1
|
Vallance P, Kidgell DJ, Vicenzino B, Frazer AK, Garofolini A, Malliaras P. The Functional Organization of Corticomotor Neurons Within the Motor Cortex Differs Among Basketball and Volleyball Athletes With Patellar Tendinopathy Compared to Asymptomatic Controls. Scand J Med Sci Sports 2024; 34:e14726. [PMID: 39263841 DOI: 10.1111/sms.14726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/04/2024] [Accepted: 08/24/2024] [Indexed: 09/13/2024]
Abstract
Patellar tendinopathy (PT) typically affects jumping-sport athletes with functional impairments frequently observed. Alterations to the functional organization of corticomotor neurons within the motor cortex that project to working muscles are evident in some musculoskeletal conditions and linked to functional impairments. We aimed to determine if functional organization of corticomotor neuron projections differs between athletes with PT and asymptomatic controls, and if organization is associated with neuromuscular control. We used a cross-sectional design, and the setting was Monash Biomedical Imaging. Basketball and volleyball athletes with (n = 8) and without PT (n = 8) completed knee extension and ankle dorsiflexion force matching tasks while undergoing fMRI. We determined functional organization via identification of the location of peak corticomotor neuron activation during respective tasks (expressed in X, Y, and Z coordinates) and calculated force matching accuracy for both tasks to quantify neuromuscular control. We observed significant interactions between group and coordinate plane for functional organization of corticomotor projections to knee extensors (p < 0.001) and ankle dorsiflexors (p = 0.016). Compared to controls, PT group peak corticomotor activation during the knee extension task was 9.6 mm medial (p < 0.001) and 5.2 mm posterior (p = 0.036), and during the ankle dorsiflexion task 8.2 mm inferior (p = 0.024). In the PT group, more posterior Y coordinate peak activation location during the knee extension task was associated with greater task accuracy (r = 0.749, p = 0.034). Functional organization of corticomotor neurons differed in jumping athletes with PT compared to controls. Links between functional organization and neuromuscular control in the PT group suggest organizational differences may be relevant to knee extension neuromuscular control preservation.
Collapse
Affiliation(s)
- Patrick Vallance
- Department of Physiotherapy, Podiatry, Prosthetics and Orthotics, School of Allied Health, Human Service and Sport, La Trobe University, Melbourne, Victoria, Australia
- Department of Physiotherapy, Monash Musculoskeletal Research Unit, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia
- Department of Physiotherapy, Monash Exercise Neuroplasticity Research Unit, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia
| | - Dawson J Kidgell
- Department of Physiotherapy, Monash Exercise Neuroplasticity Research Unit, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia
| | - Bill Vicenzino
- The University of Queensland, School of Health and Rehabilitation Sciences, Brisbane, Queensland, Australia
| | - Ashlyn K Frazer
- Department of Physiotherapy, Monash Exercise Neuroplasticity Research Unit, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia
| | - Alessandro Garofolini
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Victoria, Australia
| | - Peter Malliaras
- Department of Physiotherapy, Monash Musculoskeletal Research Unit, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Lemineur C, Blain GM, Piche E, Gerus P. Relationship between metabolic cost, muscle moments and co-contraction during walking and running. Gait Posture 2024; 113:345-351. [PMID: 39053123 DOI: 10.1016/j.gaitpost.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/21/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND The metabolic cost of locomotion is a key factor in walking and running performance. It has been studied by analysing the activation and co-activation of the muscles of the lower limbs. However, these measures do not comprehensively address muscle mechanics, in contrast to approaches using muscle moments and co-contraction. RESEARCH QUESTION What is the effect of speed and type of locomotion on muscle moments and co-contraction, and their relationship with metabolic cost during walking and running? METHODS Eleven recreational athletes (60.5 ± 7.1 kg; 169.0 ± 6.6 cm; 23.6 ± 3.3 years) walked and ran on a treadmill at different speeds, including a similar speed of 1.75 m.s-1. Metabolic cost was estimated from gas exchange measurements. Muscle moments and co-contraction of ankle and knee flexors and extensors during the stance and swing phases were estimated using an electromyographic-driven model. RESULTS Both the slowest and fastest walking speeds had significantly higher metabolic costs than intermediate ones (p < 0.05). The metabolic cost of walking was correlated with plantarflexors moment during swing phase (r = 0.62 at 0.5 m.s-1, r = 0.67 at 1,25 m.s-1), dorsiflexors moment during stance phase (r = 0.65 at 1.25 m.s-1, r = 0.67 at 1.5 and 1.75 m.s-1), and ankle co-contraction during the stance phase (r = 0.63 at 1.25 and 1.75 m.s-1). The metabolic cost of running at 3.25 m.s-1 during the swing phase was correlated with the dorsiflexors moment (r = 0.63), plantarflexors moment (r = 0.61) and ankle co-contraction (r = 0.60). DISCUSSION AND CONCLUSION Fluctuations in metabolic cost of walking and running could be explained, at least in part, by increased ankle antagonist moments and co-contraction.
Collapse
Affiliation(s)
| | | | - Elodie Piche
- Université Côte d'Azur, LAMHESS, Nice, France; Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Clinique Gériatrique du Cerveau et du Mouvement, Nice, France
| | | |
Collapse
|
3
|
Senta N, Ushiba J, Takemi M. Pre-movement muscle co-contraction associated with motor performance deterioration under high reward conditions. Sci Rep 2024; 14:16710. [PMID: 39030359 PMCID: PMC11271558 DOI: 10.1038/s41598-024-67630-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/15/2024] [Indexed: 07/21/2024] Open
Abstract
Reward usually enhances task performance, but exceptionally large rewards can impede performance due to psychological pressure. In this study, we investigated motor activity changes in high-reward situations and identified indicators for performance decline. Fourteen healthy adults practiced a velocity-dependent right-hand motor task for three days, followed by a test day with varying monetary reward for each trial. Participants were divided into low performers (LPs) and high performers (HPs) according to whether success rate decreased or increased, respectively, on the highest reward trials compared to lower reward trials. Both LPs and HPs demonstrated increased hand velocity during higher reward trials, but only LPs exhibited a significant increase in velocity variance. There was also a negative correlation between the pre-movement co-contraction index (CCI) of the biceps and triceps muscles and success rate on the highest reward trials. This correlation was confirmed in a second experiment with 12 newly recruited participants, suggesting that pre-movement CCI is a marker for performance decline caused by high reward. These findings suggest that interventions to reduce pre-movement CCI such as biofeedback training could be useful for preventing the paradoxical decline in motor performance associated with high rewards.
Collapse
Affiliation(s)
- Naoki Senta
- Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Junichi Ushiba
- Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Mitsuaki Takemi
- Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan.
