1
|
Gould SL, Davico G, Palanca M, Viceconti M, Cristofolini L. Identification of a lumped-parameter model of the intervertebral joint from experimental data. Front Bioeng Biotechnol 2024; 12:1304334. [PMID: 39104629 PMCID: PMC11298350 DOI: 10.3389/fbioe.2024.1304334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Through predictive simulations, multibody models can aid the treatment of spinal pathologies by identifying optimal surgical procedures. Critical to achieving accurate predictions is the definition of the intervertebral joint. The joint pose is often defined by virtual palpation. Intervertebral joint stiffnesses are either derived from literature, or specimen-specific stiffnesses are calculated with optimisation methods. This study tested the feasibility of an optimisation method for determining the specimen-specific stiffnesses and investigated the influence of the assigned joint pose on the subject-specific estimated stiffness. Furthermore, the influence of the joint pose and the stiffness on the accuracy of the predicted motion was investigated. A computed tomography based model of a lumbar spine segment was created. Joints were defined from virtually palpated landmarks sampled with a Latin Hypercube technique from a possible Cartesian space. An optimisation method was used to determine specimen-specific stiffnesses for 500 models. A two-factor analysis was performed by running forward dynamic simulations for ten different stiffnesses for each successfully optimised model. The optimisations calculated a large range of stiffnesses, indicating the optimised specimen-specific stiffnesses were highly sensitive to the assigned joint pose and related uncertainties. A limited number of combinations of optimised joint stiffnesses and joint poses could accurately predict the kinematics. The two-factor analysis indicated that, for the ranges explored, the joint pose definition was more important than the stiffness. To obtain kinematic prediction errors below 1 mm and 1° and suitable specimen-specific stiffnesses the precision of virtually palpated landmarks for joint definition should be better than 2.9 mm.
Collapse
Affiliation(s)
- Samuele L. Gould
- Department of Industrial Engineering, Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Medical Technology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giorgio Davico
- Department of Industrial Engineering, Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Medical Technology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Marco Palanca
- Department of Industrial Engineering, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Marco Viceconti
- Department of Industrial Engineering, Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Medical Technology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Luca Cristofolini
- Department of Industrial Engineering, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Rockenfeller R. Three-dimensional spinal shape changes during daily activities. Comput Biol Med 2023; 164:107236. [PMID: 37506450 DOI: 10.1016/j.compbiomed.2023.107236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/22/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
MOTIVATION Intuitive assessment of spinal motion poses a tremendous challenge to both physicians and computer modelers. On the one side, medically detailed analyses of spinal shapes, such as computer tomography or X-ray images, are usually subject to static boundary constraints, thereby omitting dynamic information. On the other side, complex computer simulations often lack proper calibration aside from few control points, particularly regarding the three-dimensional arrangement of the spinal column and its idiomotion. PURPOSE Here, we investigate whether the full three-dimensional changes in spinal shape over time can be concisely detected and depicted. Further, we assess which parts of the spine undergo significant changes during various daily activities. METHODS We utilize a set of previously published motion capture data from the spinous processes (sacrum up to vertebra C7) of 17 healthy individuals performing the daily tasks of standing, walking, stair climbing, sitting down, and lifting. These three-dimensional, time-dependent marker positions were approximated by a Bézier curve at each time instant. The curves' characteristics, i.e.curvature and torsion, were calculated and juxtaposed for each individual and each activity over time. A statistical parametric mapping revealed significant changes in spinal shape. RESULTS We found the individual spinal shape characteristics being recognizably preserved during all activities. The walking task did not significantly alter the spinal curvature, while sitting and forward bending significantly altered the lumber and whole spine curvature, respectively. Torsion did not show any significant alterations. CONCLUSION Based on these results, we suggest that individualized dynamic information on spinal shapes can improve (i) the evaluation of (healthy) motion characteristics, (ii) the detection of pathologies, and (iii) individualized computer simulation models.
Collapse
|
3
|
Lerchl T, Nispel K, Baum T, Bodden J, Senner V, Kirschke JS. Multibody Models of the Thoracolumbar Spine: A Review on Applications, Limitations, and Challenges. Bioengineering (Basel) 2023; 10:bioengineering10020202. [PMID: 36829696 PMCID: PMC9952620 DOI: 10.3390/bioengineering10020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Numerical models of the musculoskeletal system as investigative tools are an integral part of biomechanical and clinical research. While finite element modeling is primarily suitable for the examination of deformation states and internal stresses in flexible bodies, multibody modeling is based on the assumption of rigid bodies, that are connected via joints and flexible elements. This simplification allows the consideration of biomechanical systems from a holistic perspective and thus takes into account multiple influencing factors of mechanical loads. Being the source of major health issues worldwide, the human spine is subject to a variety of studies using these models to investigate and understand healthy and pathological biomechanics of the upper body. In this review, we summarize the current state-of-the-art literature on multibody models of the thoracolumbar spine and identify limitations and challenges related to current modeling approaches.
