10223.320000 0004 1937 0490Department of Family Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400 Thailand
| | - Thira Woratanarat
- grid.7922.e0000 0001 0244 7875Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Ammarin Thakkinstian
- grid.10223.320000 0004 1937 0490Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400 Thailand
| |
Collapse
|
11
|
Chae SH, Lee MY, Chung Y. Effectiveness of backward walking with functional electrical stimulation on the rectus femoris and tibialis anterior for patients with chronic stroke. NeuroRehabilitation 2022; 52:219-226. [PMID: 36565072 DOI: 10.3233/nre-220156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Backward walking is considered as a newly rising method used to enhance gait abilities, but evidence remains unclear. OBJECTIVE To identify whether backward walking with functional electrical stimulation (FES) triggered by a foot switch on the rectus femoris and tibialis anterior could be effective in improving gait parameters of stroke survivors. METHODS This was a cross-sectional study that included fourteen subjects with chronic stroke. Three walking conditions were performed at random: backward walking with FES attached onto the rectus femoris and tibialis anterior (RF+TA), backward walking with FES attached onto the tibialis anterior (TA only), and without electrical intervention (non-FES). The Zebris was used to assess the spatiotemporal gait parameters. Each condition was measured three times and the average value was used for analysis. RESULTS Results showed significant increases in gait speed, cadence, step length, mid-stance percentage, maximal force in the affected midfoot (p < 0.05), and significant decreases in the double stance phase in the RF+TA condition compared to the TA only and the non-FES conditions (p < 0.05). CONCLUSION Functional electrical stimulation to the rectus femoris and tibialis anterior during backward walking could be a clinically effective method to improve gait ability of stroke survivors.
Collapse
Affiliation(s)
- Seung Han Chae
- Graduate School of Physical Therapy, Sahmyook University, Seoul, Republic of Korea
| | - Mi Young Lee
- Department of Physical Therapy, College of Health and Welfare, Sahmyook University, Seoul, Republic of Korea
| | - Yijung Chung
- Department of Physical Therapy, College of Health and Welfare, Sahmyook University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Livolsi C, Conti R, Guanziroli E, Friðriksson Þ, Alexandersson Á, Kristjánsson K, Esquenazi A, Molino Lova R, Romo D, Giovacchini F, Crea S, Molteni F, Vitiello N. An impairment-specific hip exoskeleton assistance for gait training in subjects with acquired brain injury: a feasibility study. Sci Rep 2022; 12:19343. [PMID: 36369462 PMCID: PMC9652374 DOI: 10.1038/s41598-022-23283-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
This study was designed to investigate the feasibility and the potential effects on walking performance of a short gait training with a novel impairment-specific hip assistance (iHA) through a bilateral active pelvis orthosis (APO) in patients with acquired brain injury (ABI). Fourteen subjects capable of independent gait and exhibiting mild-to-moderate gait deficits, due to an ABI, were enrolled. Subjects presenting deficit in hip flexion and/or extension were included and divided into two groups based on the presence (group A, n = 6) or absence (group B, n = 8) of knee hyperextension during stance phase of walking. Two iHA-based profiles were developed for the groups. The protocol included two overground gait training sessions using APO, and two evaluation sessions, pre and post training. Primary outcomes were pre vs. post-training walking distance and steady-state speed in the 6-min walking test. Secondary outcomes were self-selected speed, joint kinematics and kinetics, gait symmetry and forward propulsion, assessed through 3D gait analysis. Following the training, study participants significantly increased the walked distance and average steady-state speed in the 6-min walking tests, both when walking with and without the APO. The increased walked distance surpassed the minimal clinically important difference for groups A and B, (respectively, 42 and 57 m > 34 m). In group A, five out of six subjects had decreased knee hyperextension at the post-training session (on average the peak of the knee extension angle was reduced by 36%). Knee flexion during swing phase increased, by 16% and 31%, for A and B groups respectively. Two-day gait training with APO providing iHA was effective and safe in improving walking performance and knee kinematics in ABI survivors. These preliminary findings suggest that this strategy may be viable for subject-specific post-ABI gait rehabilitation.
Collapse
Affiliation(s)
- Chiara Livolsi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa, Italy.
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy.