| |
Collapse
|
4
|
Bonanno M, De Pasquale P, De Marchis C, Lombardo Facciale A, Paladina G, Fonti B, Quartarone A, Calabrò RS. Might patients with cerebellar ataxia benefit from the Computer Assisted Rehabilitation ENvironment (CAREN)? A pilot study focusing on gait and balance. Front Bioeng Biotechnol 2024; 12:1385280. [PMID: 39011156 PMCID: PMC11247328 DOI: 10.3389/fbioe.2024.1385280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/03/2024] [Indexed: 07/17/2024] Open
Abstract
Introduction: Ataxia is a neurological symptom that causes decreased balance, loss of coordination, and gait alterations. Innovative rehabilitation devices like virtual reality (VR) systems can provide task-oriented, repetitive and intensive training with multisensorial feedback, thus promoting neuroplastic processes. Among these VR technologies, the Computer Assisted Rehabilitation ENvironment (CAREN) associates a split belt treadmill on a 6-degrees of freedom platform with a 180° VR screen and a Vicon motion capture system to monitor patients' movements during training sessions. Methods: Eight patients affected by cerebellar ataxia were enrolled and received 20 sessions of CAREN training in addition to standard rehabilitation treatment. Each patient was evaluated at the beginning and at the end of the study with 3D gait analysis and clinical scales to assess balance, gait function and risk of falls. Results: We found improvements in kinematic, kinetic, and electromyographic parameters (as per pre-post- CAREN training), as well as in clinical outcomes, such as balance and risk of falls in ataxic patients. In addition, we found that trunk rotation improved, after CAREN intervention, approximating to the normative values. Discussion: Our results suggested that CAREN might be useful to improve specific biomechanical parameters of gait in ataxic patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Bartolo Fonti
- IRCCS Centro Neurolesi Bonino-Pulejo, Messina, Italy
| | | | | |
Collapse
|
5
|
Ghédira M, Vieira TM, Cerone GL, Gazzoni M, Gracies JM, Hutin E. Antagonist Activation Measurement in Triceps Surae Using High-Density and Bipolar Surface EMG in Chronic Hemiparesis. SENSORS (BASEL, SWITZERLAND) 2024; 24:3701. [PMID: 38931485 PMCID: PMC11207549 DOI: 10.3390/s24123701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
After a stroke, antagonist muscle activation during agonist command impedes movement. This study compared measurements of antagonist muscle activation using surface bipolar EMG in the gastrocnemius medialis (GM) and high-density (HD) EMG in the GM and soleus (SO) during isometric submaximal and maximal dorsiflexion efforts, with knee flexed and extended, in 12 subjects with chronic hemiparesis. The coefficients of antagonist activation (CAN) of GM and SO were calculated according to the ratio of the RMS amplitude during dorsiflexion effort to the maximal agonist effort for the same muscle. Bipolar CAN (BipCAN) was compared to CAN from channel-specific (CsCAN) and overall (OvCAN) normalizations of HD-EMG. The location of the CAN centroid was explored in GM, and CAN was compared between the medial and lateral portions of SO. Between-EMG system differences in GM were observed in maximal efforts only, between BipCAN and CsCAN with lower values in BipCAN (p < 0.001), and between BipCAN and OvCAN with lower values in OvCAN (p < 0.05). The CAN centroid is located mid-height and medially in GM, while the CAN was similar in medial and lateral SO. In chronic hemiparesis, the estimates of GM hyperactivity differ between bipolar and HD-EMGs, with channel-specific and overall normalizations yielding, respectively, higher and lower CAN values than bipolar EMG. HD-EMG would be the way to develop personalized rehabilitation programs based on individual antagonist activations.
Collapse
Affiliation(s)
- Mouna Ghédira
- Laboratoire Analyse et Restauration du Mouvement (ARM), Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), 94000 Créteil, France; (M.G.); (J.-M.G.)
| | - Taian Martins Vieira
- Laboratory for Engineering of the Neuromuscular System, Politecnico di Torino, 10129 Turin, Italy; (T.M.V.); (G.L.C.); (M.G.)
| | - Giacinto Luigi Cerone
- Laboratory for Engineering of the Neuromuscular System, Politecnico di Torino, 10129 Turin, Italy; (T.M.V.); (G.L.C.); (M.G.)
| | - Marco Gazzoni
- Laboratory for Engineering of the Neuromuscular System, Politecnico di Torino, 10129 Turin, Italy; (T.M.V.); (G.L.C.); (M.G.)
| | - Jean-Michel Gracies
- Laboratoire Analyse et Restauration du Mouvement (ARM), Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), 94000 Créteil, France; (M.G.); (J.-M.G.)
| | - Emilie Hutin
- Laboratoire Analyse et Restauration du Mouvement (ARM), Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), 94000 Créteil, France; (M.G.); (J.-M.G.)
| |
Collapse
|
6
|
Paredes R, Crasto C, Mesquita Montes A, Arias-Buría JL. Changes in co-contraction magnitude during functional tasks following anterior cruciate ligament reconstruction: A systematic review. Knee 2024; 48:243-256. [PMID: 38781829 DOI: 10.1016/j.knee.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/24/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Anterior cruciate ligament reconstruction (ACLR) is a common orthopedic surgery procedure whose incidence has increased over the past few decades. Nevertheless, it is believed that neuromuscular control remains altered from the early stages after ACLR to later years. Therefore, the aim of this study was to systematically evaluate the magnitude of co-contraction during functional tasks in subjects with unilateral ACLR. METHODS A systematic review design was followed. The search strategy was conducted in PubMed, Scopus, EBSCO, PEDro, Cochrane Library, and Web of Science databases from inception to March 2024. The inclusion criteria involved studies using electromyography (EMG) data to calculate muscle pair activation via the co-contraction index (CCI) in ACLR individuals during functional tasks. The Preferred Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed, and study quality was evaluated using National Institutes of Health (NIH) Study Quality Assessment Tools. RESULTS The search strategy found a total of 792 studies, of which 15 were included in this systematic review after reviewing the eligibility criteria. The magnitude of co-contraction was assessed in a total of 433 ACLR individuals and 206 controls during functional tasks such as hop, drop-land, step-up/step-down, and gait. Overall, approximately 79.6% of individuals who had undergone ACLR exhibited increased levels of co-contraction magnitude in the ACLR limb, while 8.5% showed low co-contraction levels. CONCLUSIONS The findings of the review suggest that, during functional tasks, most individuals who have undergone ACLR exhibit changes of co-contraction magnitude in the involved limb.
Collapse
Affiliation(s)
- Ricardo Paredes
- Escuela Internacional de Doctorado, Universidad Rey Juan Carlos, Alcorcón, Spain; Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, Alcorcón, Spain.
| | - Carlos Crasto
- Escola Superior de Saúde de Santa Maria, Oporto, Portugal; Escola Superior de Saúde do Politécnico do Porto, Oporto, Portugal
| | - António Mesquita Montes
- Escola Superior de Saúde de Santa Maria, Oporto, Portugal; Escola Superior de Saúde do Politécnico do Porto, Oporto, Portugal
| | - José L Arias-Buría
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, Alcorcón, Spain
| |
Collapse
|
7
|
Waldon KT, Stout A, Manning K, Gray L, Wilson DG, Kang GE. Dual-Task Interference Effects on Lower-Extremity Muscle Activities during Gait Initiation and Steady-State Gait among Healthy Young Individuals, Measured Using Wireless Electromyography Sensors. SENSORS (BASEL, SWITZERLAND) 2023; 23:8842. [PMID: 37960541 PMCID: PMC10647760 DOI: 10.3390/s23218842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023]
Abstract
To maintain a healthy lifestyle, adults rely on their ability to walk while simultaneously managing multiple tasks that challenge their coordination. This study investigates the impact of cognitive dual tasks on lower-limb muscle activities in 21 healthy young adults during both gait initiation and steady-state gait. We utilized wireless electromyography sensors to measure muscle activities, along with a 3D motion capture system and force plates to detect the phases of gait initiation and steady-state gait. The participants were asked to walk at their self-selected pace, and we compared single-task and dual-task conditions. We analyzed mean muscle activation and coactivation in the biceps femoris, vastus lateralis, gastrocnemius, and tibialis anterior muscles. The findings revealed that, during gait initiation with the dual-task condition, there was a decrease in mean muscle activation and an increase in mean muscle coactivation between the swing and stance limbs compared with the single-task condition. In steady-state gait, there was also a decrease in mean muscle activation in the dual-task condition compared with the single-task condition. When participants performed dual-task activities during gait initiation, early indicators of reduced balance capability were observed. Additionally, during dual-task steady-state gait, the knee stabilizer muscles exhibited signs of altered activation, contributing to balance instability.