Collapse
Affiliation(s)
- Tanja Lerchl
- Sport Equipment and Sport Materials, School of Engineering and Design, Technical University of Munich, 85748 Garching, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- Correspondence: ; Tel.: +49-89-289-15365
| | - Kati Nispel
- Sport Equipment and Sport Materials, School of Engineering and Design, Technical University of Munich, 85748 Garching, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Jannis Bodden
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Veit Senner
- Sport Equipment and Sport Materials, School of Engineering and Design, Technical University of Munich, 85748 Garching, Germany
| | - Jan S. Kirschke
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
4
|
Rockenfeller R, Müller A. Augmenting the Cobb angle: Three-dimensional analysis of whole spine shapes using Bézier curves. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 225:107075. [PMID: 35998481 DOI: 10.1016/j.cmpb.2022.107075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/15/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE The identification and classification of pathological spinal deformities poses a major challenge to any diagnostician. First, available medical images are usually two-dimensional projections, obscuring elaborated spatial information. Second, several measurement techniques with different thresholds for certain clinical syndromes make it difficult to classify measured results. Here, a method is presented to augment and standardize the analysis of spinal shapes in three dimensions. METHODS Regarding the first limitation, (semi-)automatic, three-dimensional segmentation techniques of medical images have already been developed. To overcome the second, we propose here a representation of the whole spine by a Bézier curve using the vertebral centers as control points. After normalization, a differential-geometric approach yields information on curvature and torsion at each spinal level as well as in between. RESULTS Based on literature data and multi-body simulations, we show how these quantities alter with individual posture and during motion. Robustness with respect to missing data is investigated. Approaches towards the identification of spinal disorders are motivated. CONCLUSION Our results emphasize the need for individualizable identification and classification of spinal deformities and give an outlook on how it might be achieved. The presented methodology constitutes the first fully three-dimensional analysis of spinal shapes, i.e. without the requirement of certain physiological planes (e.g. the sagittal plane) or landmarks (e.g. the apex vertebra).
Collapse
Affiliation(s)
| | - Andreas Müller
- Institute for Medical Engineering and Information Processing (MTI Mittelrhein), University Koblenz-Landau, Koblenz, Germany; Mechanical Systems Engineering, Swiss Federal Laboratories for Materials Science and Technology (EMPA), Duebendorf, Switzerland
| |
Collapse
|
5
|
Lerchl T, El Husseini M, Bayat A, Sekuboyina A, Hermann L, Nispel K, Baum T, Löffler MT, Senner V, Kirschke JS. Validation of a Patient-Specific Musculoskeletal Model for Lumbar Load Estimation Generated by an Automated Pipeline From Whole Body CT. Front Bioeng Biotechnol 2022; 10:862804. [PMID: 35898642 PMCID: PMC9309792 DOI: 10.3389/fbioe.2022.862804] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/20/2022] [Indexed: 01/07/2023] Open
Abstract
Background: Chronic back pain is a major health problem worldwide. Although its causes can be diverse, biomechanical factors leading to spinal degeneration are considered a central issue. Numerical biomechanical models can identify critical factors and, thus, help predict impending spinal degeneration. However, spinal biomechanics are subject to significant interindividual variations. Therefore, in order to achieve meaningful findings on potential pathologies, predictive models have to take into account individual characteristics. To make these highly individualized models suitable for systematic studies on spinal biomechanics and clinical practice, the automation of data processing and modeling itself is inevitable. The purpose of this study was to validate an automatically generated patient-specific musculoskeletal model of the spine simulating static loading tasks. Methods: CT imaging data from two patients with non-degenerative spines were processed using an automated deep learning-based segmentation pipeline. In a semi-automated process with minimal user interaction, we generated patient-specific musculoskeletal models and simulated various static loading tasks. To validate the model, calculated vertebral loadings of the lumbar spine and muscle forces were compared with in vivo data from the literature. Finally, results from both models were compared to assess the potential of our process for interindividual analysis. Results: Calculated vertebral loads and muscle activation overall stood in close correlation with data from the literature. Compression forces normalized to upright standing deviated by a maximum of 16% for flexion and 33% for lifting tasks. Interindividual comparison of compression, as well as lateral and anterior–posterior shear forces, could be linked plausibly to individual spinal alignment and bodyweight. Conclusion: We developed a method to generate patient-specific musculoskeletal models of the lumbar spine. The models were able to calculate loads of the lumbar spine for static activities with respect to individual biomechanical properties, such as spinal alignment, bodyweight distribution, and ligament and muscle insertion points. The process is automated to a large extent, which makes it suitable for systematic investigation of spinal biomechanics in large datasets.
Collapse
Affiliation(s)
- Tanja Lerchl
- Associate Professorship of Sport Equipment and Sport Materials, School of Engineering and Design, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- *Correspondence: Tanja Lerchl,
| | - Malek El Husseini
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Amirhossein Bayat
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Informatics, Technical University of Munich, Munich, Germany
| | - Anjany Sekuboyina
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Luis Hermann
- Associate Professorship of Sport Equipment and Sport Materials, School of Engineering and Design, Technical University of Munich, Munich, Germany
| | - Kati Nispel
- Associate Professorship of Sport Equipment and Sport Materials, School of Engineering and Design, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maximilian T. Löffler
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Freiburg im Breisgau, Germany
| | - Veit Senner
- Associate Professorship of Sport Equipment and Sport Materials, School of Engineering and Design, Technical University of Munich, Munich, Germany
| | - Jan S. Kirschke
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
6
|
Zehr JD, Callaghan JP. Reaction Forces and Flexion-Extension Moments Imposed On Functional Spinal Units with Constrained and Unconstrained in Vitro Testing Systems. J Biomech Eng 2021; 144:1129241. [PMID: 34897374 DOI: 10.1115/1.4053208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Indexed: 11/08/2022]
Abstract
A mechanical goal of in vitro testing systems is to minimize differences between applied and actual forces and moments experienced by spinal units. This study quantified the joint reaction forces and reaction flexion-extension moments during dynamic compression loading imposed throughout the physiological flexion-extension range-of-motion. Constrained (fixed base) and unconstrained (floating base) testing systems were compared. Sixteen porcine spinal units were assigned to both testing groups. Following conditioning tests, specimens were dynamically loaded for 1 cycle with a 1 Hz compression waveform to a peak load of 1 kN and 2 kN while positioned in five different postures (neutral, 100% and 300% of the flexion and extension neutral zone), totalling ten trials per FSU. A six degree-of-freedom force and torque sensor was used to measure peak reaction forces and moments for each trial. Shear reaction forces were significantly greater (25.5 N - 85.7 N) when the testing system was constrained compared to unconstrained (p < 0.029). The reaction moment was influenced by posture (p = 0.037), particularly in C5C6 spinal units. In 300% extension (C5C6), the reaction moment was, on average, 9.9 Nm greater than the applied moment in both testing systems and differed from all other postures (p < 0.001). The reaction moment error was, on average, 0.45 Nm at all other postures. In conclusion, these findings demonstrate that comparable reaction moments can be achieved with unconstrained systems, but without inducing appreciable shear reaction forces.
