1
|
Park J, Lee I, Jafari S, Demer JL. Tensile properties of glaucomatous human sclera, optic nerve, and optic nerve sheath. Biomech Model Mechanobiol 2024; 23:1851-1862. [PMID: 39112729 PMCID: PMC11554696 DOI: 10.1007/s10237-024-01872-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/25/2024] [Indexed: 09/01/2024]
Abstract
We characterized the tensile behavior of sclera, optic nerve (ON), and ON sheath in eyes from donors with glaucoma, for comparison with published data without glaucoma. Twelve freshly harvested eyes were obtained from donors with history of glaucoma, of average age 86 ± 7 (standard deviation) years. Rectangular samples were taken from anterior, equatorial, posterior, and peripapillary sclera, and ON sheath, while ON was in native form and measured using calipers. Under physiological temperature and humidity, tissues were preconditioned at 5% strain before loading at 0.1 mm/s. Force-displacement data were converted into engineering stress-strain curves fit by reduced polynomial hyperelastic models and analyzed by tangent moduli at 3% and 7% strain. Data were compared with an age-matched sample of 7 published control eyes. Optic atrophy was supported by significant reduction in ON cross section to 73% of normal in glaucomatous eyes. Glaucomatous was significantly stiffer than control in equatorial and peripapillary regions (P < 0.001). However, glaucomatous ON and sheath were significantly less stiff than control, particularly at low strain (P < 0.001). Hyperelastic models were well fit to stress-strain data (R2 > 0.997). Tangent moduli had variability similar to control in most regions, but was abnormally large in peripapillary sclera. Tensile properties were varied independently among various regions of the same eyes. Glaucomatous sclera is abnormally stiff, but the ON and sheath are abnormally compliant. These abnormalities correspond to properties predicted by finite element analysis to transfer potentially pathologic stress to the vulnerable disk and lamina cribrosa region during adduction eye movement.
Collapse
Affiliation(s)
- Joseph Park
- Department of Ophthalmology and Stein Eye Institute, University of California, Los Angeles, 100 Stein Plaza, Los Angeles, CA, 90095-7002, USA
| | - Immi Lee
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Somaye Jafari
- Department of Ophthalmology and Stein Eye Institute, University of California, Los Angeles, 100 Stein Plaza, Los Angeles, CA, 90095-7002, USA
| | - Joseph L Demer
- Department of Ophthalmology and Stein Eye Institute, University of California, Los Angeles, 100 Stein Plaza, Los Angeles, CA, 90095-7002, USA.
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA.
- Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA.
- Bioengineering Department, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Lommatzsch C, van Oterendorp C. Current Status and Future Perspectives of Optic Nerve Imaging in Glaucoma. J Clin Med 2024; 13:1966. [PMID: 38610731 PMCID: PMC11012267 DOI: 10.3390/jcm13071966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Being the primary site of degeneration, the optic nerve has always been the focus of structural glaucoma assessment. The technical advancements, mainly of optical coherence tomography (OCT), now allow for a very precise quantification of the optic nerve head and peripapillary retina morphology. By far the most commonly used structural optic nerve parameter is the thickness of the parapapillary retinal nerve fiber, which has great clinical utility but also suffers from significant limitations, mainly in advanced glaucoma. Emerging novel imaging technologies, such as OCT angiography, polarization-sensitive or visible-light OCT and adaptive optics, offer new biomarkers that have the potential to significantly improve structural glaucoma diagnostics. Another great potential lies in the processing of the data already available. Artificial intelligence does not only help increase the reliability of current biomarkers but can also integrate data from various imaging modalities and other clinical measures to increase diagnostic accuracy. And it can, in a more efficient way, draw information from available datasets, such as an OCT scan, compared to the current concept of biomarkers, which only use a fraction of the whole dataset.