Collapse
Affiliation(s)
- Ke’Vaughn Tarrel Waldon
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA (A.S.)
| | - Angeloh Stout
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA (A.S.)
| | - Kaitlin Manning
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA (A.S.)
| | - Leslie Gray
- Department of Prosthetics-Orthotics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David George Wilson
- Department of Prosthetics-Orthotics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gu Eon Kang
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA (A.S.)
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
8
|
Bandini V, Carpinella I, Marzegan A, Jonsdottir J, Frigo CA, Avanzino L, Pelosin E, Ferrarin M, Lencioni T. Surface-Electromyography-Based Co-Contraction Index for Monitoring Upper Limb Improvements in Post-Stroke Rehabilitation: A Pilot Randomized Controlled Trial Secondary Analysis. SENSORS (BASEL, SWITZERLAND) 2023; 23:7320. [PMID: 37687775 PMCID: PMC10490112 DOI: 10.3390/s23177320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 09/10/2023]
Abstract
Persons post-stroke experience excessive muscle co-contraction, and consequently the arm functions are compromised during the activities of daily living. Therefore, identifying instrumental outcome measures able to detect the motor strategy adopted after a stroke is a primary clinical goal. Accordingly, this study aims at verifying whether the surface electromyography (sEMG)-based co-contraction index (CCI) could be a new clinically feasible approach for assessing and monitoring patients' motor performance. Thirty-four persons post-stroke underwent clinical assessment and upper extremity kinematic analysis, including sEMG recordings. The participants were randomized into two treatment groups (robot and usual care groups). Ten healthy subjects provided a normative reference (NR). Frost's CCI was used to quantify the muscle co-contraction of three different agonist/antagonist muscle pairs during an object-placing task. Persons post-stroke showed excessive muscle co-contraction (mean (95% CI): anterior/posterior deltoid CCI: 0.38 (0.34-0.41) p = 0.03; triceps/biceps CCI: 0.46 (0.41-0.50) p = 0.01) compared to NR (anterior/posterior deltoid CCI: 0.29 (0.21-0.36); triceps/biceps CCI: 0.34 (0.30-0.39)). After robot therapy, persons post-stroke exhibited a greater improvement (i.e., reduced CCI) in proximal motor control (anterior/posterior deltoid change score of CCI: -0.02 (-0.07-0.02) p = 0.05) compared to usual care therapy (0.04 (0.00-0.09)). Finally, the findings of the present study indicate that the sEMG-based CCI could be a valuable tool in clinical practice.
Collapse
Affiliation(s)
- Virginia Bandini
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Via Capecelatro 66, 20148 Milan, Italy; (V.B.); (I.C.); (A.M.); (J.J.); (T.L.)
| | - Ilaria Carpinella
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Via Capecelatro 66, 20148 Milan, Italy; (V.B.); (I.C.); (A.M.); (J.J.); (T.L.)
| | - Alberto Marzegan
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Via Capecelatro 66, 20148 Milan, Italy; (V.B.); (I.C.); (A.M.); (J.J.); (T.L.)
| | - Johanna Jonsdottir
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Via Capecelatro 66, 20148 Milan, Italy; (V.B.); (I.C.); (A.M.); (J.J.); (T.L.)
| | - Carlo Albino Frigo
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy;
| | - Laura Avanzino
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, IRCCS, 16132 Genoa, Italy;
| | - Elisa Pelosin
- IRCCS Ospedale Policlinico San Martino, IRCCS, 16132 Genoa, Italy;
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, 16132 Genova, Italy
| | - Maurizio Ferrarin
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Via Capecelatro 66, 20148 Milan, Italy; (V.B.); (I.C.); (A.M.); (J.J.); (T.L.)
| | - Tiziana Lencioni
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Via Capecelatro 66, 20148 Milan, Italy; (V.B.); (I.C.); (A.M.); (J.J.); (T.L.)
| |
Collapse
|
9
|
Yu H, Wang J, Mao M, Song Q, Zhang C, Fong DTP, Sun W. Muscle co-contraction and pre-activation in knee and ankle joint during a typical Tai Chi brush-knee twist-step. Res Sports Med 2023; 31:628-637. [PMID: 34957881 DOI: 10.1080/15438627.2021.2020788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
This study aimed to investigate the co-contraction and pre-activation of agonistic and antagonistic muscles in experienced Tai Chi (TC) practitioners during normal walking (NW) and brush-knee twist-step (BKTS). The electromyographic activities of rectus femoris, biceps femoris, and tibialis anterior and lateral gastrocnemius muscles were collected during BKTS and NW in 28 TC practitioners. The pre-activation of knee and ankle joints before initial landing of left foot, and the co-contraction of knee and ankle joint in double-stance phase I (DSI), single-stance phase (SS), double-stance phase II (DSII), and swing phase (SW) were calculated during BKTS and NW. Ankle co-contraction significantly increased during DSI and SS in BKTS movements than compared with that in NW. For DSI and SW, SS and DSII, and DSII and SW, a significant difference was found in BKTS. The pre-activation of knee joint significantly decreased in BKTS and NW. This study indicated greater ankle joint muscle co-contraction in DSI and SS of stance phase and lower knee joint muscle co-contraction and pre-activation than in NW in BKTS movement. In addition, greater ankle joint muscle co-contraction was observed in the DSI, SS, and DSII of stance phase than those of swing phase in BKTS movement.
Collapse
Affiliation(s)
- Hao Yu
- College of Sports and Health, Shandong Sport University, Jinan, China
| | - JiangNa Wang
- College of Sports and Health, Shandong Sport University, Jinan, China
| | - Min Mao
- School of Nursing and Rehabilitation Shandong University, Jinan, China
| | - QiPeng Song
- College of Sports and Health, Shandong Sport University, Jinan, China
| | - Cui Zhang
- Lab of Biomechanics, Shandong Institute of Sport Science, Jinan, China
| | - Daniel T P Fong
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Wei Sun
- College of Sports and Health, Shandong Sport University, Jinan, China
| |
Collapse
|
10
|
Wang X, Luo Z, Zhang M, Zhao W, Xie S, Wong SF, Hu H, Li L. The interaction between changes of muscle activation and cortical network dynamics during isometric elbow contraction: a sEMG and fNIRS study. Front Bioeng Biotechnol 2023; 11:1176054. [PMID: 37180038 PMCID: PMC10167054 DOI: 10.3389/fbioe.2023.1176054] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
Objective: The relationship between muscle activation during motor tasks and cerebral cortical activity remains poorly understood. The aim of this study was to investigate the correlation between brain network connectivity and the non-linear characteristics of muscle activation changes during different levels of isometric contractions. Methods: Twenty-one healthy subjects were recruited and were asked to perform isometric elbow contractions in both dominant and non-dominant sides. Blood oxygen concentrations in brain from functional Near-infrared Spectroscopy (fNIRS) and surface electromyography (sEMG) signals in the biceps brachii (BIC) and triceps brachii (TRI) muscles were recorded simultaneously and compared during 80% and 20% of maximum voluntary contraction (MVC). Functional connectivity, effective connectivity, and graph theory indicators were used to measure information interaction in brain activity during motor tasks. The non-linear characteristics of sEMG signals, fuzzy approximate entropy (fApEn), were used to evaluate the signal complexity changes in motor tasks. Pearson correlation analysis was used to examine the correlation between brain network characteristic values and sEMG parameters under different task conditions. Results: The effective connectivity between brain regions in motor tasks in dominant side was significantly higher than that in non-dominant side under different contractions (p < 0.05). The results of graph theory analysis showed that the clustering coefficient and node-local efficiency of the contralateral motor cortex were significantly varied under different contractions (p < 0.01). fApEn and co-contraction index (CCI) of sEMG under 80% MVC condition were significantly higher than that under 20% MVC condition (p < 0.05). There was a significant positive correlation between the fApEn and the blood oxygen value in the contralateral brain regions in both dominant or non-dominant sides (p < 0.001). The node-local efficiency of the contralateral motor cortex in the dominant side was positively correlated with the fApEn of the EMG signals (p < 0.05). Conclusion: In this study, the mapping relationship between brain network related indicators and non-linear characteristic of sEMG in different motor tasks was verified. These findings provide evidence for further exploration of the interaction between the brain activity and the execution of motor tasks, and the parameters might be useful in evaluation of rehabilitation intervention.