Collapse
Affiliation(s)
- Jackie D Zehr
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Jack P Callaghan
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
7
|
Manafzadeh AR, Gatesy SM. Paleobiological reconstructions of articular function require all six degrees of freedom. J Anat 2021; 239:1516-1524. [PMID: 34275132 PMCID: PMC8602027 DOI: 10.1111/joa.13513] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
Paleobiologists typically exclude impossible joint poses from reconstructions of extinct animals by estimating the rotational range of motion (ROM) of fossil joints. However, this ubiquitous practice carries the assumption that osteological estimates of ROM consistently overestimate true joint mobility. Because studies founded on ROM-based exclusion have contributed substantially to our understanding of functional and locomotor evolution, it is critical that this assumption be tested. Here, we evaluate whether ROM-based exclusion is, as currently implemented, a reliable strategy. We measured the true mobilities of five intact cadaveric joints using marker-based X-ray Reconstruction of Moving Morphology and compared them to virtual osteological estimates of ROM made allowing (a) only all three rotational, (b) all three rotational and one translational, and (c) all three rotational and all three translational degrees of freedom. We found that allowing combinations of motions in all six degrees of freedom is necessary to ensure that true mobility is always successfully captured. In other words, failing to include joint translations in ROM analyses results in the erroneous exclusion of many joint poses that are possible in life. We therefore suggest that the functional and evolutionary conclusions of existing paleobiological reconstructions may be weakened or even overturned when all six degrees of freedom are considered. We offer an expanded methodological framework for virtual ROM estimation including joint translations and outline recommendations for future ROM-based exclusion studies.
Collapse
Affiliation(s)
- Armita R. Manafzadeh
- Department of Ecology, Evolution, and Organismal BiologyBrown UniversityProvidenceRIUSA
| | - Stephen M. Gatesy
- Department of Ecology, Evolution, and Organismal BiologyBrown UniversityProvidenceRIUSA
| |
Collapse
|
8
|
Fasser MR, Jokeit M, Kalthoff M, Gomez Romero DA, Trache T, Snedeker JG, Farshad M, Widmer J. Subject-Specific Alignment and Mass Distribution in Musculoskeletal Models of the Lumbar Spine. Front Bioeng Biotechnol 2021; 9:721042. [PMID: 34532314 PMCID: PMC8438119 DOI: 10.3389/fbioe.2021.721042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/06/2021] [Indexed: 01/12/2023] Open
Abstract
Musculoskeletal modeling is a well-established method in spine biomechanics and generally employed for investigations concerning both the healthy and the pathological spine. It commonly involves inverse kinematics and optimization of muscle activity and provides detailed insight into joint loading. The aim of the present work was to develop and validate a procedure for the automatized generation of semi-subject-specific multi-rigid body models with an articulated lumbar spine. Individualization of the models was achieved with a novel approach incorporating information from annotated EOS images. The size and alignment of bony structures, as well as specific body weight distribution along the spine segments, were accurately reproduced in the 3D models. To ensure the pipeline’s robustness, models based on 145 EOS images of subjects with various weight distributions and spinopelvic parameters were generated. For validation, we performed kinematics-dependent and segment-dependent comparisons of the average joint loads obtained for our cohort with the outcome of various published in vivo and in situ studies. Overall, our results agreed well with literature data. The here described method is a promising tool for studying a variety of clinical questions, ranging from the evaluation of the effects of alignment variation on joint loading to the assessment of possible pathomechanisms involved in adjacent segment disease.
