1
|
Ghorbani A, Mirzaali MJ, Roebroek T, Coulais C, Bonn D, van der Linden E, Habibi M. Suppressing torsional buckling in auxetic meta-shells. Nat Commun 2024; 15:6999. [PMID: 39143043 PMCID: PMC11324657 DOI: 10.1038/s41467-024-51104-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 07/29/2024] [Indexed: 08/16/2024] Open
Abstract
Take a thin cylindrical shell and twist it; it will buckle immediately. Such unavoidable torsional buckling can lead to systemic failure, for example by disrupting the blood flow through arteries. In this study, we prevent this torsional buckling instability using a combination of auxeticity and orthotropy in cylindrical metamaterial shells with a holey pattern. When the principal axes of the orthotropic meta-shell are relatively aligned with that of the compressive component of the applied stress during twisting, the meta-shell uniformly shrinks in the radial direction as a result of a local buckling instability. This shrinkage coincides with a softening-stiffening transition that leads to ordered stacking of unit cells along the compressive component of the applied stress. These transitions due to local instabilities circumvent the usual torsional instability even under a large twist angle. This study highlights the potential of tailoring anisotropy and programming instabilities in metamaterials, with potential applications in designing mechanical elements for soft robotics, biomechanics or fluidics. As an example of such applications, we demonstrate soft torsional compressor for generating pulsatile flows through a torsion release mechanism.
Collapse
Affiliation(s)
- Aref Ghorbani
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, 6708 WG, Wageningen, The Netherlands.
| | - Mohammad J Mirzaali
- Department of Biomechanical Engineering, Delft University of Technology, 2628 CD, Delft, The Netherlands
| | - Tobias Roebroek
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, 6708 WG, Wageningen, The Netherlands
| | - Corentin Coulais
- Institute of Physics, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Daniel Bonn
- Institute of Physics, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Erik van der Linden
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, 6708 WG, Wageningen, The Netherlands
| | - Mehdi Habibi
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, 6708 WG, Wageningen, The Netherlands.
| |
Collapse
|
2
|
Han HC, Sultan S, Xiang M. The effects of axial twisting and material non-symmetry on arterial bent buckling. J Biomech 2023; 157:111735. [PMID: 37499429 DOI: 10.1016/j.jbiomech.2023.111735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/25/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Artery buckling occurs due to hypertensive lumen pressure or reduced axial tension and other pathological conditions. Since arteries in vivo often experience axial twisting and the collagen fiber alignment in the arterial wall may become nonsymmetric, it is imperative to know how axial twisting and nonsymmetric collagen alignment would affect the buckling behavior of arteries. To this end, the objective of this study was to determine the effect of axial twisting and nonsymmetric collagen fiber distribution on the critical pressure of arterial bent buckling. The buckling model analysis was generalized to incorporate an axial twist angle and nonsymmetric fiber alignment. The effect of axial twisting on the critical pressure was simulated and experimentally tested in a group of porcine carotid arteries. Our results showed that axial twisting tends to reduce the critical pressure depending on the axial stretch ratio and twist angle. In addition, nonsymmetric fiber alignment reduces the critical pressure. Experimental results confirmed that a twist angle of 90° reduces the critical pressure significantly (p < 0.05). It was concluded that axial twisting and non-axisymmetric collagen fibers distribution could make arteries prone to bent buckling. These results enrich our understanding of artery buckling and vessel tortuosity. The model analysis and results could also be applicable to other fiber reinforced tubes under lumen pressure and axial twisting.