Collapse
Affiliation(s)
- Claudia Lommatzsch
- Department of Ophthalmology, St. Franziskus Hospital, Hohenzollernring 74, 48145 Muenster, Germany
- Department of Ophthalmology, University of Luebeck, 23562 Luebeck, Germany
| | | |
Collapse
|
3
|
Song D, Lim S, Park J, Demer JL. Linear viscoelasticity of human sclera and posterior ocular tissues during tensile creep. J Biomech 2023; 151:111530. [PMID: 36933327 PMCID: PMC11407690 DOI: 10.1016/j.jbiomech.2023.111530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/13/2023]
Abstract
PURPOSE Despite presumed relevance to ocular diseases, the viscoelastic properties of the posterior human eye have not been evaluated in detail. We performed creep testing to characterize the viscoelastic properties of ocular regions, including the sclera, optic nerve (ON) and ON sheath. METHODS We tested 10 pairs of postmortem human eyes of average age 77 ± 17 years, consisting of 5 males and 5 females. Except for the ON that was tested in native shape, tissues were trimmed into rectangles. With physiologic temperature and constant wetting, tissues were rapidly loaded to tensile stress that was maintained by servo feedback as length was monitored for 1,500 sec. Relaxation modulus was computed using Prony series, and Deborah numbers estimated for times scales of physiological eye movements. RESULTS Correlation between creep rate and applied stress level was negligible for all tissues, permitting description as linear viscoelastic materials characterized by lumped parameter compliance equations for limiting behaviors. The ON was the most compliant, and anterior sclera least compliant, with similar intermediate values for posterior sclera and ON sheath. Sensitivity analysis demonstrated that linear behavior eventually become dominant after long time. For the range of typical pursuit tracking, all tissues exhibit Debora numbers less than 75, and should be regarded as viscoelastic. With a 6.7 Deborah number, this is especially so for the ON during pursuit and convergence. CONCLUSIONS Posterior ocular tissues exhibit creep consistent with linear viscoelasticity necessary for describing biomechanical behavior of the ON, its sheath, and sclera during physiological eye movements and eccentric ocular fixations. Running Head: Tensile Creep of Human Ocular Tissues.
Collapse
Affiliation(s)
- Dooseop Song
- Department of Mechanical Engineering, University of California, Los Angeles, United States; Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, United States
| | - Seongjin Lim
- Department of Mechanical Engineering, University of California, Los Angeles, United States; Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, United States
| | - Joseph Park
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, United States
| | - Joseph L Demer
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, United States; Department of Bioengineering, University of California, Los Angeles, United States; Department of Neurology, University of California, Los Angeles, United States.
| |
Collapse
|
4
|
Sun X, Qiao Y, Zhao L, Shi Z, Zhang X, Cao R, Zhou Q, Shi W. Application of Decellularized Porcine Sclera in Repairing Corneal Perforations and Lamellar Injuries. ACS Biomater Sci Eng 2022; 8:5295-5306. [PMID: 36454184 DOI: 10.1021/acsbiomaterials.2c00972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Scleras are mainly used for the treatment of glaucoma, eyelid damage, and scleral ulcers. Given that the sclera and cornea collectively constitute the complete external structure of the eyeball and both have the same tissue and cell origin, we attempted to identify scleral materials to treat lamellar and penetrating corneal injuries. Based on research in our center, antigenic components in decellularized porcine sclera (DPS) were removed using a simplified decellularization method, leaving the collagen structure and active components undamaged. DPS preserved the mechanical properties and did not significantly inhibit the proliferation and replication of human corneal epithelial cells. In vivo, the graft epithelium healed well after lamellar and penetrating scleral grafting, and the graft thickness did not change evidently. DPS can resist suture traction during scleral transplantation and maintain anterior chamber stability until day 28 post-operatively, especially in penetrating repairs. No obvious immune rejection of lamellar or penetrating scleral grafts was found 28 days after DPS transplantation. This study shows that DPS could be used as an alternative material for the emergency repair of corneal perforations and lamellar injuries, representing another application of sclera.