Collapse
Affiliation(s)
- Xiaohan Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Zichong Luo
- Faculty of Science and Technology, University of Macau, Taipa, China
| | - Mingxia Zhang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Weihua Zhao
- Hospital of Northwestern Polytechnical University, Xi’an, China
| | - Songyun Xie
- School of Electronics and Information, Northwestern Polytechnical University, Xi’an, China
| | - Seng Fat Wong
- Faculty of Science and Technology, University of Macau, Taipa, China
| | - Huijing Hu
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Le Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| |
Collapse
|
11
|
Zhang H, Li X, Gong Y, Wu J, Chen J, Chen W, Pei Z, Zhang W, Dai L, Shu X, Shen C. Three-Dimensional Gait Analysis and sEMG Measures for Robotic-Assisted Gait Training in Subacute Stroke: A Randomized Controlled Trial. BIOMED RESEARCH INTERNATIONAL 2023; 2023:7563802. [PMID: 37082189 PMCID: PMC10113045 DOI: 10.1155/2023/7563802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/01/2023] [Accepted: 03/11/2023] [Indexed: 04/22/2023]
Abstract
Background The efficacy of robotic-assisted gait training (RAGT) should be considered versatilely; among which, gait assessment is one of the most important measures; observational gait assessment is the most commonly used method in clinical practice, but it has certain limitations due to the deviation of subjectivity; instrumental assessments such as three-dimensional gait analysis (3DGA) and surface electromyography (sEMG) can be used to obtain gait data and muscle activation during walking in stroke patients with hemiplegia, so as to better evaluate the rehabilitation effect of RAGT. Objective This single-blind randomized controlled trial is aimed at analyzing the impact of RAGT on the 3DGA parameters and muscle activation in patients with subacute stroke and evaluating the clinical effect of improving walking function of RAGT. Methods This randomized controlled trial evaluated the improvement of 4-week RAGT on patients with subacute stroke by 3DGA and surface electromyography (sEMG), combined with clinical scales: experimental group (n = 18, 20 sessions of RAGT) or control group (n = 16, 20 sessions of conventional gait training). Gait performance was evaluated by the 3DGA, and clinical evaluations based on Fugl-Meyer assessment for lower extremity (FMA-LE), functional ambulation category (FAC), and 6-minute walk test (6MWT) were used. Of these patients, 30 patients underwent sEMG measurement synchronized with 3DGA; the cocontraction index in swing phase of the knee and ankle of the affected side was calculated. Results After 4 weeks of intervention, intragroup comparison showed that walking speed, temporal symmetry, bilateral stride length, range of motion (ROM) of the bilateral hip, flexion angle of the affected knee, ROM of the affected ankle, FMA-LE, FAC, and 6MWT in the experimental group were significantly improved (p < 0.05), and in the control group, significant improvements were observed in walking speed, temporal symmetry, stride length of the affected side, ROM of the affected hip, FMA-LE, FAC, and 6MWT (p < 0.05). Intergroup comparison showed that the experimental group significantly outperformed the control group in walking speed, temporal symmetry of the spatiotemporal parameters, ROM of the affected hip and peak flexion of the knee in the kinematic parameters, and the FMA-LE and FAC in the clinical scale (p < 0.05). In patients evaluated by sEMG, the experimental group showed a noticeable improvement in the cocontraction index of the knee (p = 0.042), while no significant improvement was observed in the control group (p = 0.196), and the experimental group was better than the control group (p = 0.020). No noticeable changes were observed in the cocontraction index of the ankle in both groups (p > 0.05). Conclusions Compared with conventional gait training, RAGT successfully improved part of the spatiotemporal parameters of patients and optimized the motion of the affected lower limb joints and muscle activation patterns during walking, which is crucial for further rehabilitation of walking ability in patients with subacute stroke. This trial is registered with ChiCTR2200066402.
Collapse
Affiliation(s)
- Huihuang Zhang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, 310053 Hangzhou, Zhejiang, China
| | - Xiang Li
- The Third Clinical Medical College, Zhejiang Chinese Medical University, 310053 Hangzhou, Zhejiang, China
| | - Yichen Gong
- Department of Center for Rehabilitation Assessment and Therapy, Zhejiang Rehabilitation Medical Center, 310053 Hangzhou, Zhejiang, China
| | - Jianing Wu
- The Third Clinical Medical College, Zhejiang Chinese Medical University, 310053 Hangzhou, Zhejiang, China
| | - Jianer Chen
- The Third Clinical Medical College, Zhejiang Chinese Medical University, 310053 Hangzhou, Zhejiang, China
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, 310013 Hangzhou, Zhejiang, China
- Neurorehabilitation Department, Zhejiang Rehabilitation Medical Center, 310053 Hangzhou, Zhejiang, China
| | - Weihai Chen
- Department of Hangzhou Innovation Institute, Beihang University, 310053 Hangzhou, Zhejiang, China
| | - Zhongcai Pei
- Department of Hangzhou Innovation Institute, Beihang University, 310053 Hangzhou, Zhejiang, China
| | - Wanying Zhang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, 310053 Hangzhou, Zhejiang, China
| | - Lei Dai
- The Third Clinical Medical College, Zhejiang Chinese Medical University, 310053 Hangzhou, Zhejiang, China
| | - Xinxin Shu
- Department of Center for Rehabilitation Assessment and Therapy, Zhejiang Rehabilitation Medical Center, 310053 Hangzhou, Zhejiang, China
| | - Cheng Shen
- Department of Hangzhou Innovation Institute, Beihang University, 310053 Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Muscle Co-Contraction Detection in the Time-Frequency Domain. SENSORS 2022; 22:s22134886. [PMID: 35808382 PMCID: PMC9269699 DOI: 10.3390/s22134886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 01/27/2023]
Abstract
Background: Muscle co-contraction plays a significant role in motion control. Available detection methods typically only provide information in the time domain. The current investigation proposed a novel approach for muscle co-contraction detection in the time–frequency domain, based on continuous wavelet transform (CWT). Methods: In the current study, the CWT-based cross-energy localization of two surface electromyographic (sEMG) signals in the time–frequency domain, i.e., the CWT coscalogram, was adopted for the first time to characterize muscular co-contraction activity. A CWT-based denoising procedure was applied for removing noise from the sEMG signals. Algorithm performances were checked on synthetic and real sEMG signals, stratified for signal-to-noise ratio (SNR), and then validated against an approach based on the acknowledged double-threshold statistical algorithm (DT). Results: The CWT approach provided an accurate prediction of co-contraction timing in simulated and real datasets, minimally affected by SNR variability. The novel contribution consisted of providing the frequency values of each muscle co-contraction detected in the time domain, allowing us to reveal a wide variability in the frequency content between subjects and within stride. Conclusions: The CWT approach represents a relevant improvement over state-of-the-art approaches that provide only a numerical co-contraction index or, at best, dynamic information in the time domain. The robustness of the methodology and the physiological reliability of the experimental results support the suitability of this approach for clinical applications.