| | | | - Eleonora Guanziroli
- Villa Beretta Rehabilitation Center, Valduce Hospital, Costa Masnaga, Lecco, Italy
| | | | | | | | - Alberto Esquenazi
- Department of PM&R, MossRehab and Einstein Healthcare Network, Elkins Park, PA, USA
| | | | | | | | - Simona Crea
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Florence, Italy
| | - Franco Molteni
- Villa Beretta Rehabilitation Center, Valduce Hospital, Costa Masnaga, Lecco, Italy
| | - Nicola Vitiello
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Florence, Italy
| |
Collapse
|
13
|
Nakagawa K, Higashi K, Ikeda A, Kadono N, Tanaka E, Yuge L. Robotic ankle control can provide appropriate assistance throughout the gait cycle in healthy adults. Front Neurorobot 2022; 16:993939. [PMID: 36238427 PMCID: PMC9551652 DOI: 10.3389/fnbot.2022.993939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022] Open
Abstract
Ankle foot orthoses are mainly applied to provide stability in the stance phase and adequate foot clearance in the swing phase; however, they do not sufficiently assist during the entire gait cycle. On the other hand, robotic-controlled orthoses can provide mechanical assistance throughout the phases of the gait cycle. This study investigated the effect of ankle control throughout the gait cycle using an ankle joint walking assistive device under five different robotic assistance conditions: uncontrolled, dorsiflexion, and plantar flexion controlled at high and low speeds in the initial loading phase. Compared with the no-control condition, the plantar flexion condition enhanced knee extension and delayed the timing of ankle dorsiflexion in the stance phase; however, the opposite effect occurred under the dorsiflexion condition. Significant differences in the trailing limb angle and minimum toe clearance were also observed, although the same assistance was applied from the mid-stance phase to the initial swing phase. Ankle assistance in the initial loading phase affected the knee extension and ankle dorsiflexion angle during the stance phase. The smooth weight shift obtained might have a positive effect on lifting the limb during the swing phase. Robotic ankle control may provide appropriate assistance throughout the gait cycle according to individual gait ability.
Collapse
Affiliation(s)
- Kei Nakagawa
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Keita Higashi
- Department of Rehabilitation, Innoshima Medical Association Hospital, Onomichi, Japan
| | - Akari Ikeda
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naoto Kadono
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Eiichiro Tanaka
- Graduate School of Information, Production and Systems, Faculty of Science and Engineering, Waseda University, Kita-Kyushu, Japan
| | - Louis Yuge
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- *Correspondence: Louis Yuge
| |
Collapse
|
14
|
Linking gait mechanics with perceived quality of life and participation after stroke. PLoS One 2022; 17:e0274511. [PMID: 36129881 PMCID: PMC9491527 DOI: 10.1371/journal.pone.0274511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/26/2022] [Indexed: 11/19/2022] Open
Abstract
Background
Individuals with hemiparesis following stroke often experience a decline in the paretic limb’s anteriorly directed ground reaction force during walking (i.e., limb propulsive force). Gait speed and walking capacity have been independently associated with paretic limb propulsion, quality of life, and participation in people with stroke. However, it is unclear as to the extent that underlying limb mechanics (i.e., propulsion) play in influencing perceptions of quality of life and participation. We therefore sought to determine the role of limb propulsion during gait on the perception of quality of life and participation in people following stroke.
Methods
This study is a secondary analysis of individuals involved in a gait retraining randomized control trial. Gait speed, walking capacity, limb propulsion, Stroke Impact Scale, and average daily step counts were assessed prior to and following 6 weeks of training. The pre-training data from 40 individuals were analyzed cross-sectionally using Pearson and Spearman correlations, to evaluate the potential relationship between limb propulsion (ratio of paretic limb propulsion to total propulsion) with gait speed, gait capacity, perceived quality of life domains, and average daily step counts. Partial correlations were used to control for gait speed. Thirty-one individuals were assessed longitudinally for the same relationships.
Results
We observed a training effect for gait speed, walking capacity, and some quality of life measures. However, after controlling for gait speed, we observed no significant (p≤0.05) correlations in the cross-sectional and longitudinal analyses.
Significance
After controlling for the influence of gait speed, paretic limb propulsion is not directly related to perceived quality of life or participation. Although limb propulsion may not have a direct effect on participant’s perceived quality of life, it appears to be an important factor to enhance gait performance, and therefore may be important to target in rehabilitation, when feasible.
Collapse
|
15
|
Pimentel RE, Feldman JN, Lewek MD, Franz JR. Quantifying mechanical and metabolic interdependence between speed and propulsive force during walking. Front Sports Act Living 2022; 4:942498. [PMID: 36157906 PMCID: PMC9500214 DOI: 10.3389/fspor.2022.942498] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Walking speed is a useful surrogate for health status across the population. Walking speed appears to be governed in part by interlimb coordination between propulsive (FP) and braking (FB) forces generated during step-to-step transitions and is simultaneously optimized to minimize metabolic cost. Of those forces, FP generated during push-off has received significantly more attention as a contributor to walking performance. Our goal was to first establish empirical relations between FP and walking speed and then to quantify their effects on metabolic cost in young adults. To specifically address any link between FP and walking speed, we used a self-paced treadmill controller and real-time biofeedback to independently prescribe walking speed or FP across a range of condition intensities. Walking with larger and smaller FP led to instinctively faster and slower walking speeds, respectively, with ~80% of variance in walking speed explained by FP. We also found that comparable changes in either FP or walking speed elicited predictable and relatively uniform changes in metabolic cost, together explaining ~53% of the variance in net metabolic power and ~14% of the variance in cost of transport. These results provide empirical data in support of an interdependent relation between FP and walking speed, building confidence that interventions designed to increase FP will translate to improved walking speed. Repeating this protocol in other populations may identify other relations that could inform the time course of gait decline due to age and disease.