Collapse
Affiliation(s)
- Xiuli Sun
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Jingsi Road, Jinan 271000, China
| | - Yujie Qiao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Jingsi Road, Jinan 271000, China
| | - Long Zhao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Jingsi Road, Jinan 271000, China
| | - Zhen Shi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Jingsi Road, Jinan 271000, China
| | - Xiaoyu Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Jingsi Road, Jinan 271000, China
| | - Rui Cao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Jingsi Road, Jinan 271000, China
| | - Qingjun Zhou
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, 5 Yan'erdao Road, Qingdao 266071, China
| | - Weiyun Shi
- Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Jingsi Road, Jinan 271000, China
| |
Collapse
|
5
|
Material properties and effect of preconditioning of human sclera, optic nerve, and optic nerve sheath. Biomech Model Mechanobiol 2021; 20:1353-1363. [PMID: 33877503 PMCID: PMC8298341 DOI: 10.1007/s10237-021-01448-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/06/2021] [Indexed: 02/03/2023]
Abstract
The optic nerve (ON) is a recently recognized tractional load on the eye during larger horizontal eye rotations. In order to understand the mechanical behavior of the eye during adduction, it is necessary to characterize material properties of the sclera, ON, and in particular its sheath. We performed tensile loading of specimens taken from fresh postmortem human eyes to characterize the range of variation in their biomechanical properties and determine the effect of preconditioning. We fitted reduced polynomial hyperelastic models to represent the nonlinear tensile behavior of the anterior, equatorial, posterior, and peripapillary sclera, as well as the ON and its sheath. For comparison, we analyzed tangent moduli in low and high strain regions to represent stiffness. Scleral stiffness generally decreased from anterior to posterior ocular regions. The ON had the lowest tangent modulus, but was surrounded by a much stiffer sheath. The low-strain hyperelastic behaviors of adjacent anatomical regions of the ON, ON sheath, and posterior sclera were similar as appropriate to avoid discontinuities at their boundaries. Regional stiffnesses within individual eyes were moderately correlated, implying that mechanical properties in one region of an eye do not reliably reflect properties of another region of that eye, and that potentially pathological combinations could occur in an eye if regional properties are discrepant. Preconditioning modestly stiffened ocular tissues, except peripapillary sclera that softened. The nonlinear mechanical behavior of posterior ocular tissues permits their stresses to match closely at low strains, although progressively increasing strain causes particularly great stress in the peripapillary region.
Collapse
|
6
|
Willemse J, Gräfe MGO, Verbraak FD, de Boer JF. In Vivo 3D Determination of Peripapillary Scleral and Retinal Layer Architecture Using Polarization-Sensitive Optical Coherence Tomography. Transl Vis Sci Technol 2020; 9:21. [PMID: 33150047 PMCID: PMC7585391 DOI: 10.1167/tvst.9.11.21] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/25/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose The purpose of this paper was to determine the architecture of the collagen fibers of the peripapillary sclera, the retinal nerve fiber layer (RNFL), and Henle's fiber layer in vivo in 3D using polarization-sensitive optical coherence tomography (PS-OCT). Methods Seven healthy volunteers were imaged with our in-house built PS-OCT system. PS-OCT imaging included intensity, local phase retardation, relative optic axis, and optic axis uniformity (OAxU). Differential Mueller matrix calculus was used for the first time in ocular tissues to visualize local orientations that varied with depth, incorporating a correction method for the fiber orientation in preceding layers. Results Scleral collagen fiber orientation images clearly showed an inner layer with an orientation parallel to the RNFL orientation, and a deeper layer where the collagen was circularly oriented. RNFL orientation images visualized the nerve fibers leaving the optic nerve head (ONH) in a radial pattern. The phase retardation and orientation of Henle's fiber layer were visualized locally for the first time. Conclusions PS-OCT successfully showed the orientation of the retinal nerve fibers, sclera, and Henle's fiber layer, and is to the extent of our knowledge the only technique able to do so in 3D in vivo. Translational Relevance In vivo 3D imaging of scleral collagen architecture and the retinal neural fibrous structures can improve our understanding of retinal biomechanics and structural alterations in different disease stages of myopia and glaucoma.