Collapse
Affiliation(s)
- Marie-Rosa Fasser
- Department of Orthopaedics, Balgrist University Hospital, Zurich, Switzerland.,Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Moritz Jokeit
- Department of Orthopaedics, Balgrist University Hospital, Zurich, Switzerland.,Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | | | | | - Tudor Trache
- Department of Orthopaedics, Balgrist University Hospital, Zurich, Switzerland
| | - Jess G Snedeker
- Department of Orthopaedics, Balgrist University Hospital, Zurich, Switzerland.,Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Mazda Farshad
- Department of Orthopaedics, Balgrist University Hospital, Zurich, Switzerland
| | - Jonas Widmer
- Department of Orthopaedics, Balgrist University Hospital, Zurich, Switzerland.,Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Rockenfeller R, Hammer M, Riede JM, Schmitt S, Lawonn K. Intuitive assessment of modeled lumbar spinal motion by clustering and visualization of finite helical axes. Comput Biol Med 2021; 135:104528. [PMID: 34166878 DOI: 10.1016/j.compbiomed.2021.104528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 11/29/2022]
Abstract
A variety of medical imaging procedures, cadaver experiments, and computer models have been utilized to capture, depict, and understand the motion of the human lumbar spine. Particular interest lies in assessing the relative movement between two adjacent vertebrae, which can be represented by a temporal evolution of finite helical axes (FHA). Mathematically, this FHA evolution constitutes a seven-dimensional quantity: one dimension for the time, two for the (normalized) direction vector, another two for the (unique) position vector, as well as one for each the angle of rotation around and the amount of translation along the axis. Predominantly in the literature, however, movements are assumed to take place in certain physiological planes on which FHA are projected. The resulting three-dimensional quantity - the so-called centrode - is easily presentable but leaves out substantial pieces of available data. Here, we investigate and assess several possibilities to visualize subsets of FHA data of increasing dimensionality. Finally, we utilize an agglomerative hierarchical clustering algorithm and propose a novel visualization technique, namely the quiver principal axis plot (QPAP), to depict the entirety of information inherent to hundreds or thousands of FHA. The QPAP method is applied to flexion-extension, lateral bending, and axial rotation movements of a lumbar spine within both a reduced model as well as a complex upper body system.
Collapse
Affiliation(s)
- Robert Rockenfeller
- Mathematical Institute, University Koblenz-Landau, Universitätsstr. 1, 56070, Koblenz, Germany.
| | - Maria Hammer
- Institute for Modelling and Simulation of Biomechanical Systems and Stuttgart Center for Simulation Science (SimTech), University Stuttgart, Pfaffenwaldring 5a, 70569, Stuttgart, Germany
| | - Julia M Riede
- Institute for Modelling and Simulation of Biomechanical Systems and Stuttgart Center for Simulation Science (SimTech), University Stuttgart, Pfaffenwaldring 5a, 70569, Stuttgart, Germany
| | - Syn Schmitt
- Institute for Modelling and Simulation of Biomechanical Systems and Stuttgart Center for Simulation Science (SimTech), University Stuttgart, Pfaffenwaldring 5a, 70569, Stuttgart, Germany
| | - Kai Lawonn
- Faculty for Mathematics and Informatics, Friedrich-Schiller-University Jena, Ernst-Abbe-Platz 2, 07743, Jena, Germany
| |
Collapse
|
10
|
Draper D, Newell N, Masouros S, Peldschus S. Multiscale Validation of Multiple Human Body Model Functional Spinal Units. J Biomech Eng 2021; 143:041011. [PMID: 33332544 DOI: 10.1115/1.4049332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 11/08/2022]
Abstract
A validation comparing five human body model (HBM) lumbar spines is carried out across two load cases, with the objective to use and apply HBMs in high strain rate applications such as car occupant simulation. The first load case consists of an individual intervertebral disc (IVD) loaded in compression at a strain rate of 1/s by a material testing machine. The second load case is a lumbar functional spine unit (FSU) loaded in compression using a drop tower setup, producing strain rates of up to 48/s. The IVD simulations were found to have a better agreement with the experiments than the FSU simulations, and the ranking of which HBMs matched best to the experiment differed by load case. These observations suggest the need for more hierarchical validations of the lumbar spine for increasing the utility of HBMs in high strain rate loading scenarios.
Collapse
Affiliation(s)
- Dustin Draper
- Biomechanics + Accident Analysis Institute of Legal Medicine, University of Munich, Munich 80336, Germany
| | - Nicolas Newell
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Spyros Masouros
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Steffen Peldschus
- Biomechanics + Accident Analysis Institute of Legal Medicine, University of Munich, Munich 80336, Germany
| |
Collapse
|
11
|
Galbusera F, Niemeyer F, Tao Y, Cina A, Sconfienza LM, Kienle A, Wilke HJ. ISSLS Prize in Bioengineering Science 2021: in vivo sagittal motion of the lumbar spine in low back pain patients-a radiological big data study. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2021; 30:1108-1116. [PMID: 33475843 DOI: 10.1007/s00586-021-06729-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/15/2020] [Accepted: 01/09/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE We investigated the flexion-extension range of motion and centre of rotation of lumbar motion segments in a large population of 602 patients (3612 levels), and the associations between lumbar motion and other parameters such as sex, age and intervertebral disc degeneration. METHODS Lumbar radiographs in flexion-extension of 602 patients suffering from low back pain and/or suspect instability were collected; magnetic resonance images were retrieved and used to score the degree of disc degeneration for a subgroup of 354 patients. Range of motion and centre of rotation were calculated for all lumbosacral levels with in-house software allowing for high degree of automation. Associations between motion parameters and age, sex, spinal level and disc degeneration were then assessed. RESULTS The median range of motion was 6.6° (range 0.1-28.9°). Associations between range of motion and age as well as spinal level, but not sex, were found. Disc degeneration determined a consistent reduction in the range of motion. The centre of rotation was most commonly located at the centre of the lower endplate or slightly lower. With progressive degeneration, centres of rotation were increasingly dispersed with no preferential directions. CONCLUSION This study constitutes the largest analysis of the in vivo lumbar motion currently available and covers a wide range of clinical scenarios in terms of age and degeneration. Findings confirmed that ageing determines a reduction in the mobility independently of degeneration and that in degenerative levels, centres of rotation are dispersed around the centre of the intervertebral space.