Collapse
Affiliation(s)
- Richard E. Pimentel
- Applied Biomechanics Laboratory, Joint Department of BME, UNC, and NCSU, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Human Movement Science Laboratory, Division of Physical Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jordan N. Feldman
- Applied Biomechanics Laboratory, Joint Department of BME, UNC, and NCSU, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Human Movement Science Laboratory, Division of Physical Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Michael D. Lewek
- Human Movement Science Laboratory, Division of Physical Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jason R. Franz
- Applied Biomechanics Laboratory, Joint Department of BME, UNC, and NCSU, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Human Movement Science Laboratory, Division of Physical Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Jason R. Franz
| |
Collapse
|
16
|
Pariser KM, Donlin MC, Downer KE, Higginson JS. Adaptive treadmill control can be manipulated to increase propulsive impulse while maintaining walking speed. J Biomech 2022; 133:110971. [PMID: 35121382 PMCID: PMC8891055 DOI: 10.1016/j.jbiomech.2022.110971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/18/2022]
Abstract
Adaptive treadmills (ATM) designed to promote increased propulsion may be an effective tool for gait training since propulsion is often impaired post-stroke. Our lab developed a novel ATM controller that adjusts belt speed via real-time changes in step length, propulsive impulse, and position. This study modified the relative importance of propulsion to step length in the controller to determine the effect of increased propulsive feedback gain on measures of propulsion and walking speed. Twenty-two participants completed five trials at their self-selected speed, each with a unique ATM controller. Walking speed, peak AGRF and PGRF, and AGRF, PGRF, and net impulse were compared between the modifications using one-way repeated measures ANOVAs at a significance level of 0.05. Participants chose similar walking speeds across all conditions (all p > 0.2730). There were no significant differences in peak AGRF (p = 0.1956) or PGRF (p = 0.5159) between conditions. AGRF impulse significantly increased as the gain on the propulsive impulse term was increased relative to the gain on step length (p < 0.0001) while PGRF and net impulse were similar across all conditions (p = 0.5487). Increasing the propulsive impulse gain essentially alters the treadmill environment by providing a controlled amount of resistance to increases in propulsive forces. Our findings demonstrate that the ATM can be modified to promote increased propulsive impulse while maintaining a consistent walking speed. Since increasing propulsion is a common goal of post-stroke gait training, these ATM modifications may improve the efficacy of the ATM for gait rehabilitation.
Collapse
Affiliation(s)
- Kayla M Pariser
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA.
| | - Margo C Donlin
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Kaitlyn E Downer
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Jill S Higginson
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA; Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| |
Collapse
|
17
|
Donlin MC, Pariser KM, Downer KE, Higginson JS. Adaptive treadmill walking encourages persistent propulsion. Gait Posture 2022; 93:246-251. [PMID: 35190317 PMCID: PMC8930561 DOI: 10.1016/j.gaitpost.2022.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Adaptive treadmills allow real-time changes in walking speed by responding to changes in step length, propulsion, or position on the treadmill. The stride-to-stride variability, or persistence, of stride time during overground, fixed-speed, and adaptive treadmill walking has been studied, but persistence of propulsion during adaptive treadmill walking remains unknown. Because increased propulsion is often a goal of post-stroke rehabilitation, knowledge of the stride-to-stride variability may aid rehabilitation protocol design. RESEARCH QUESTION How do spatiotemporal and propulsive gait variables vary from stride to stride during adaptive treadmill walking, and how do they compare to fixed-speed treadmill walking? METHODS Eighteen young healthy subjects walked on an instrumented split-belt treadmill in the adaptive and fixed-speed modes for 10 minutes at their comfortable speed. Kinetic data was collected from the treadmill. Detrended fluctuation analysis was applied to the time series data. Shapiro-Wilk tests assessed normality and one-way repeated measures ANOVAs compared between adaptive, fixed-speed, and randomly shuffled conditions at a Bonferroni-corrected significance level of 0.0055. RESULTS Stride time, stride length, step length, and braking impulse were persistent (α > 0.5) in the adaptive and fixed-speed conditions. Adaptive and fixed-speed were different from each other. Stride speed was persistent in the adaptive condition and anti-persistent (α < 0.5) in the fixed-speed condition. Peak propulsive force, peak braking force, and propulsive impulse were persistent in the adaptive condition but not the fixed-speed condition (α ≈ 0.5). Net impulse was non-persistent in the adaptive and fixed-speed conditions. All variables were non-persistent in the shuffled condition. SIGNIFICANCE During adaptive treadmill walking, increases in propulsive force and impulse persist for multiple strides. Persistence was stronger on the adaptive treadmill, where increased propulsion translates into increased walking speed. For post-stroke gait rehabilitation where increasing propulsion and speed are goals, the stronger persistence of adaptive treadmill walking may be beneficial.