Collapse
Affiliation(s)
- Hai-Chao Han
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, United States.
| | - Sarah Sultan
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Michael Xiang
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, United States
| |
Collapse
|
3
|
Han HC, Liu Q, Baek S. Numerical simulations of the nonsymmetric growth and remodeling of arteries under axial twisting. J Biomech 2022; 140:111165. [PMID: 35667148 PMCID: PMC10782577 DOI: 10.1016/j.jbiomech.2022.111165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/02/2022] [Accepted: 05/23/2022] [Indexed: 11/23/2022]
Abstract
Blood vessels are often subjected to axial twisting during body movement or surgery. Sustained twisting may lead to blood vessel growth and remodeling, however, it remains unclear how the extracellular matrix in the blood vessels remodel under sustained axial twisting. This study aimed to develop a computational model to simulate stress-induced growth and remodeling (G&R) of thin-walled blood vessels under axial twisting. Cylindrical vessels were subjected to a step increase in axial torque while the axial stretch and lumen pressure remained constant. The vessel walls were modeled based on the constrained mixture theory given as microstructure-based discrete fiber families with isotropic matrix structure models. Simulation results demonstrated that in response to a constant twist angle loading, arterial wall thickness, mass, and twisting torque gradually increase towards a new steady state. However, the stress and mass decrease in one diagonal fiber family while increasing in the other diagonal fiber family before reaching plateaus. A novel finding was that the two helical collagen fiber families showed different growth rates and patterns during remodeling, driven by the different fiber stresses generated by the twisting, and led to non-symmetric material properties. This study sheds new light on arterial wall remodeling under axial twisting.
Collapse
Affiliation(s)
- Hai-Chao Han
- Department of Mechanical Engineering, The University of Texas at San Antonio, TX 78249, United States.
| | - Qin Liu
- Department of Mechanical Engineering, The University of Texas at San Antonio, TX 78249, United States
| | - Seungik Baek
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, United States
| |
Collapse
|
4
|
Han HC. Effects of material non-symmetry on the mechanical behavior of arterial wall. J Mech Behav Biomed Mater 2022; 129:105157. [DOI: 10.1016/j.jmbbm.2022.105157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/17/2022] [Accepted: 02/27/2022] [Indexed: 12/21/2022]
|
5
|
Seddighi Y, Han HC. Buckling of Arteries With Noncircular Cross Sections: Theory and Finite Element Simulations. Front Physiol 2021; 12:712636. [PMID: 34483964 PMCID: PMC8414815 DOI: 10.3389/fphys.2021.712636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/01/2021] [Indexed: 11/17/2022] Open
Abstract
The stability of blood vessels is essential for maintaining the normal arterial function, and loss of stability may result in blood vessel tortuosity. The previous theoretical models of artery buckling were developed for circular vessel models, but arteries often demonstrate geometric variations such as elliptic and eccentric cross-sections. The objective of this study was to establish the theoretical foundation for noncircular blood vessel bent (i.e., lateral) buckling and simulate the buckling behavior of arteries with elliptic and eccentric cross-sections using finite element analysis. A generalized buckling equation for noncircular vessels was derived and finite element analysis was conducted to simulate the artery buckling behavior under lumen pressure and axial tension. The arterial wall was modeled as a thick-walled cylinder with hyper-elastic anisotropic and homogeneous material. The results demonstrated that oval or eccentric cross-section increases the critical buckling pressure of arteries and having both ovalness and eccentricity would further enhance the effect. We conclude that variations of the cross-sectional shape affect the critical pressure of arteries. These results improve the understanding of the mechanical stability of arteries.
Collapse
Affiliation(s)
- Yasamin Seddighi
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Hai-Chao Han
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
6
|
Vilela MA, Amaral CE, Ferreira MAT. Retinal vascular tortuosity: Mechanisms and measurements. Eur J Ophthalmol 2020; 31:1497-1506. [PMID: 33307777 DOI: 10.1177/1120672120979907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Retinal vessel tortuosity has been used in the diagnosis and management of different clinical situations. Notwithstanding, basic concepts, standards and tools of measurement, reliable normative data and clinical applications have many gaps or points of divergence. In this review we discuss triggering causes of retinal vessel tortuosity and resources used to assess and quantify it, as well as current limitations.