Collapse
Affiliation(s)
- Fabio Galbusera
- Laboratory of Biological Structures Mechanics, IRCCS Istituto Ortopedico Galeazzi, viale Galeazzi 4, 20161, Milan, Italy.
| | - Frank Niemeyer
- Institute of Orthopaedic Research and Biomechanics, Center for Trauma Research Ulm, Ulm University, Ulm, Germany
| | - Youping Tao
- Institute of Orthopaedic Research and Biomechanics, Center for Trauma Research Ulm, Ulm University, Ulm, Germany
| | - Andrea Cina
- Laboratory of Biological Structures Mechanics, IRCCS Istituto Ortopedico Galeazzi, viale Galeazzi 4, 20161, Milan, Italy
| | - Luca Maria Sconfienza
- Laboratory of Biological Structures Mechanics, IRCCS Istituto Ortopedico Galeazzi, viale Galeazzi 4, 20161, Milan, Italy.,Department of Biomedical Sciences for Health, Università Degli Studi di Milano, Milan, Italy
| | | | - Hans-Joachim Wilke
- Institute of Orthopaedic Research and Biomechanics, Center for Trauma Research Ulm, Ulm University, Ulm, Germany
| |
Collapse
|
12
|
Rockenfeller R, Müller A, Damm N, Kosterhon M, Kantelhardt SR, Frank R, Gruber K. Muscle-driven and torque-driven centrodes during modeled flexion of individual lumbar spines are disparate. Biomech Model Mechanobiol 2020; 20:267-279. [PMID: 32939615 PMCID: PMC7892748 DOI: 10.1007/s10237-020-01382-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/24/2020] [Indexed: 11/25/2022]
Abstract
Lumbar spine biomechanics during the forward-bending of the upper body (flexion) are well investigated by both in vivo and in vitro experiments. In both cases, the experimentally observed relative motion of vertebral bodies can be used to calculate the instantaneous center of rotation (ICR). The timely evolution of the ICR, the centrode, is widely utilized for validating computer models and is thought to serve as a criterion for distinguishing healthy and degenerative motion patterns. While in vivo motion can be induced by physiological active structures (muscles), in vitro spinal segments have to be driven by external torque-applying equipment such as spine testers. It is implicitly assumed that muscle-driven and torque-driven centrodes are similar. Here, however, we show that centrodes qualitatively depend on the impetus. Distinction is achieved by introducing confidence regions (ellipses) that comprise centrodes of seven individual multi-body simulation models, performing flexion with and without preload. Muscle-driven centrodes were generally directed superior–anterior and tail-shaped, while torque-driven centrodes were located in a comparably narrow region close to the center of mass of the caudal vertebrae. We thus argue that centrodes resulting from different experimental conditions ought to be compared with caution. Finally, the applicability of our method regarding the analysis of clinical syndromes and the assessment of surgical methods is discussed.
Collapse
Affiliation(s)
- Robert Rockenfeller
- Mathematical Institute, University Koblenz-Landau, Universitätsstr. 1, 56070, Koblenz, Germany.
| | - Andreas Müller
- Institute for Medical Engineering and Information Processing (MTI Mittelrhein), University Koblenz-Landau, Universitätsstr. 1, 56070, Koblenz, Germany
- Mechanical Systems Engineering Laboratory, EMPA-Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstr. 129, 8600 Dübendorf, Switzerland
| | - Nicolas Damm
- Institute for Medical Engineering and Information Processing (MTI Mittelrhein), University Koblenz-Landau, Universitätsstr. 1, 56070, Koblenz, Germany
| | - Michael Kosterhon
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg-University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Sven R Kantelhardt
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg-University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Rolfdieter Frank
- Mathematical Institute, University Koblenz-Landau, Universitätsstr. 1, 56070, Koblenz, Germany
| | - Karin Gruber
- Institute for Medical Engineering and Information Processing (MTI Mittelrhein), University Koblenz-Landau, Universitätsstr. 1, 56070, Koblenz, Germany
| |
Collapse
|
13
|
Funabashi M, Breen A, De Carvalho D, Henry A, Murnaghan K, Pagé I, Wong AYL, Kawchuk G. Center of rotation locations during lumbar spine movements: a scoping review protocol. JBI Evid Synth 2020; 18:1305-1312. [PMID: 32813379 DOI: 10.11124/jbisrir-d-19-00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE The objective of this review is to identify and map current literature describing the center of rotation locations and migration paths during lumbar spine movements. INTRODUCTION Altered lumber spine kinematics has been associated with pain and injury. Intervertebral segments' center of rotations, the point around which spinal segments rotate, are important for determining the features of lumbar spine kinematics and the potential for increased injury risk during movements. Although many studies have investigated the center of rotations of humans' lumbar spine, no review has summarized and organized the state of the science related to center of rotation locations and migration paths of the lumbar spine during lumbar spine movements. INCLUSION CRITERIA This review will consider studies that include human lumbar spines of any age and condition (e.g. heathy, pathological) during lumbar spine movements. Quantitative study designs, including clinical, observational, laboratory biomechanical experimental studies, mathematical and computer modeling studies will be considered. Only studies published in English will be included, and there will be no limit on dates of publication. METHODS PubMed, MEDLINE, Embase, the Cochrane Library Controlled Register of Trials, CINAHL, ACM Digital Library, Compendex, Inspec, Web of Science, Scopus, Google Scholar, and dissertation and theses repositories will be searched. After title and abstract screening of identified references, two independent reviewers will screen the full-text of identified studies and extract data. Data will be summarized and categorized, and a comprehensive narrative summary will be presented with the respective results.