Collapse
Affiliation(s)
- Margo C. Donlin
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA,Corresponding author at: University of Delaware, 540 S. College Ave., STAR Health Sciences Complex, Rm. 201, Newark, DE, USA. (Margo Donlin)
| | - Kayla M. Pariser
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Kaitlyn E. Downer
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Jill S. Higginson
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA,Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| |
Collapse
|
18
|
Time-integrated propulsive and braking impulses do not depend on walking speed. Gait Posture 2021; 88:258-263. [PMID: 34139632 PMCID: PMC8316424 DOI: 10.1016/j.gaitpost.2021.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/24/2021] [Accepted: 06/09/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Enhancing propulsion during walking is often a focus in physical therapy for those with impaired gait. However, there is no consensus in the literature for assessing braking and propulsion. Both are typically measured from the anterior-posterior ground reaction force (AP-GRF). While normalization of AP-GRF force by bodyweight is commonly done in the analysis, different methods for AP-GRF time axis normalization are used. RESEARCH QUESTION Does walking speed affect propulsion and/or braking, and how do different methods for calculating propulsion and braking impact the conclusion, in both healthy adults and those with lower limb impairment? METHODS We investigated three different analysis methods for assessing propulsion. 1. BW-TimeIntegration: Bodyweight (BW) normalized time integration of AP-GRF (units of BWs). 2. BW-%StanceIntegration: BW normalized AP-GRF is resampled to percent stance phase prior to integration (units of BW%Stance). 3. BW-Peak: BW normalized peak force (units of BW). We applied these methods to two data sets. One data set included AP-GRFs from trials of slow, self-selected, and fast walking speeds for 203 healthy controls (HCs); a second data set included subjects with lower limb orthopedic injuries. RESULTS Using the BW-TimeIntegration method, we found no effect of walking speed on propulsion for HCs. Time integration over the longer stance phase of slower walking balanced the lower magnitude AP-GRFs of slower walking, resulting in a time-integrated impulse that was the same regardless of walking speed. In contrast, the other two methods that are not time integration methods found that propulsion increased with walking speed. Similarly, in the gait pathology data set, differences in results were found depending on the analysis method used. SIGNIFICANCE For many gait studies concerning propulsion and/or braking, the impulse measure used should be related to the body's change of momentum, necessitating an analysis method with a time integration of the AP-GRF.
Collapse
|
19
|
Canete S, Jacobs DA. Novel velocity estimation for symmetric and asymmetric self-paced treadmill training. J Neuroeng Rehabil 2021; 18:27. [PMID: 33546729 PMCID: PMC7866478 DOI: 10.1186/s12984-021-00825-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 01/14/2021] [Indexed: 11/23/2022] Open
Abstract
Background Self-paced treadmills (SPT) can provide an engaging setting for gait rehabilitation by responding directly to the user’s intent to modulate the external environment and internal effort. They also can improve gait analyses by allowing scientists and clinicians to directly measure the effect of an intervention on walking velocity. Unfortunately, many common SPT algorithms are not suitable for individuals with gait impairment because they are designed for symmetric gait patterns. When the user’s gait is asymmetric due to paresis or if it contains large accelerations, the performance is diminished. Creating and validating an SPT that is suitable for asymmetric gait will improve our ability to study rehabilitation interventions in populations with gait impairment. The objective of this study was to test and validate a novel self-paced treadmill on both symmetric and asymmetric gait patterns and evaluate differences in gait kinematics, kinetics, and muscle activity between fixed-speed and self-paced treadmill walking. Methods We collected motion capture, ground reaction force data, and muscle activity from 6 muscles in the dominant leg during walking from 8 unimpaired subjects. In the baseline condition, the subjects walked at 3 fixed-speeds normalized to their leg length as Froude numbers. We developed a novel kinematic method for increasing the accuracy of the user’s estimated walking velocity and compared our method against other published algorithms at each speed. Afterward, subjects walked on the SPT while matching their walking speed to a given target velocity using visual feedback of the treadmill speed. We evaluated the SPT by measuring steady-state error and the number of steps to reach the desired speed. We split the gait cycle into 7 phases and compared the kinematic, kinetic, and muscle activity between the fixed speed and self-paced mode in each phase. Then, we validated the performance of the SPT for asymmetric gait by having subjects walk on the SPT while wearing a locked-knee brace set to 0° on the non-dominant leg. Results Our SPT enabled controlled walking for both symmetric and asymmetric gait patterns. Starting from rest, subjects were able to control the SPT to reach the targeted speeds using visual feedback in 13–21 steps. With the locked knee brace, subjects controlled the treadmill with substantial step length and step velocity asymmetry. One subject was able to execute a step-to gait and halt the treadmill on heel-strikes with the braced leg. Our kinematic correction for step-length outperformed the competing algorithms by significantly reducing the velocity estimation error at the tested velocities. The joint kinematics, joint torques, and muscle activity were generally similar between fixed-speed and self-paced walking. Statistically significant differences were found in 5 of 63 tests for joint kinematics, 2 of 63 tests for joint torques, and 9 of 126 tests for muscle activity. The differences that were statistically significant were not found across all speeds and were generally small enough to be of limited clinical relevance. Conclusions We present a validated method for implementing a self-paced treadmill for asymmetric and symmetric gaits. As a result of the increased accuracy of our estimation algorithm, our SPT produced controlled walking without including a position feedback controller, thereby reducing the influence of the controller on measurements of the user’s true walking speed. Our method relies only on a kinematic correction to step length and step time which can support transfer to systems outside of the laboratory for symmetric and asymmetric gaits in clinical populations.