Collapse
|
13
|
Palazzo F, Lamouchideli N, Caronti A, Tufi F, Padua E, Annino G. Neuromuscular response to the stimulation of plantar cutaneous during walking at different speeds. Gait Posture 2022; 95:84-92. [PMID: 35462053 DOI: 10.1016/j.gaitpost.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 03/18/2022] [Accepted: 04/02/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND A lot of authors have been studied the consequence of postural control strategies through investigating the effects of foot-surface contact. In this context an important variable of textured surfaces or insoles could be related to material stiffness. We apply a particular textured insoles to evaluate neuromuscular response of plantar stimulation during walking. RESEARCH QUESTION Could textured insoles alter the human locomotion during walking at different speeds? METHODS Ten adults (age: 27 ± 5 years) completed three trials on the multifunction treadmill at 0.42 ms-1, 0.89 ms-1, and 1.5 ms-1 walking speed. Temporal-spatial parameters, gait line, and kinetic parameters were analyzed. The Co-Contraction Index (CCI) and electromyography (EMG) of the right leg muscles were assessed during four phases of gait: first half stance (FHS), half stance (HS), second half stance (SHS), swing phase (SP). Textured insole and soft control insole were worn while walking. RESULTS Plantar stimulation improved cadence, stride time, stride length and gait line parameters with increasing speed. First force peaks and maximum force forefoot were always significant. The maximum force midfoot was significant at 0.42 and 0.89 ms-1. The maximum force heel only was significant in lower velocity. The maximum pressure showed different significant values except for the heel. Significant differences in the CCI were always found in the FHS and SHS for the plantar muscles, and in the FHS and HS for the knee muscles. The differences in gait analysis in biomechanical and in electromyographic parameters were more significant in the higher speed tested. SIGNIFICANCE The perception of shape and texture through its linear response to skin deformation over a wide range of deformations could be the reason why the significant differences increase in the higher speed. In conclusion, sensory interventions fallowing appropriate insoles can influence significantly gait. Walking strategy positively adjusts locomotion with high efficiency.
Collapse
Affiliation(s)
- Francesco Palazzo
- School of Human Movement Science, Faculty of Medicine and Surgery, University of Rome ''Tor Vergata'', Rome, Italy.
| | - Niloofar Lamouchideli
- Department of Human Neuroscience, Faculty of Medicine and Dentistry, Sapienza University of Rome, Italy
| | - Alfio Caronti
- School of Human Movement Science, Faculty of Medicine and Surgery, University of Rome ''Tor Vergata'', Rome, Italy
| | - Fabrizio Tufi
- School of Human Movement Science, Faculty of Medicine and Surgery, University of Rome ''Tor Vergata'', Rome, Italy
| | - Elvira Padua
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Italy
| | - Giuseppe Annino
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Italy; Department of Medicine Systems, University of Rome ''Tor Vergata'', Rome, Italy; Centre of Space Bio-Medicine, "Tor Vergata" University of Rome, Rome, Italy
| |
Collapse
|
14
|
Kibushi B, Okada J. Auditory sEMG biofeedback for reducing muscle co-contraction during pedaling. Physiol Rep 2022; 10:e15288. [PMID: 35611763 PMCID: PMC9131599 DOI: 10.14814/phy2.15288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/06/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023] Open
Abstract
Muscle co-contraction between the agonist and antagonist muscles often causes low energy efficiency or movement disturbances. Surface electromyography biofeedback (sEMG-BF) has been used to train muscle activation or relaxation but it is unknown whether sEMG-BF reduces muscle co-contraction. We hypothesized that auditory sEMG-BF improves muscle co-contraction. Our purpose was to investigate whether auditory sEMG-BF is effective in improving muscle co-contraction. Thirteen participants pedaled on a road bike using four different auditory sEMG-BF conditions. We measured the surface electromyography at the lower limb muscles. The vastus lateralis (VL) and the semitendinosus (ST) activities were individually transformed into different beep sounds. Four feedback conditions were no-feedback, VL feedback, ST feedback, and both VL and ST feedback. We compared the co-contraction index (COI) of the knee extensor-flexor muscles and the hip flexor-extensor muscles among the conditions. There were no significant differences in COIs among the conditions (p = 0.83 for the COI of the knee extensor-flexor; p = 0.32 for the COI of the hip flexor-extensor). To improve the muscle co-contraction by sEMG-BF, it may be necessary to convert muscle activation into a muscle co-contraction. We concluded that individual sEMG-BF does not immediately improve muscle co-contraction during pedaling.
Collapse
Affiliation(s)
- Benio Kibushi
- Graduate School of Human Development and EnvironmentKobe UniversityKobeJapan
| | - Junichi Okada
- Faculty of Sport SciencesWaseda UniversityTokorozawaSaitamaJapan
| |
Collapse
|
15
|
Chang CM, Tsai CH, Lu MK, Tseng HC, Lu G, Liu BL, Lin HC. The neuromuscular responses in patients with Parkinson's disease under different conditions during whole-body vibration training. BMC Complement Med Ther 2022; 22:2. [PMID: 34980075 PMCID: PMC8722001 DOI: 10.1186/s12906-021-03481-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/03/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Whole-body vibration (WBV) training can provoke reactive muscle response and thus exert beneficial effects in various neurological patients. This study aimed to investigate the muscles activation and acceleration transmissibility of the lower extremity to try to understand the neuromuscular control in the Parkinson's disease (PD) patients under different conditions of the WBV training, including position and frequency. METHODS Sixteen PD patients and sixteen controls were enrolled. Each of them would receive two WBV training sessions with 3 and 20 Hz mechanical vibration in separated days. In each session, they were asked to stand on the WBV machine with straight and then bended knee joint positions, while the vibration stimulation was delivered or not. The electromyographic (EMG) signals and the segmental acceleration from the lower extremity were recorded and processed. The amplitude, co-contraction indexes (CCI), and normalized median frequency slope (NMFS) from the EMG signals, and the acceleration transmissibility were calculated. RESULTS The results showed larger rectus femoris (RF) amplitudes under 3 Hz vibration than those in 20 Hz and no vibration conditions; larger tibialis anterior (TA) in 20 Hz than in no vibration; larger gastrocnemius (GAS) in 20 Hz than in 3 Hz and no vibration. These results indicated that different vibration frequencies mainly induced reactive responses in different muscles, by showing higher activation of the knee extensors in 3 Hz and of the lower leg muscles in 20 Hz condition, respectively. Comparing between groups, the PD patients reacted to the WBV stimulation by showing larger muscle activations in hamstring (HAM), TA and GAS, and smaller CCI in thigh than those in the controls. In bended knee, it demonstrated a higher RF amplitude and a steeper NMFS but smaller HAM activations than in straight knee position. The higher acceleration transmissibility was found in the control group, in the straight knee position and in the 3 Hz vibration conditions. CONCLUSION The PD patients demonstrated altered neuromuscular control compared with the controls in responding to the WBV stimulations, with generally higher EMG amplitude of lower extremity muscles. For designing WBV strengthening protocol in the PD population, the 3 Hz with straight or flexed knee protocol was recommended to recruit more thigh muscles; the bended knee position with 20 Hz vibration was for the shank muscles.