Collapse
Affiliation(s)
- Martha Funabashi
- 1Division of Research, Canadian Memorial Chiropractic College, Toronto, Canada 2Centre for Biomechanics Research, AECC University College, Bournemouth, UK 3Division of Community Health and Humanities, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL 4University of Alberta Libraries, University of Alberta, Edmonton, Canada 5Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada 6Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Vanaclocha-Saiz A, Atienza CM, Vanaclocha V, Belloch V, Santabarbara JM, Jordá-Gómez P, Vanaclocha L. ICR in human cadaveric specimens: An essential parameter to consider in a new lumbar disc prosthesis design. NORTH AMERICAN SPINE SOCIETY JOURNAL 2020; 2:100016. [PMID: 35141586 PMCID: PMC8820058 DOI: 10.1016/j.xnsj.2020.100016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/29/2020] [Accepted: 07/15/2020] [Indexed: 06/14/2023]
Abstract
STUDY DESIGN Biomechanical study in cadaveric specimens. BACKGROUND The commercially available lumbar disc prostheses do not reproduce the intact disc's Instantaneous centre of Rotation (ICR), thus inducing an overload on adjacent anatomical structures, promoting secondary degeneration. AIM To examine biomechanical testing of cadaveric lumbar spine specimens in order to evaluate and define the ICR of intact lumbar discs. MATERIAL AND METHODS Twelve cold preserved fresh human cadaveric lumbosacral spine specimens were subjected to computerized tomography (CT), magnetic resonance imaging (MRI) and biomechanical testing. Kinematic studies were performed to analyse range of movements in order to determine ICR. RESULTS Flexoextension and lateral bending tests showed a positive linear correlation between the angle rotated and the displacement of the ICR in different axes. DISCUSSION ICR has not been taken into account in any of the available literature regarding lumbar disc prosthesis. Considering our results, neither the actual ball-and-socket nor the withdrawn elastomeric nucleus models fit the biomechanics of the lumbar spine, which could at least in part explain the failure rates of the implants in terms of postoperative failed back syndrome (low back pain). It is reasonable to consider then that an implant should also adapt the equations of the movement of the intact ICR of the joint to the post-surgical ICR. CONCLUSIONS This is the first cadaveric study on the ICR of the human lumbar spine. We have shown that it is feasible to calculate and consider this parameter in order to design future prosthesis with improved clinical and biomechanical characteristics.
Collapse
Affiliation(s)
| | - Carlos M Atienza
- Instituto de Biomecánica (IBV) Universitat Politècnica de Valencia, Valencia, Spain
- Instituto de Biomecánica de Valencia-CIBER BBN, Grupo de Tecnología Sanitaria (GTS-IBV), Valencia, Spain
| | | | | | | | | | | |
Collapse
|
15
|
Lu T, Lu Y. Interlaminar stabilization offers greater biomechanical advantage compared to interspinous stabilization after lumbar decompression: a finite element analysis. J Orthop Surg Res 2020; 15:291. [PMID: 32727615 PMCID: PMC7392677 DOI: 10.1186/s13018-020-01812-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/22/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Interlaminar stabilization and interspinous stabilization are two newer minimally invasive methods for lumbar spine stabilization, used frequently in conjunction with lumbar decompression to treat lumbar stenosis. The two methods share certain similarities, therefore, frequently being categorized together. However, the two methods offer distinct biomechanical properties, which affect their respective effectiveness and surgical success. OBJECTIVE To compare the biomechanical characteristics of interlaminar stabilization after lumbar decompression (ILS) and interspinous stabilization after lumbar decompression (ISS). For comparison, lumbar decompression alone (DA) and decompression with instrumented fusion (DF) were also included in the biomechanical analysis. METHODS Four finite element models were constructed, i.e., DA, DF, ISS, and ILS. To minimize device influence and focus on the biomechanical properties of different methods, Coflex device as a model system was placed at different position for the comparison of ISS and ILS. The range of motion (ROM) and disc stress peak at the surgical and adjacent levels were compared among the four surgical constructs. The stress peak of the spinous process, whole device, and device wing was compared between ISS and ILS. RESULTS Compared with DA, the ROM and disc stress at the surgical level in ILS or ISS were much lower in extension. The ROM and disc stress at the surgical level in ILS were 1.27° and 0.36 MPa, respectively, and in ISS 1.51°and 0.55 MPa, respectively in extension. This is compared with 4.71° and 1.44 MPa, respectively in DA. ILS (2.06-4.85° and 0.37-0.98 MPa, respectively) or ISS (2.07-4.78° and 0.37-0.98 MPa, respectively) also induced much lower ROM and disc stress at the adjacent levels compared with DF (2.50-7.20° and 0.37-1.20 MPa, respectively). ILS further reduced the ROM and disc stress at the surgical level by 8% and 25%, respectively, compared to ISS. The stress peak of the spinous process in ILS was significantly lower than that in ISS (13.93-101 MPa vs. 31.08-172.5 MPa). In rotation, ILS yielded a much lower stress peak in the instrumentation wing than ISS (128.7 MPa vs. 222.1 MPa). CONCLUSION ILS and ISS partly address the issues of segmental instability in DA and hypermobility and overload at the adjacent levels in DF. ILS achieves greater segmental stability and results in a lower disc stress, compared to ISS. In addition, ILS reduces the risk of spinous process fracture and device failure.