Collapse
Affiliation(s)
- Manuel Ap Vilela
- Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Carlos Ev Amaral
- Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | | |
Collapse
|
7
|
Abstract
Vascular tortuosity may impede blood flow, occlude the lumen, and ultimately lead to ischemia or even infarction. Mechanical loads like blood pressure, axial force, and also torsion are key factors participating in this complex mechanobiological process. The available studies on arterial torsion instability followed computational or experimental approaches, yet single available theoretical study had modeled the artery as isotropic linear elastic. This paper aim is to validate a theoretical model of arterial torsion instability against experimental data. The artery is modeled as a single-layered, nonlinear, hyperelastic, anisotropic solid, with parameters calibrated from experiment. Linear bifurcation analysis is then performed to predict experimentally measured stability margins. Uncertainties in geometrical parameters and in measured mechanical response were considered. Also, the type of rate (incremental) boundary conditions (RBCs) impact on the results was examined (e.g., dead load, fluid pressure). The predicted critical torque and twist angle followed the experimentally measured trends. The closest prediction errors in the critical torque and twist rate were 22% and 67%, respectively. Using the different RBCs incurred differences of up to 50% difference within the model predictions. The present results suggest that the model may require further improvements. However, it offers an approach that can be used to predict allowable twist levels in surgical procedures (like anastomosis and grafting) and in the design of stents for arteries subjected to high torsion levels (like the femoropopliteal arteries). It may also be instructive in understanding biomechanical processes like arterial tortuosity, kinking, and coiling.
Collapse
Affiliation(s)
- Nir Emuna
- Faculty of Aerospace Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - David Durban
- Faculty of Aerospace Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
8
|
Sharzehee M, Fatemifar F, Han HC. Computational simulations of the helical buckling behavior of blood vessels. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3277. [PMID: 31680465 PMCID: PMC7286361 DOI: 10.1002/cnm.3277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 08/27/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Tortuous vessels are often observed in vivo and could hinder or even disrupt blood flow to distal organs. Besides genetic and biological factors, the in vivo mechanical loading seems to play a role in the formation of tortuous vessels, but the mechanism for formation of helical vessel shape remains unclear. Accordingly, the aim of this study was to investigate the biomechanical loads that trigger the occurrence of helical buckling in blood vessels using finite element analysis. Porcine carotid arteries were modeled as thick-walled cylindrical tubes using generalized Fung and Holzapfel-Gasser-Ogden constitutive models. Physiological loadings, including axial tension, lumen pressure, and axial torque, were applied. Simulations of various geometric dimensions, different constitutive models and at various levels of axial stretch ratios, lumen pressures, and twist angles were performed to identify the mechanical factors that determine the helical stability. Our results demonstrated that axial torsion can cause wringing (twist buckling) that leads to kinking or helical coiling and even looping and winding. The specific buckling patterns depend on the combination of lumen pressure, axial torque, axial tension, and the dimensions of the vessels. This study elucidates the mechanism of how blood vessels buckle under various mechanical loads and how complex mechanical loads yield helical buckling.
Collapse
Affiliation(s)
- Mohammadali Sharzehee
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Fatemeh Fatemifar
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Hai-Chao Han
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX, USA
- Biomedical Engineering Program, UTSA-UTHSCSA, San Antonio, TX
| |
Collapse
|
9
|
Peng K, Cui X, Qiao A, Mu Y. Mechanical analysis of a novel biodegradable zinc alloy stent based on a degradation model. Biomed Eng Online 2019; 18:39. [PMID: 30940146 PMCID: PMC6444843 DOI: 10.1186/s12938-019-0661-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/26/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biodegradable stents display insufficient scaffold performance due to their poor Young's Modulus. In addition, the corresponding biodegradable materials harbor weakened structures during degradation processes. Consequently, such stents have not been extensively applied in clinical therapy. In this study, the scaffold performance of a patented stent and its ability to reshape damaged vessels during degradation process were evaluated. METHODS A common stent was chosen as a control to assess the mechanical behavior of the patented stent. Finite element analysis was used to simulate stent deployment into a 40% stenotic vessel. A material corrosion model involving uniform and stress corrosion was implemented within the finite element framework to update the stress state following degradation. RESULTS The results showed that radial recoiling ratio and mass loss ratio of the patented stent is 7.19% and 3.1%, respectively, which are definitely lower than those of the common stent with the corresponding values of 22.6% and 14.1%, respectively. Moreover, the patented stent displayed stronger scaffold performance in a corrosive environment and the plaque treated with patented stents had a larger and flatter lumen. CONCLUSION Owing to its improved mechanical performance, the novel biodegradable zinc alloy stent reported here has high potential as an alternative choice in surgery.