Collapse
Affiliation(s)
- Chia-Ming Chang
- Department of Physical Therapy, China Medical University, No. 100, Sec. 1, Jingmao Rd, Taichung, Taiwan, 406040, R.O.C
| | - Chon-Haw Tsai
- Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung, Taiwan.,Division of Parkinson's Disease and Movement Disorders, Department of Neurology, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.,Neuroscience and Brain Disease Center, College of Medicine, China Medical University, Taichung, Taiwan
| | - Ming-Kuei Lu
- Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung, Taiwan.,Division of Parkinson's Disease and Movement Disorders, Department of Neurology, China Medical University Hospital, Taichung, Taiwan.,Neuroscience and Brain Disease Center, College of Medicine, China Medical University, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Hsin-Chun Tseng
- Department of Physical Therapy, China Medical University, No. 100, Sec. 1, Jingmao Rd, Taichung, Taiwan, 406040, R.O.C
| | - Grace Lu
- Department of Physical Therapy, China Medical University, No. 100, Sec. 1, Jingmao Rd, Taichung, Taiwan, 406040, R.O.C
| | - Bey-Ling Liu
- Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung, Taiwan
| | - Hsiu-Chen Lin
- Department of Physical Therapy, China Medical University, No. 100, Sec. 1, Jingmao Rd, Taichung, Taiwan, 406040, R.O.C.
| |
Collapse
|
16
|
Metabolic cost and co-contraction during walking at different speeds in young and old adults. Gait Posture 2022; 91:111-116. [PMID: 34673446 DOI: 10.1016/j.gaitpost.2021.10.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND The net metabolic cost of walking (NCw) and the co-activation of leg muscles are both higher in old adults (OG) than in young adults (YG). Nevertheless, the relation between the two remains unresolved, mainly due to the controversial co-activation measurement method used in previous studies. RESEARCH QUESTION To compare ankle and knee co-contraction (CCI), calculated using an EMG-driven method, between the groups and to examine their relationship with NCw. METHODS Nine young (YG = 25.2 +/- 3.3 years old) and nine older (OG = 68.7 +/5.9 years old) adults walked on a treadmill at five speeds (YG: 1; 1.2; 1.4; 1.6; 1.8 m/s; OG: 0.6; 0.8; 1; 1.2; 1.4 m/s) while electromyography (sEMG) and oxygen consumption were measured. CCI were calculated around the ankle and knee for different parts of the gait cycle (entire gait cycle 0-100 %, stance phase 0-60 %, swing phase 60-100 %). RESULTS NCw was significantly higher (25 %, averaged over the walking speeds) in OG as were Knee_CCI, Knee_CCI_swing and Knee_CCI_stance. Multiple regression models in YG, OG and YG + OG highlighted Ankle_CCI as the main contributor in NCw (β = 0.08-0.188, p < 0.05) with a positive relation between the two variables. SIGNIFICANCE The present findings provide a better understanding of the association between muscle co-contraction and metabolic cost in older adults. It may help scientists and clinicians to further develop strategies aimed at neuromuscular rehabilitation as a means of improving mobility and independence among older adults.
Collapse
|
17
|
DaSilva MM, Chandran VD, Dixon PC, Loh JM, Dennerlein JT, Schiffman JM, Pal S. Muscle co-contractions are greater in older adults during walking at self-selected speeds over uneven compared to even surfaces. J Biomech 2021; 128:110718. [PMID: 34474374 DOI: 10.1016/j.jbiomech.2021.110718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
Falls in the aging population are a major public health concern. Outdoor falls in community-dwelling older adults are often triggered by uneven pedestrian walkways. Our understanding of the motor control adaptations to walk over an uneven surface, and the effects of aging on these adaptations is sparse. Here, we study changes in muscle co-contraction, a clinically accepted measure of motor control, due to changes in walking surfaces typically encountered in the outdoor built environment. We address the following research questions: 1) are there walking surface and sex-based differences in muscle co-contractions between young and older adults? and 2) is muscle co-contraction associated with age? We calculated muscle co-contractions from 13 young and 17 older adults during walking at self-selected speeds over even and uneven brick walkways. Muscle co-contraction at the ankle joint was determined from the tibialis anterior and lateral gastrocnemius muscle pair, and at the knee joint from the rectus femoris and semitendinosus muscle pair. Older adults displayed 8-13% greater ankle muscle co-contractions during walking over uneven compared to even surfaces. We found 55-61% (entire gait) and 73-75% (stance phase) greater ankle muscle co-contractions in older females compared to older males during walking over even and uneven surfaces. We found 31-43% greater knee muscle co-contractions in older females compared to older males during the swing phase of walking over even and uneven surfaces. This study underscores the need for determining muscle co-contractions from even and uneven surfaces for quantifying motor control deficits due to aging or neuromuscular disorders.
Collapse
Affiliation(s)
- Matthew M DaSilva
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Vishnu D Chandran
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Philippe C Dixon
- School of Kinesiology and Physical Activity Sciences, University of Montreal, Montreal, Canada; Research Center of the Sainte-Justine University Hospital, Montreal, Canada
| | - Ji Meng Loh
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ, United States
| | - Jack T Dennerlein
- Bouvé College of Health Sciences, Northeastern University, Boston, MA, United States; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | | | - Saikat Pal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States; Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, United States.
| |
Collapse
|
18
|
Effects of Concurrent and Terminal Visual Feedback on Ankle Co-Contraction in Older Adults during Standing Balance. SENSORS 2021; 21:s21217305. [PMID: 34770611 PMCID: PMC8588392 DOI: 10.3390/s21217305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 01/13/2023]
Abstract
This preliminary investigation studied the effects of concurrent and terminal visual feedback during a standing balance task on ankle co-contraction, which was accomplished via surface electromyography of an agonist–antagonist muscle pair (medial gastrocnemius and tibialis anterior muscles). Two complementary mathematical definitions of co-contraction indices captured changes in ankle muscle recruitment and modulation strategies. Nineteen healthy older adults received both feedback types in a randomized order. Following an analysis of co-contraction index reliability as a function of surface electromyography normalization technique, linear mixed-effects regression analyses revealed participants learned or utilized different ankle co-contraction recruitment (i.e., relative muscle pair activity magnitudes) and modulation (i.e., absolute muscle pair activity magnitudes) strategies depending on feedback type and following the cessation of feedback use. Ankle co-contraction modulation increased when concurrent feedback was used and significantly decreased when concurrent feedback was removed. Ankle co-contraction recruitment and modulation did not significantly change when terminal feedback was used or when it was removed. Neither ankle co-contraction recruitment nor modulation was significantly different when concurrent feedback was used compared to when terminal feedback was used. The changes in ankle co-contraction recruitment and modulation were significantly different when concurrent feedback was removed as compared to when terminal feedback was removed. Finally, this study found a significant interaction between feedback type, removal of feedback, and order of use of feedback type. These results have implications for the design of balance training technologies using visual feedback.
Collapse
|
19
|
Li G, Shourijeh MS, Ao D, Patten C, Fregly BJ. How Well Do Commonly Used Co-contraction Indices Approximate Lower Limb Joint Stiffness Trends During Gait for Individuals Post-stroke? Front Bioeng Biotechnol 2021; 8:588908. [PMID: 33490046 PMCID: PMC7817819 DOI: 10.3389/fbioe.2020.588908] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/09/2020] [Indexed: 11/18/2022] Open
Abstract
Muscle co-contraction generates joint stiffness to improve stability and accuracy during limb movement but at the expense of higher energetic cost. However, quantification of joint stiffness is difficult using either experimental or computational means. In contrast, quantification of muscle co-contraction using an EMG-based Co-Contraction Index (CCI) is easier and may offer an alternative for estimating joint stiffness. This study investigated the feasibility of using two common CCIs to approximate lower limb joint stiffness trends during gait. Calibrated EMG-driven lower extremity musculoskeletal models constructed for two individuals post-stroke were used to generate the quantities required for CCI calculations and model-based estimation of joint stiffness. CCIs were calculated for various combinations of antagonist muscle pairs based on two common CCI formulations: Rudolph et al. (2000) (CCI1) and Falconer and Winter (1985) (CCI2). CCI1 measures antagonist muscle activation relative to not only total activation of agonist plus antagonist muscles but also agonist muscle activation, while CCI2 measures antagonist muscle activation relative to only total muscle activation. We computed the correlation between these two CCIs and model-based estimates of sagittal plane joint stiffness for the hip, knee, and ankle of both legs. Although we observed moderate to strong correlations between some CCI formulations and corresponding joint stiffness, these associations were highly dependent on the methodological choices made for CCI computation. Specifically, we found that: (1) CCI1 was generally more correlated with joint stiffness than was CCI2, (2) CCI calculation using EMG signals with calibrated electromechanical delay generally yielded the best correlations with joint stiffness, and (3) choice of antagonist muscle pairs significantly influenced CCI correlation with joint stiffness. By providing guidance on how methodological choices influence CCI correlation with joint stiffness trends, this study may facilitate a simpler alternate approach for studying joint stiffness during human movement.