Collapse
Affiliation(s)
- Santiago Canete
- Department of Mechanical Engineering, Temple University, 1947 N. 12th Street, Philadelphia, PA, 19122, USA.
| | - Daniel A Jacobs
- Department of Mechanical Engineering, Temple University, 1947 N. 12th Street, Philadelphia, PA, 19122, USA
| |
Collapse
|
20
|
Central Drive to the Paretic Ankle Plantarflexors Affects the Relationship Between Propulsion and Walking Speed After Stroke. J Neurol Phys Ther 2021; 44:42-48. [PMID: 31834220 DOI: 10.1097/npt.0000000000000299] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND PURPOSE The ankle plantarflexor muscles are the primary generators of propulsion during walking. Impaired paretic plantarflexion is a key contributor to interlimb propulsion asymmetry after stroke. Poststroke muscle weakness may be the result of a reduced force-generating capacity, reduced central drive, or a combination of these impairments. This study sought to elucidate the relationship between the neuromuscular function of the paretic plantarflexor muscles and propulsion deficits across individuals with different walking speeds. METHODS For 40 individuals poststroke, we used instrumented gait analysis and dynamometry coupled with supramaximal electrostimulation to study the interplay between limb kinematics, the neuromuscular function of the paretic plantarflexors (ie, strength capacity and central drive), propulsion, and walking speed. RESULTS The strength capacity of the paretic plantarflexors was not independently related to paretic propulsion. Reduced central drive to the paretic plantarflexors independently contributed to paretic propulsion deficits. An interaction between walking speed and plantarflexor central drive was observed. Individuals with slower speeds and lower paretic plantarflexor central drive presented with the largest propulsion impairments. Some study participants with low paretic plantarflexor central drive presented with similarly fast speeds as those with near-normal central drive by leveraging a compensatory reliance on nonparetic propulsion. The final model accounted for 86% of the variance in paretic propulsion (R = 0.86, F = 33.10, P < 0.001). DISCUSSION AND CONCLUSIONS Individuals poststroke have latent paretic plantarflexion strength that they are not able to voluntarily access. The magnitude of central drive deficit is a strong indicator of propulsion impairment in both slow and fast walkers.Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A298).
Collapse
|
21
|
Zou C, Huang R, Cheng H, Qiu J. Learning Gait Models With Varying Walking Speeds. IEEE Robot Autom Lett 2021. [DOI: 10.1109/lra.2020.3006818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Awad LN, Lewek MD, Kesar TM, Franz JR, Bowden MG. These legs were made for propulsion: advancing the diagnosis and treatment of post-stroke propulsion deficits. J Neuroeng Rehabil 2020; 17:139. [PMID: 33087137 PMCID: PMC7579929 DOI: 10.1186/s12984-020-00747-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 08/19/2020] [Indexed: 12/29/2022] Open
Abstract
Advances in medical diagnosis and treatment have facilitated the emergence of precision medicine. In contrast, locomotor rehabilitation for individuals with acquired neuromotor injuries remains limited by the dearth of (i) diagnostic approaches that can identify the specific neuromuscular, biomechanical, and clinical deficits underlying impaired locomotion and (ii) evidence-based, targeted treatments. In particular, impaired propulsion by the paretic limb is a major contributor to walking-related disability after stroke; however, few interventions have been able to target deficits in propulsion effectively and in a manner that reduces walking disability. Indeed, the weakness and impaired control that is characteristic of post-stroke hemiparesis leads to heterogeneous deficits that impair paretic propulsion and contribute to a slow, metabolically-expensive, and unstable gait. Current rehabilitation paradigms emphasize the rapid attainment of walking independence, not the restoration of normal propulsion function. Although walking independence is an important goal for stroke survivors, independence achieved via compensatory strategies may prevent the recovery of propulsion needed for the fast, economical, and stable gait that is characteristic of healthy bipedal locomotion. We posit that post-stroke rehabilitation should aim to promote independent walking, in part, through the acquisition of enhanced propulsion. In this expert review, we present the biomechanical and functional consequences of post-stroke propulsion deficits, review advances in our understanding of the nature of post-stroke propulsion impairment, and discuss emerging diagnostic and treatment approaches that have the potential to facilitate new rehabilitation paradigms targeting propulsion restoration.
Collapse
Affiliation(s)
- Louis N Awad
- College of Health and Rehabilitation Sciences: Sargent College, Boston University, Boston, MA, USA.