Collapse
Affiliation(s)
- Kun Peng
- College of Life Science and Bioengineering, Beijing University of Technology, No.100, Pingleyuan, Chaoyang District, Beijing, 100124 China
| | - Xinyang Cui
- College of Life Science and Bioengineering, Beijing University of Technology, No.100, Pingleyuan, Chaoyang District, Beijing, 100124 China
| | - Aike Qiao
- College of Life Science and Bioengineering, Beijing University of Technology, No.100, Pingleyuan, Chaoyang District, Beijing, 100124 China
| | - Yongliang Mu
- Northeastern University, Shenyang, 110819 Liaoning China
| |
Collapse
|
10
|
Haemodynamic Recovery Properties of the Torsioned Testicular Artery Lumen. Sci Rep 2017; 7:15570. [PMID: 29138449 PMCID: PMC5686114 DOI: 10.1038/s41598-017-15680-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/31/2017] [Indexed: 11/08/2022] Open
Abstract
Testicular artery torsion (twisting) is one such severe vascular condition that leads spermatic cord injury. In this study, we investigate the recovery response of a torsioned ram testicular artery in an isolated organ-culture flow loop with clinically relevant twisting modes (90°, 180°, 270° and 360° angles). Quantitative optical coherence tomography technique was employed to track changes in the lumen diameter, wall thickness and the three-dimensional shape of the vessel in the physiological pressure range (10-50 mmHg). As a control, pressure-flow characteristics of the untwisted arteries were studied when subjected to augmented blood flow conditions with physiological flow rates up to 36 ml/min. Both twist and C-shaped buckling modes were observed. Acute increase in pressure levels opened the narrowed lumen of the twisted arteries noninvasively at all twist angles (at ∼22 mmHg and ∼35 mmHg for 360°-twisted vessels during static and dynamic flow experiments, respectively). The association between the twist-opening flow rate and the vessel diameter was greatly influenced by the initial twist angle. The biomechanical characteristics of the normal (untwisted) and torsioned testicular arteries supported the utilization of blood flow augmentation as an effective therapeutic approach to modulate the vessel lumen and recover organ reperfusion.
Collapse
|
11
|
Arterial wall remodeling under sustained axial twisting in rats. J Biomech 2017; 60:124-133. [PMID: 28693818 DOI: 10.1016/j.jbiomech.2017.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 06/13/2017] [Accepted: 06/14/2017] [Indexed: 01/03/2023]
Abstract
Blood vessels often experience torsion along their axes and it is essential to understand their biological responses and wall remodeling under torsion. To this end, a rat model was developed to investigate the arterial wall remodeling under sustained axial twisting in vivo. Rat carotid arteries were twisted at 180° along the longitudinal axis through a surgical procedure and maintained for different durations up to 4weeks. The wall remodeling in these twisted arteries was examined using histology, immunohistochemistry and fluorescent microscopy. Our data showed that arteries remodeled under twisting in a time-dependent manner during the 4weeks post-surgery. Cell proliferation, MMP-2 and MMP-9 expressions, medial wall thickness and lumen diameter increased while collagen to elastin ratio decreased. The size and number of internal elastic lamina fenestrae increased with elongated shapes, while the endothelial cells elongated and aligned towards the blood flow direction gradually. These results demonstrated that sustained axial twisting results in artery remodeling in vivo. The rat carotid artery twisting model is an effective in vivo model for studying arterial wall remodeling under long-term torsion. These results enrich our understanding of vascular biology and arterial wall remodeling under mechanical stresses.
Collapse
|