Collapse
Affiliation(s)
- Joy Willemse
- Department of Physics and Astronomy, LaserLab Amsterdam, Vrije Universiteit de Boelelaan, Amsterdam, The Netherlands
| | - Maximilian G O Gräfe
- Department of Physics and Astronomy, LaserLab Amsterdam, Vrije Universiteit de Boelelaan, Amsterdam, The Netherlands.,Current address: Imedos Systems GmbH, Am Nasstal 4, Jena, Germany
| | - Frank D Verbraak
- Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Ophthalmology Department, de Boelelaan, Amsterdam, The Netherlands
| | - Johannes F de Boer
- Department of Physics and Astronomy, LaserLab Amsterdam, Vrije Universiteit de Boelelaan, Amsterdam, The Netherlands.,Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Ophthalmology Department, de Boelelaan, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Jin Y, Wang X, Irnadiastputri SFR, Mohan RE, Aung T, Perera SA, Boote C, Jonas JB, Schmetterer L, Girard MJA. Effect of Changing Heart Rate on the Ocular Pulse and Dynamic Biomechanical Behavior of the Optic Nerve Head. Invest Ophthalmol Vis Sci 2020; 61:27. [PMID: 32315378 PMCID: PMC7401455 DOI: 10.1167/iovs.61.4.27] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Purpose To study the effect of changing heart rate on the ocular pulse and the dynamic biomechanical behavior of the optic nerve head (ONH) using a comprehensive mathematical model. Methods In a finite element model of a healthy eye, a biphasic choroid consisted of a solid phase with connective tissues and a fluid phase with blood, and the lamina cribrosa (LC) was viscoelastic as characterized by a stress-relaxation test. We applied arterial pressures at 18 ocular entry sites (posterior ciliary arteries), and venous pressures at four exit sites (vortex veins). In the model, the heart rate was varied from 60 to 120 bpm (increment: 20 bpm). We assessed the ocular pulse amplitude (OPA), pulse volume, ONH deformations, and the dynamic modulus of the LC at different heart rates. Results With an increasing heart rate, the OPA decreased by 0.04 mm Hg for every 10 bpm increase in heart rate. The ocular pulse volume decreased linearly by 0.13 µL for every 10 bpm increase in heart rate. The storage modulus and the loss modulus of the LC increased by 0.014 and 0.04 MPa, respectively, for every 10 bpm increase in heart rate. Conclusions In our model, the OPA, pulse volume, and ONH deformations decreased with an increasing heart rate, whereas the LC became stiffer. The effects of blood pressure/heart rate changes on ONH stiffening may be of interest for glaucoma pathology.
Collapse
|
8
|
Boote C, Sigal IA, Grytz R, Hua Y, Nguyen TD, Girard MJA. Scleral structure and biomechanics. Prog Retin Eye Res 2019; 74:100773. [PMID: 31412277 DOI: 10.1016/j.preteyeres.2019.100773] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 12/18/2022]
Abstract
As the eye's main load-bearing connective tissue, the sclera is centrally important to vision. In addition to cooperatively maintaining refractive status with the cornea, the sclera must also provide stable mechanical support to vulnerable internal ocular structures such as the retina and optic nerve head. Moreover, it must achieve this under complex, dynamic loading conditions imposed by eye movements and fluid pressures. Recent years have seen significant advances in our knowledge of scleral biomechanics, its modulation with ageing and disease, and their relationship to the hierarchical structure of the collagen-rich scleral extracellular matrix (ECM) and its resident cells. This review focuses on notable recent structural and biomechanical studies, setting their findings in the context of the wider scleral literature. It reviews recent progress in the development of scattering and bioimaging methods to resolve scleral ECM structure at multiple scales. In vivo and ex vivo experimental methods to characterise scleral biomechanics are explored, along with computational techniques that combine structural and biomechanical data to simulate ocular behaviour and extract tissue material properties. Studies into alterations of scleral structure and biomechanics in myopia and glaucoma are presented, and their results reconciled with associated findings on changes in the ageing eye. Finally, new developments in scleral surgery and emerging minimally invasive therapies are highlighted that could offer new hope in the fight against escalating scleral-related vision disorder worldwide.
Collapse
Affiliation(s)
- Craig Boote
- Structural Biophysics Research Group, School of Optometry & Vision Sciences, Cardiff University, UK; Ophthalmic Engineering & Innovation Laboratory (OEIL), Department of Biomedical Engineering, National University of Singapore, Singapore; Newcastle Research & Innovation Institute Singapore (NewRIIS), Singapore.
| | - Ian A Sigal
- Laboratory of Ocular Biomechanics, Department of Ophthalmology, University of Pittsburgh, USA
| | - Rafael Grytz
- Department of Ophthalmology & Visual Sciences, University of Alabama at Birmingham, USA
| | - Yi Hua
- Laboratory of Ocular Biomechanics, Department of Ophthalmology, University of Pittsburgh, USA
| | - Thao D Nguyen
- Department of Mechanical Engineering, Johns Hopkins University, USA
| | - Michael J A Girard
- Ophthalmic Engineering & Innovation Laboratory (OEIL), Department of Biomedical Engineering, National University of Singapore, Singapore; Singapore Eye Research Institute (SERI), Singapore National Eye Centre, Singapore
| |
Collapse
|