| | - Michael D Lewek
- Division of Physical Therapy, Department of Allied Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Trisha M Kesar
- Division of Physical Therapy, Emory University, Atlanta, GA, USA
| | - Jason R Franz
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Mark G Bowden
- Division of Physical Therapy, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
23
|
Yamamoto M, Shimatani K, Hasegawa M, Kurita Y. Effects of Varying Plantarflexion Stiffness of Ankle-Foot Orthosis on Achilles Tendon and Propulsion Force During Gait. IEEE Trans Neural Syst Rehabil Eng 2020; 28:2194-2202. [PMID: 32866100 DOI: 10.1109/tnsre.2020.3020564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
An ankle-foot orthosis (AFO) with a plantarflexion resistance function, improves post-stroke gait. An AFO with a plantarflexion resistance function not only affects the first rocker function and the weight acceptance but also the late stance phase. Achilles tendon extension is important for ankle joint function and for forward propulsion during the late stance phase; however, the effect of an AFO with a plantarflexion resistance function on the Achilles tendon is unclear. The purpose of this study was to investigate the effect of plantarflexion resistance on the extension of the Achilles tendon and the forward-propulsive force. Herein, 10 healthy adult males participated who walked under three different conditions: a no-AFO condition and two AFO conditions that had different levels of plantarflexion resistance (P1 and P2). The stiffness value of the P1 and P2 conditions was 0.56 and 1.47 Nm/°, respectively. A three-dimensional (3D) motion analysis system and a musculoskeletal model were used to assess the tendon-length change, the ground reaction force, kinematics, and kinetics data. The change in Achilles tendon length was significantly lower in the P1 and P2 conditions than the no-AFO condition. Furthermore, changes in the length of the Achilles tendon significantly decreased in the P2 condition when compared with that in the P1 condition. The peak anterior ground reaction force was significantly lower in the P2 condition than the no-AFO condition. These results suggest that excessive assist provided by an AFO prevents efficient gait by decreasing both the forward-propulsive force and tendon function.
Collapse
|
24
|
Sombric CJ, Torres-Oviedo G. Augmenting propulsion demands during split-belt walking increases locomotor adaptation of asymmetric step lengths. J Neuroeng Rehabil 2020; 17:69. [PMID: 32493440 PMCID: PMC7268294 DOI: 10.1186/s12984-020-00698-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 05/21/2020] [Indexed: 11/30/2022] Open
Abstract
Background Promising studies have shown that the gait symmetry of individuals with hemiparesis due to brain lesions, such as stroke, can improve through motor adaptation protocols forcing patients to use their affected limb more. However, little is known about how to facilitate this process. Here we asked if increasing propulsion demands during split-belt walking (i.e., legs moving at different speeds) leads to more motor adaptation and more symmetric gait in survivors of a stroke, as we previously observed in subjects without neurological disorders. Methods We investigated the effect of propulsion forces on locomotor adaptation during and after split-belt walking in the asymmetric motor system post-stroke. To test this, 12 subjects in the chronic phase post-stroke experienced a split-belt protocol in a flat and incline session so as to contrast the effects of two different propulsion demands. Step length asymmetry and propulsion forces were used to compare the motor behavior between the two sessions because these are clinically relevant measures that are altered by split-belt walking. Results The incline session resulted in more symmetric step lengths during late split-belt walking and larger after-effects following split-belt walking. In both testing sessions, subjects who have had a stroke adapted to regain speed and slope-specific leg orientations similarly to young, intact adults. Importantly, leg orientations, which were set by kinetic demands, during baseline walking were predictive of those achieved during split-belt walking, which in turn predicted each individual’s post-adaptation behavior. These results are relevant because they provide evidence that survivors of a stroke can generate the leg-specific forces to walk more symmetrically, but also because we provide insight into factors underlying the therapeutic effect of split-belt walking. Conclusions Individuals post-stroke at a chronic stage can adapt more during split-belt walking and have greater after-effects when propulsion demands are augmented by inclining the treadmill surface. Our results are promising since they suggest that increasing propulsion demands during paradigms that force patients to use their paretic side more could correct gait asymmetries post-stroke more effectively.
Collapse
Affiliation(s)
- Carly J Sombric
- Department of Bioengineering, University of Pittsburgh, 4420 Bayard Street, Suite 110, Pitt, Pittsburgh, PA, USA
| | - Gelsy Torres-Oviedo
- Department of Bioengineering, University of Pittsburgh, 4420 Bayard Street, Suite 110, Pitt, Pittsburgh, PA, USA.
| |
Collapse
|
25
|
Browne MG, Franz JR. Ankle power biofeedback attenuates the distal-to-proximal redistribution in older adults. Gait Posture 2019; 71:44-49. [PMID: 31005854 PMCID: PMC7897464 DOI: 10.1016/j.gaitpost.2019.04.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/22/2019] [Accepted: 04/09/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Compared to young adults, older adults walk slower, with shorter strides, and with a characteristic decrease in ankle power output. Seemingly in response, older adults rely more than young on hip power output, a phenomenon known as a distal-to-proximal redistribution. Nevertheless, older adults can increase ankle power to walk faster or uphill, revealing a translationally important gap in our understanding. RESEARCH QUESTION Our purpose was to implement a novel ankle power biofeedback paradigm to encourage favorable biomechanical adaptations (i.e. reverse the distal-redistribution) during habitual speed walking in older adults. METHODS 10 healthy older adults walked at their preferred speeds while real-time visual biofeedback provided target increases and decreases of 10 and 20% different from preferred ankle power. We evaluated the effect of changes in ankle power on joint kinetics, kinematics, and propulsive ground reaction forces. Pre and post overground walking speed assessments evaluated the effect of increased ankle power recall on walking speed. RESULTS Biofeedback systematically elicited changes in ankle power; increasing and decreasing ankle power by 14% and 17% when targeting ±20% different from preferred, respectively. We observed a significant negative correlation between ankle power and hip extensor work. Older adults relied more heavily on changes in ankle angular velocity than ankle moment to modulate ankle power. Lastly, older adults walked almost 11% faster when recalling increased ankle power overground. SIGNIFICANCE Older adults are capable of increasing ankle power through targeted ankle power biofeedback - effects that are accompanied by diminished hip power output and attenuation of the distal-to-proximal redistribution. The associated increase in preferred walking speed during recall suggests a functional benefit to increased ankle power output via transfer to overground walking. Further, our mechanistic insights allude to translational success using ankle angular velocity as a surrogate to modulate ankle power through biofeedback.