Collapse
Affiliation(s)
- Teng Lu
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Rd, BTM 4th floor, Boston, MA, 02115, USA.,Department of Orthopedics, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Yi Lu
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Rd, BTM 4th floor, Boston, MA, 02115, USA.
| |
Collapse
|
16
|
Byrne RM, Aiyangar AK, Zhang X. Sensitivity of musculoskeletal model-based lumbar spinal loading estimates to type of kinematic input and passive stiffness properties. J Biomech 2020; 102:109659. [DOI: 10.1016/j.jbiomech.2020.109659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 01/14/2023]
|
17
|
Kage CC, Akbari-Shandiz M, Foltz MH, Lawrence RL, Brandon TL, Helwig NE, Ellingson AM. Validation of an automated shape-matching algorithm for biplane radiographic spine osteokinematics and radiostereometric analysis error quantification. PLoS One 2020; 15:e0228594. [PMID: 32059007 PMCID: PMC7021291 DOI: 10.1371/journal.pone.0228594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/18/2020] [Indexed: 11/19/2022] Open
Abstract
Biplane radiography and associated shape-matching provides non-invasive, dynamic, 3D osteo- and arthrokinematic analysis. Due to the complexity of data acquisition, each system should be validated for the anatomy of interest. The purpose of this study was to assess our system’s acquisition methods and validate a custom, automated 2D/3D shape-matching algorithm relative to radiostereometric analysis (RSA) for the cervical and lumbar spine. Additionally, two sources of RSA error were examined via a Monte Carlo simulation: 1) static bead centroid identification and 2) dynamic bead tracking error. Tantalum beads were implanted into a cadaver for RSA and cervical and lumbar spine flexion and lateral bending were passively simulated. A bead centroid identification reliability analysis was performed and a vertebral validation block was used to determine bead tracking accuracy. Our system’s overall root mean square error (RMSE) for the cervical spine ranged between 0.21–0.49mm and 0.42–1.80° and the lumbar spine ranged between 0.35–1.17mm and 0.49–1.06°. The RMSE associated with RSA ranged between 0.14–0.69mm and 0.96–2.33° for bead centroid identification and 0.25–1.19mm and 1.69–4.06° for dynamic bead tracking. The results of this study demonstrate our system’s ability to accurately quantify segmental spine motion. Additionally, RSA errors should be considered when interpreting biplane validation results.
Collapse
Affiliation(s)
- Craig C. Kage
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Mohsen Akbari-Shandiz
- Rehabilitation Medicine Research Center, Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Mary H. Foltz
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Rebekah L. Lawrence
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Taycia L. Brandon
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Nathaniel E. Helwig
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, United States of America
- School of Statistics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Arin M. Ellingson
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Orthopaedic Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
18
|
Kinematics of the Spine Under Healthy and Degenerative Conditions: A Systematic Review. Ann Biomed Eng 2019; 47:1491-1522. [DOI: 10.1007/s10439-019-02252-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/21/2019] [Indexed: 01/05/2023]
|
19
|
Five-year follow-up of clinical and radiological outcomes of LP-ESP elastomeric lumbar total disc replacement in active patients. Spine J 2019; 19:218-224. [PMID: 29800708 DOI: 10.1016/j.spinee.2018.05.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT The surgical treatment of degenerative disc disease at the lumbar spine may involve fusion. Total disc replacement (TDR) is an alternative treatment to avoid fusion-related adverse events, specifically adjacent segment disease. New generation of elastomeric non-articulating devices has been developed to more effectively replicate the shock absorption and flexural stiffness of native disc. PURPOSE To report 5 years clinical and radiographic outcomes, range of motion (ROM), and position of the center of rotation after a viscoelastic lumbar TDR. STUDY DESIGN Prospective observational cohort study PATIENT SAMPLE: Sixty-one patients OUTCOME MEASURES: The clinical evaluation was based on visual analog scale (VAS) for pain, Oswestry disability index (ODI) score, short form-36 (SF-36) including the physical component summary (PCS) and the mental component summary (MCS), and general health questionnaire-28 (GHQ28). The radiological outcomes were ROM and position of the center of rotation at the index and the adjacent levels and the adjacent disc height changes. METHODS Our study group included 61 consecutive patients with monosegmental disc replacement. We selected patients who could provide a global lumbar spine mobility analysis (intermediate functional activity according to the Baecke score). Hybrid constructs had been excluded. Only the cases with complete clinical and radiological follow-up at 3, 6, 12, 24, and 60 months were included. RESULTS There was a significant improvement in VAS (3.3±2.5 vs. 6.6±1.7, p<.001), in ODI (20±17.9 vs. 51.2±14.6, p<.001), GHQ28 (52.6±15.5 vs. 64.2±15.6, p<.001), SF-36 PCS (58.8±4.8 vs. 32.4±3.4, p<.001), and SF-36 MCS (60.7±6 vs. 42.3±3.4, p<.001). The mean location centers of the index level and adjacent discs were comparable to those previously published in asymptomatic patients. According to the definition of Zigler and Delamarter, all of our cases remained grade 0 for adjacent level disc height (within 25% of normal). CONCLUSIONS This series reports significant improvement in midterm follow-up after TDR, which is consistent with previously published studies but with a lower rate of revision surgery and no adjacent level disease pathologies. The radiographic assessment of the patients demonstrated the quality of functional reconstruction of the lumbar spine after LP-ESP viscoelastic disc replacement.