Collapse
Affiliation(s)
- Geng Li
- Rice Computational Neuromechanics Laboratory, Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - Mohammad S Shourijeh
- Rice Computational Neuromechanics Laboratory, Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - Di Ao
- Rice Computational Neuromechanics Laboratory, Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - Carolynn Patten
- Biomechanics, Rehabilitation, and Integrative Neuroscience Lab, Department of Physical Medicine and Rehabilitation, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Benjamin J Fregly
- Rice Computational Neuromechanics Laboratory, Department of Mechanical Engineering, Rice University, Houston, TX, United States
| |
Collapse
|
20
|
Wenning M, Mauch M, Heitner A, Lienhard J, Ritzmann R, Paul J. Neuromechanical activation of triceps surae muscle remains altered at 3.5 years following open surgical repair of acute Achilles tendon rupture. Knee Surg Sports Traumatol Arthrosc 2021; 29:2517-2527. [PMID: 33660053 PMCID: PMC8298360 DOI: 10.1007/s00167-021-06512-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/17/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE To assess whether the neuromuscular activation pattern following Achilles tendon rupture and repair may contributes to the observable functional deficits in this severe and increasingly frequent injury. METHODS In this study, the neuromuscular activation using surface EMG of n = 52 patients was assessed during a battery of functional performance tasks to assess potential alterations of muscular activation and recruitment. We analyzed the injured leg vs. the contralateral healthy leg at a mean of 3.5 years following open surgical repair. The testing battery included isokinetic strength testing, bipedal and single-legged heel-rise testing as well as gait analysis. RESULTS During isokinetic testing, we observed a higher activation integral for all triceps surae muscles of the injured side during active dorsiflexion, e.g., eccentric loading on the injured leg, while concentric plantarflexion showed no significant difference. Dynamic heel-rise testing showed a higher activation in concentric and eccentric loading for all posterior muscles on the injured side (not significant); while static heel-rise for 10 sec. revealed a significantly higher activation. Further analysis of frequency of fast Fourier-transformed EMG revealed a significantly higher median frequency in the injured leg. Gait analysis revealed a higher pre-activation of the tibialis anterior before ground contact, while medial and lateral gastrocnemius muscles of the injured leg showed a significantly higher activation during push-off phase. CONCLUSIONS The results of this study provide evidence on the neuromuscular changes 3.5 years following open surgical Achilles tendon repair. These complex neuromuscular changes are manifested to produce the maximum force output whilst protecting the previously injured tendon. The observed alterations may be related to an increased recruitment of type II muscle fibers which could make the muscles prone to fatigue. LEVEL OF EVIDENCE III.
Collapse
Affiliation(s)
- Markus Wenning
- Rennbahnklinik, Muttenz, Basel, Switzerland.
- Department of Orthopedic and Trauma Surgery, Faculty of Medicine, University Medical Center Freiburg, Albert-Ludwigs University of Freiburg, Freiburg, Germany.
| | | | | | - Johannes Lienhard
- Department of Sport and Sport Science, Biomechanics and Motor Control, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
21
|
Cofré Lizama LE, Bastani A, van der Walt A, Kilpatrick T, Khan F, Galea MP. Increased ankle muscle coactivation in the early stages of multiple sclerosis. Mult Scler J Exp Transl Clin 2020; 6:2055217320905870. [PMID: 32110431 PMCID: PMC7016311 DOI: 10.1177/2055217320905870] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/30/2019] [Accepted: 01/21/2020] [Indexed: 01/20/2023] Open
Abstract
Background Neural damage at early stages of multiple sclerosis (MS) can subtly affect gait muscle activation patterns. Detecting these changes using current clinical tools, however, is not possible. We propose using muscle coactivation measures to detect these subtle gait changes. This may also help in identifying people with MS (PwMS) that may benefit from strategies aimed at preventing further mobility impairments. Objective We aimed to determine if coactivation of ankle muscles during gait is greater in PwMS with Expanded Disability Status Scale (EDSS) score <3.5. A secondary aim is to determine whether coactivation increases are speed dependent. Methods For this study 30 PwMS and 15 healthy controls (HC) walked on a treadmill at 1.0 m/s, 1.2 m/s and 1.4 m/s. Electromyography was recorded from the tibialis anterior (TA), soleus (SO) and lateral gastrocnemius (LG). The coactivation index was calculated between SO/TA and LG/TA. Ankle kinematics data were also collected. Results Compared with HC, PwMS exhibited significantly greater SO/TA and LG/TA coactivation, which was greater during early stance and swing phases (p < .01). Speed did not affect coactivation except during early stance. Ankle kinematic changes were also observed. Conclusion PwMS exhibited greater ankle muscles coactivation than controls regardless of the speed of walking. These changes in muscle activation may serve as a biomarker of neurodegeneration occurring at early stages of the disease.
Collapse
Affiliation(s)
- L Eduardo Cofré Lizama
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| | - Andisheh Bastani
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| | - Anneke van der Walt
- Department of Neurosciences, Alfred Health, Central Clinical School, Monash University, Melbourne, Australia
| | - Trevor Kilpatrick
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| | - Fary Khan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia.,Australian Rehabilitation Research Centre, Royal Melbourne Hospital, Melbourne, Australia.,Department of Rehabilitation Medicine, Royal Melbourne Hospital, Melbourne, Australia
| | - Mary P Galea
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia.,Australian Rehabilitation Research Centre, Royal Melbourne Hospital, Melbourne, Australia.,Department of Rehabilitation Medicine, Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
22
|
Knee muscle co-contractions are greater in old compared to young adults during walking and stair use. Gait Posture 2019; 73:315-322. [PMID: 31419759 DOI: 10.1016/j.gaitpost.2019.07.501] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/08/2019] [Accepted: 07/31/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Muscle co-contraction is an accepted clinical measure to quantify the effects of aging on neuromuscular control and movement efficiency. However, evidence of increased muscle co-contraction in old compared to young adults remains inconclusive. RESEARCH QUESTION Are there differences in lower-limb agonist/antagonist muscle co-contractions in young and old adults, and males and females, during walking and stair use? METHODS In a retrospective study, we analyzed data from 20 healthy young and 19 healthy old adults during walking, stair ascent, and stair descent at self-selected speeds, including marker trajectories, ground reaction force, and electromyography activity. We calculated muscle co-contraction at the knee (vastus lateralis vs. biceps femoris) and ankle (tibialis anterior vs. medial gastrocnemius) using the ratio of the common area under a muscle pairs' filtered and normalized electromyography curves to the sum of the areas under each muscle in that pair. RESULTS Old compared to young adults displayed 18%-22% greater knee muscle co-contractions during the entire cycle of stair use activities. We found greater (17%-29%) knee muscle co-contractions in old compared to young adults during the swing phase of walking and stair use. We found no difference in ankle muscle co-contractions between the two age groups during all three activities. We found no difference in muscle co-contraction between males and females at the knee and ankle joints for all three activities. SIGNIFICANCE Based on our findings, we recommend clinical evaluation to quantify the effects of aging through muscle co-contraction to include the knee joint during dynamic activities like walking and stair use, and independent evaluation of the stance and swing phases.