Collapse
Affiliation(s)
- Michael G Browne
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Jason R Franz
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA.
| |
Collapse
|
26
|
Lewek MD, Raiti C, Doty A. The Presence of a Paretic Propulsion Reserve During Gait in Individuals Following Stroke. Neurorehabil Neural Repair 2019; 32:1011-1019. [PMID: 30558525 DOI: 10.1177/1545968318809920] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The residual hemiparesis after stroke results in a unilateral reduction in propulsive force during gait. Prior work has suggested the presence of a propulsive reserve in the paretic limb. OBJECTIVE The purpose of this study was to quantify the paretic propulsive reserve in individuals poststroke and to determine the biomechanical mechanism underlying the generation of additional paretic propulsive limb force. METHODS Ten individuals with chronic hemiparesis poststroke walked on a treadmill against an impeding force (ascending 0% to 10% body weight [BW], in 2.5% BW increments, followed by descending 10% to 0% BW, also in 2.5% BW increments) applied to the body's center of mass. The resulting propulsive forces were measured bilaterally and compared between impeding force levels. We then assessed potential mechanisms (trailing limb angle and plantarflexion moment) underlying the changes in propulsion. RESULTS Overall, peak paretic propulsive force increased by 92% and the paretic propulsive impulse increased by 225%, resulting in a significant increase in the paretic limb's contribution to propulsion. Participants continued to produce increased paretic propulsion on removal of the impeding force. The trailing limb angle contributed significantly to the increase in paretic propulsion, whereas the plantarflexion moment did not. CONCLUSIONS Participants exhibited a robust propulsive reserve on the paretic limb, suggesting that there is untapped potential that can be exploited through rehabilitation to improve gait recovery. The increase in propulsive symmetry indicates that a greater response was observed by the paretic limb rather than increased compensation by the nonparetic limb.
Collapse
Affiliation(s)
- Michael D Lewek
- 1 University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cristina Raiti
- 1 University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amanda Doty
- 1 University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
27
|
Sombric CJ, Calvert JS, Torres-Oviedo G. Large Propulsion Demands Increase Locomotor Adaptation at the Expense of Step Length Symmetry. Front Physiol 2019; 10:60. [PMID: 30800072 PMCID: PMC6376174 DOI: 10.3389/fphys.2019.00060] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/18/2019] [Indexed: 11/23/2022] Open
Abstract
There is an interest to identify factors facilitating locomotor adaptation induced by split-belt walking (i.e., legs moving at different speeds) because of its clinical potential. We hypothesized that augmenting braking forces, rather than propulsion forces, experienced at the feet would increase locomotor adaptation during and after split-belt walking. To test this, forces were modulated during split-belt walking with distinct slopes: incline (larger propulsion than braking), decline (larger braking than propulsion), and flat (similar propulsion and braking). Step length asymmetry was compared between groups because it is a clinically relevant measure robustly adapted on split-belt treadmills. Unexpectedly, the group with larger propulsion demands (i.e., the incline group) changed their gait the most during adaptation, reached their final adapted state more quickly, and had larger after-effects when the split-belt perturbation was removed. We also found that subjects who experienced larger disruptions of propulsion forces in early adaptation exhibited greater after-effects, which further highlights the catalytic role of propulsion forces on locomotor adaptation. The relevance of mechanical demands on shaping our movements was also indicated by the steady state split-belt behavior, during which each group recovered their baseline leg orientation to meet leg-specific force demands at the expense of step length symmetry. Notably, the flat group was nearly symmetric, whereas the incline and decline group overshot and undershot step length symmetry, respectively. Taken together, our results indicate that forces propelling the body facilitate gait changes during and after split-belt walking. Therefore, the particular propulsion demands to walk on a split-belt treadmill might explain the gait symmetry improvements in hemiparetic gait following split-belt training.