Collapse
|
20
|
Ehrig R, Heller M. On intrinsic equivalences of the finite helical axis, the instantaneous helical axis, and the SARA approach. A mathematical perspective. J Biomech 2019; 84:4-10. [DOI: 10.1016/j.jbiomech.2018.12.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 11/22/2018] [Accepted: 12/19/2018] [Indexed: 12/20/2022]
|
21
|
Influence of the Initial Sagittal Lumbar Alignment on Clinical and Radiological Outcomes of Single-Level Lumbar Total Disc Replacements at a Minimum 2-Year Follow-up. Spine (Phila Pa 1976) 2018; 43:E959-E967. [PMID: 29461341 DOI: 10.1097/brs.0000000000002606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Retrospective cohort study OBJECTIVE.: To analyze the clinical and radiographic outcomes of patients undergoing a one-level lumbar total disc replacement (TDR), according to the initial sagittal alignment of the spine. SUMMARY OF BACKGROUND DATA No authors have highlighted correlation between the initial spinopelvic parameters and the postoperative outcome after a one-level TDR. METHODS Seventy-eight patients were included: 14 TDR at L4-L5 and 64 TDR at L5-S1 level. Clinical assessment was performed on leg pain and axial back pain Visual Analog Scale (VAS), Oswestry Disability Index, and Short Form-36 Health Survey. Radiographic assessment included full spine standing anteroposterior and lateral films. Data were compared according to the initial lumbar sagittal alignment described by Roussouly. RESULTS Forty-five female patients and 33 male patients with a mean age of 41.7 years (95% confidence interval [40.3-43.1]) were included. The mean follow-up was 46.4 months (95% [40.6-51.6]). Two patients were considered as Roussouly type 1 (2.6%), 36 patients as type 2 (46.2%), 33 patients as type 3 (42.3%), and 7 patients as type 4 (9%). Preoperatively, there were no clinical differences depending on Roussouly's type of back. Pelvic incidence (P < 0.001), sacral slope (P < 0.001), lumbar lordosis (P < 0.001), and spinosacral angle (P < 0.001) were different between the Roussouly's types of back. Postoperative clinical outcome improved (P < 0.001) but did not vary according to the Roussouly types except for leg pain VAS (P = 0.03). Post hoc tests did not reveal difference between the Roussouly's types and leg pain VAS. Postoperative radiographic outcomes did not change excepted for the lumbar lordosis (P < 0.001), thoracic kyphosis (P = 0.007), and spinosacral angle (P = 0.02). The Roussouly type had no effect on the postoperative course of radiographic parameters. CONCLUSION Equivalent clinical and radiographic outcomes have been highlighted independently of the increasing of the sacral slope for patients with one-level lumbar TDR. LEVEL OF EVIDENCE 3.
Collapse
|
22
|
Senteler M, Aiyangar A, Weisse B, Farshad M, Snedeker JG. Sensitivity of intervertebral joint forces to center of rotation location and trends along its migration path. J Biomech 2018; 70:140-148. [DOI: 10.1016/j.jbiomech.2017.10.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/04/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022]
|
23
|
Byrne RM, Zhou Y, Zheng L, Chowdhury SK, Aiyangar A, Zhang X. Segmental variations in facet joint translations during in vivo lumbar extension. J Biomech 2017; 70:88-95. [PMID: 29096984 DOI: 10.1016/j.jbiomech.2017.09.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/05/2017] [Accepted: 09/25/2017] [Indexed: 10/18/2022]
Abstract
The lumbar facet joint (FJ) is often associated with pathogenesis in the spine, but quantification of normal FJ motion remains limited to in vitro studies or static imaging of non-functional poses. The purpose of this study was to quantify lumbar FJ kinematics in healthy individuals during functional activity with dynamic stereo radiography (DSX) imaging. Ten asymptomatic participants lifted three known weights starting from a trunk-flexed (∼75°) position to an upright position while being imaged within the DSX system. High resolution computed tomography (CT) scan-derived 3D models of their lumbar vertebrae (L2-S1) were registered to the biplane 2D radiographs using a markerless model-based tracking technique providing instantaneous 3D vertebral kinematics throughout the lifting tasks. Effects of segment level and weight lifted were assessed using mixed-effect repeated measures ANOVA. Superior-inferior (SI) translation dominated FJ translation, with L5S1 showing significantly less translation magnitudes (Median (Md) = 3.5 mm, p < 0.0001) than L2L3, L3L4, and L4L5 segments (Md = 5.9 mm, 6.3 mm and 6.6 mm respectively). Linear regression-based slopes of continuous facet translations revealed strong linearity for SI translation (r2 > 0.94), reasonably high linearity for sideways sliding (Z-) (r2 > 0.8), but much less linearity for facet gap change (X-) (r2 ∼ 0.5). Caudal segments (L4-S1), particularly L5S1, displayed greater coupling compared to cranial (L2-L4) segments, revealing distinct differences overall in FJ translation trends at L5S1. No significant effect of weight lifted on FJ translations was detected. The study presents a hitherto unavailable and highly precise baseline dataset of facet translations measured during a functional, dynamic lifting task.
Collapse
Affiliation(s)
- Ryan M Byrne
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15203, USA
| | - Yu Zhou
- Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Liying Zheng
- Health Effects Lab Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Suman K Chowdhury
- Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Ameet Aiyangar
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15203, USA; Mechanical Systems Engineering, EMPA (Swiss Federal Laboratories for Materials Science and Technology), 8600 Duebendorf, Switzerland.
| | - Xudong Zhang
- Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843, USA; Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|