Collapse
|
23
|
Plantar pressure image fusion for comfort fusion in diabetes mellitus using an improved fuzzy hidden Markov model. Biocybern Biomed Eng 2019. [DOI: 10.1016/j.bbe.2019.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
Charafeddine J, Pradon D, Alfayad S, Chevallier S, Khalil M. Toward bio-kinematic for secure use of rehabilitation exoskeleton. Comput Methods Biomech Biomed Engin 2019. [DOI: 10.1080/10255842.2020.1714968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- J. Charafeddine
- EndiCAP U1179 - APHP, UVSQ Hospital Raymond Poincare, Garches, France
| | - D. Pradon
- EndiCAP U1179 - APHP, UVSQ Hospital Raymond Poincare, Garches, France
| | - S. Alfayad
- Laboratoire d’Ingénierie des Systèmes de Versailles, Université de Versailles Saint-Quentin, Versailles, France
| | - S. Chevallier
- Laboratoire d’Ingénierie des Systèmes de Versailles, Université de Versailles Saint-Quentin, Versailles, France
| | - M. Khalil
- Faculty of Engineering, Lebanese University, Tipoli, Lebanon
| |
Collapse
|
25
|
Khandha A, Manal K, Capin J, Wellsandt E, Marmon A, Snyder-Mackler L, Buchanan TS. High muscle co-contraction does not result in high joint forces during gait in anterior cruciate ligament deficient knees. J Orthop Res 2019; 37:104-112. [PMID: 30230006 PMCID: PMC6393175 DOI: 10.1002/jor.24141] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/27/2018] [Indexed: 02/04/2023]
Abstract
The mechanism of knee osteoarthritis development after anterior cruciate ligament injuries is poorly understood. The objective of this study was to evaluate knee gait variables, muscle co-contraction indices and knee joint loading in young subjects with anterior cruciate ligament deficiency (ACLD, n = 36), versus control subjects (n = 12). A validated, electromyography-informed model was used to estimate joint loading. For the involved limb of ACLD subjects versus control, muscle co-contraction indices were higher for the medial (p = 0.018, effect size = 0.93) and lateral (p = 0.028, effect size = 0.83) agonist-antagonist muscle pairs. Despite higher muscle co-contraction, medial compartment contact force was lower for the involved limb, compared to both the uninvolved limb (mean difference = 0.39 body weight, p = 0.009, effect size = 0.70) as well as the control limb (mean difference = 0.57 body weight, p = 0.007, effect size = 1.14). Similar observations were made for total contact force. For involved versus uninvolved limb, the ACLD group demonstrated lower vertical ground reaction force (mean difference = 0.08 body weight, p = 0.010, effect size = 0.70) and knee flexion moment (mean difference = 1.32% body weight * height, p = 0.003, effect size = 0.76), during weight acceptance. These results indicate that high muscle co-contraction does not always result in high knee joint loading, which is thought to be associated with knee osteoarthritis. Long-term follow-up is required to evaluate how gait alterations progress in non-osteoarthritic versus osteoarthritic subjects. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Ashutosh Khandha
- Biomechanics and Movement Science, University of Delaware, 540 South College Avenue, Newark 19713, Delaware,Delaware Rehabilitation Institute, University of Delaware, Newark, Delaware
| | - Kurt Manal
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware
| | - Jacob Capin
- Biomechanics and Movement Science, University of Delaware, 540 South College Avenue, Newark 19713, Delaware
| | - Elizabeth Wellsandt
- Division of Physical Therapy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Adam Marmon
- Biomechanics and Movement Science, University of Delaware, 540 South College Avenue, Newark 19713, Delaware
| | - Lynn Snyder-Mackler
- Biomechanics and Movement Science, University of Delaware, 540 South College Avenue, Newark 19713, Delaware,Department of Physical Therapy, University of Delaware, Newark, Delaware
| | - Thomas S. Buchanan
- Biomechanics and Movement Science, University of Delaware, 540 South College Avenue, Newark 19713, Delaware,Delaware Rehabilitation Institute, University of Delaware, Newark, Delaware,Department of Mechanical Engineering, University of Delaware, Newark, Delaware
| |
Collapse
|
26
|
Rinaldi M, D'Anna C, Schmid M, Conforto S. Assessing the influence of SNR and pre-processing filter bandwidth on the extraction of different muscle co-activation indexes from surface EMG data. J Electromyogr Kinesiol 2018; 43:184-192. [DOI: 10.1016/j.jelekin.2018.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/15/2018] [Accepted: 10/19/2018] [Indexed: 10/28/2022] Open
|
27
|
Abstract
The phenomenon of agonist-antagonist muscle coactivation is discussed with respect to its consequences for movement mechanics (such as increasing joint apparent stiffness, facilitating faster movements, and effects on action stability), implication for movement optimization, and involvement of different neurophysiological structures. Effects of coactivation on movement stability are ambiguous and depend on the effector representing a kinematic chain with a fixed origin or free origin. Furthermore, coactivation is discussed within the framework of the equilibrium-point hypothesis and the idea of hierarchical control with spatial referent coordinates. Relations of muscle coactivation to changes in one of the basic commands, the c-command, are discussed and illustrated. A hypothesis is suggested that agonist-antagonist coactivation reflects a deliberate neural control strategy to preserve effector-level control and avoid making it degenerate and facing the necessity to control at the level of signals to individual muscles. This strategy, in particular, allows stabilizing motor actions by covaried adjustments in spaces of control variables. This hypothesis is able to account for higher levels of coactivation in young healthy persons performing challenging tasks and across various populations with movement impairments.
Collapse
Affiliation(s)
- Mark L Latash
- Department of Kinesiology, The Pennsylvania State University , University Park, Pennsylvania
| |
Collapse
|
28
|
Huang H, Guo J, Yang J, Jiang Y, Yu Y, Müller S, Ren G, Ao Y. Isokinetic angle-specific moments and ratios characterizing hamstring and quadriceps strength in anterior cruciate ligament deficient knees. Sci Rep 2017; 7:7269. [PMID: 28779114 PMCID: PMC5544756 DOI: 10.1038/s41598-017-06601-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 06/14/2017] [Indexed: 11/23/2022] Open
Abstract
This study is intended to find more effective and robust clinical diagnostic indices to characterize muscle strength and coordination alternation following anterior cruciate ligament (ACL) rupture. To evaluate angle-specific moments and hamstring (H)/quadriceps (Q) ratios, 46 male subjects with unilateral chronic ACL-rupture performed isokinetic concentric (c), eccentric (e) quadriceps and hamstring muscle tests respectively at 60°/s. Normalized moments and H/Q ratios were calculated for peak moment (PM) and 30°, 40°, 50°, 60°, 70°, 80° knee flexion angles. Furthermore, we introduced single-to-arithmetic-mean (SAM) and single-to-root-mean-square (SRMS) muscle co-contraction ratios, calculating them for specific angles and different contraction repetitions. Normalized PM and 40° specific concentric quadriceps, concentric hamstring strength in the ACL-deficient knee were reduced significantly (P ≤ 0.05). Concentric angle-specific moments together with Qe/Qc ratios at 40° (d = 0.766 vs. d = 0.654) identify more obvious differences than peak values in ACL ruptured limbs. Furthermore, we found SRMS-QeQc deficits at 40° showed stronger effect than Qe/Qc ratios (d = 0.918 vs. d = 0.766), albeit other ratio differences remained basically the same effect size as the original H/Q ratios. All the newly defined SAM and SRMS indices could decrease variance. Overall, 40° knee moments and SAM/SRMS ratios might be new potential diagnosis indices for ACL rupture detection.
Collapse
Affiliation(s)
- Hongshi Huang
- Institute of Sports Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Jianqiao Guo
- School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China
| | - Jie Yang
- Institute of Sports Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Yanfang Jiang
- Institute of Sports Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Yuanyuan Yu
- Institute of Sports Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Steffen Müller
- Departments of Sports Medicine and Orthopedics, University of Potsdam, Potsdam, 14469, Germany
| | - Gexue Ren
- School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China.
| | - Yingfang Ao
- Institute of Sports Medicine, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|