Collapse
Affiliation(s)
| | | | - Gelsy Torres-Oviedo
- Sensorimotor Learning Laboratory, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
28
|
Awad LN, Bae J, O'Donnell K, De Rossi SMM, Hendron K, Sloot LH, Kudzia P, Allen S, Holt KG, Ellis TD, Walsh CJ. A soft robotic exosuit improves walking in patients after stroke. Sci Transl Med 2018; 9:9/400/eaai9084. [PMID: 28747517 DOI: 10.1126/scitranslmed.aai9084] [Citation(s) in RCA: 277] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 04/21/2016] [Accepted: 07/07/2017] [Indexed: 12/22/2022]
Abstract
Stroke-induced hemiparetic gait is characteristically slow and metabolically expensive. Passive assistive devices such as ankle-foot orthoses are often prescribed to increase function and independence after stroke; however, walking remains highly impaired despite-and perhaps because of-their use. We sought to determine whether a soft wearable robot (exosuit) designed to supplement the paretic limb's residual ability to generate both forward propulsion and ground clearance could facilitate more normal walking after stroke. Exosuits transmit mechanical power generated by actuators to a wearer through the interaction of garment-like, functional textile anchors and cable-based transmissions. We evaluated the immediate effects of an exosuit actively assisting the paretic limb of individuals in the chronic phase of stroke recovery during treadmill and overground walking. Using controlled, treadmill-based biomechanical investigation, we demonstrate that exosuits can function in synchrony with a wearer's paretic limb to facilitate an immediate 5.33 ± 0.91° increase in the paretic ankle's swing phase dorsiflexion and 11 ± 3% increase in the paretic limb's generation of forward propulsion (P < 0.05). These improvements in paretic limb function contributed to a 20 ± 4% reduction in forward propulsion interlimb asymmetry and a 10 ± 3% reduction in the energy cost of walking, which is equivalent to a 32 ± 9% reduction in the metabolic burden associated with poststroke walking. Relatively low assistance (~12% of biological torques) delivered with a lightweight and nonrestrictive exosuit was sufficient to facilitate more normal walking in ambulatory individuals after stroke. Future work will focus on understanding how exosuit-induced improvements in walking performance may be leveraged to improve mobility after stroke.
Collapse
Affiliation(s)
- Louis N Awad
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA.,Department of Physical Therapy and Athletic Training, Boston University, 635 Commonwealth Avenue, Boston, MA 02215, USA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, 60 Oxford Street, Suite 403, Cambridge, MA 02138, USA
| | - Jaehyun Bae
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, 60 Oxford Street, Suite 403, Cambridge, MA 02138, USA
| | - Kathleen O'Donnell
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, 60 Oxford Street, Suite 403, Cambridge, MA 02138, USA
| | - Stefano M M De Rossi
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, 60 Oxford Street, Suite 403, Cambridge, MA 02138, USA
| | - Kathryn Hendron
- Department of Physical Therapy and Athletic Training, Boston University, 635 Commonwealth Avenue, Boston, MA 02215, USA
| | - Lizeth H Sloot
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Pawel Kudzia
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Stephen Allen
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Kenneth G Holt
- Department of Physical Therapy and Athletic Training, Boston University, 635 Commonwealth Avenue, Boston, MA 02215, USA
| | - Terry D Ellis
- Department of Physical Therapy and Athletic Training, Boston University, 635 Commonwealth Avenue, Boston, MA 02215, USA.
| | - Conor J Walsh
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA. .,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, 60 Oxford Street, Suite 403, Cambridge, MA 02138, USA
| |
Collapse
|
29
|
Schenck C, Kesar TM. Effects of unilateral real-time biofeedback on propulsive forces during gait. J Neuroeng Rehabil 2017; 14:52. [PMID: 28583196 PMCID: PMC5460355 DOI: 10.1186/s12984-017-0252-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 05/12/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In individuals with post-stroke hemiparesis, reduced push-off force generation in the paretic leg negatively impacts walking function. Gait training interventions that increase paretic push-off can improve walking function in individuals with neurologic impairment. During normal locomotion, push-off forces are modulated with variations in gait speed and slope. However, it is unknown whether able-bodied individuals can selectively modulate push-off forces from one leg in response to biofeedback. Here, in a group of young, neurologically-unimpaired individuals, we determined the effects of a real-time visual and auditory biofeedback gait training paradigm aimed at unilaterally increasing anteriorly-directed ground reaction force (AGRF) in the targeted leg. METHODS Ground reaction force data during were collected from 7 able-bodied individuals as they walked at a self-selected pace on a dual-belt treadmill instrumented with force platforms. During 11-min of gait training, study participants were provided real-time AGRF biofeedback encouraging a 20-30% increase in peak AGRF generated by their right (targeted) leg compared to their baseline (pre-training) AGRF. AGRF data were collected before, during, and after the biofeedback training period, as well as during two retention tests performed without biofeedback and after standing breaks. RESULTS Compared to AGRFs generated during the pre-training gait trials, participants demonstrated a significantly greater AGRF in the targeted leg during and immediately after training, indicating that biofeedback training was successful at inducing increased AGRF production in the targeted leg. Additionally, participants continued to demonstrate greater AGRF production in the targeted leg after two standing breaks, showing short-term recall of the gait pattern learned during the biofeedback training. No significant effects of training were observed on the AGRF in the non-targeted limb, showing the specificity of the effects of biofeedback toward the targeted limb. CONCLUSIONS These results demonstrate the short-term effects of using unilateral AGRF biofeedback to target propulsion in a specific leg, which may have utility as a training tool for individuals with gait deficits such as post-stroke hemiparesis. Future studies are needed to investigate the effects of real-time AGRF biofeedback as a gait training tool in neurologically-impaired individuals.
Collapse
Affiliation(s)
- Christopher Schenck
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Trisha M Kesar
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, 1441 Clifton Rd NE, Atlanta, GA, 30322, USA.
| |
Collapse
|