1
|
Ansaripour H, Ferguson SJ, Flohr M. The effects of setup parameters on the measured kinetic output of cervical disc prostheses. Med Eng Phys 2024; 131:104227. [PMID: 39284651 DOI: 10.1016/j.medengphy.2024.104227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
Mechanical testing machines are used to evaluate kinematics, kinetics, wear, and efficacy of spinal implants. The simulation of "physiological" spinal loading conditions necessitates the simultaneous use of multiple actuators. The challenge in achieving a desired loading profile lies in achieving close synchronization of these actuators. Errors in load application can be attributed to both the control system and the intrinsic sample response. Moreover, the presence of friction in the setup can have an impact on the measured outcome. The optimization of setup parameters can substantially improve the ability to simulate spinal loading conditions and obtain reliable data on implant performance. In this study, a reproducible kinematic test protocol was developed to evaluate the sensitivity of the kinetic response (i.e., measured loads, moments, and stiffnesses) of a cervical disc prosthesis to several testing parameters. In this context, five ceramic ball and socket sample implants were mounted in a 6 DOF material testing machine and tested with a constant axial compressive force of 100 N in two motion modes: 1) flexion-extension (±7.5°) and 2) lateral bending (±6°). Parameters including rotation rate, slider friction, friction between the samples' articulating surfaces, and moment arm were considered to determine their effects on measured kinetic parameters. The sensitivity analysis indicated that all setup parameters except friction between the samples' articulating surfaces had a substantial effect on the results. The findings were then compared to predictions from a free body diagram to determine the optimal setup parameters. Consequently, the setup with the lowest rotation rate and employing passive sliders yielded results that were consistent with the free body diagram. This study demonstrated the significance of a comprehensive setup evaluation for reliable and reproducible testing of spinal implants, also for comparison between labs.
Collapse
Affiliation(s)
- Hossein Ansaripour
- CeramTec GmbH, Plochingen, Germany, CeramTec GmbH, CeramTec-Platz 1-9, 73207 Plochingen, Germany; Institute for Biomechanics, D-HEST, ETH Zurich, Zurich, Switzerland, Gloriastrasse 37 / 39, 8092 Zurich, Switzerland.
| | - Stephen J Ferguson
- Institute for Biomechanics, D-HEST, ETH Zurich, Zurich, Switzerland, Gloriastrasse 37 / 39, 8092 Zurich, Switzerland.
| | - Markus Flohr
- CeramTec GmbH, Plochingen, Germany, CeramTec GmbH, CeramTec-Platz 1-9, 73207 Plochingen, Germany.
| |
Collapse
|
2
|
Choi H, Purushothaman Y, Ozobu I, Yoganandan N. Is Posterior Cervical Foraminotomy Better Than Fusion for Warfighters?: A Biomechanical Study. Mil Med 2024; 189:710-718. [PMID: 39160815 DOI: 10.1093/milmed/usae235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/26/2024] [Accepted: 04/25/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION Cervical spondylosis in the warfighter is a common musculoskeletal problem and can be career-ending especially if it requires fusion. Head-mounted equipment and increased biomechanical forces on the cervical spine have resulted in accelerated cervical spine degeneration. Current surgical gold standard is anterior cervical discectomy and fusion (ACDF). Posterior cervical foraminotomy (PCF) is a nonfusion surgical alternative, and this can be effective in alleviating radiculopathy from foraminal stenosis caused by disc-osteophyte complex. Biomechanical studies have not been done to analyze motion associated with military aircrew personnel following PCF. The aim of this study was to compare the biomechanical responses of the effects of ACDF and PCF with different grades of facet resection under simulated military aircrew conditions using range of motion, disc pressure, and facet loads at the index and adjacent levels. MATERIALS AND METHODS A validated 3D finite element model of the human cervical spinal column was used to simulate various graded PCF and ACDF. All surgical simulations were performed at the most commonly operated level (C5-C6) in warfighters. Pure moment loading under flexion, extension, and lateral bending, and in vivo follower force of 75 N were applied to the intact spine. Hybrid loading protocol was used to achieve 134 degrees of combined flexion-extension and 83 degrees of lateral bending in intact and surgical models to reflect military loading conditions. Segmental motions, disc pressure, and facet load were obtained and normalized with respect to the intact model to quantify the biomechanical effect. RESULTS Anterior cervical discectomy and fusion decreased range of motion at the index and increased motion at the adjacent levels, while all graded PCF responses had an opposite trend: increased motion at the index and decreased motion at adjacent levels. The magnitude of changes depended on the level of resection, spinal level, and loading mode. Disc pressure increased at the index level and decreased at the adjacent levels after PCF. These changes were exaggerated with increasing extent of facet resection. Facet load increased at the index level after PCF especially with extension and right (contralateral) lateral bending. Complete facetectomy led to facet load increases greater than ACDF at the adjacent levels in both flexion and extension. CONCLUSIONS Posterior cervical foraminotomy is a motion-preserving implant-free surgical alternative to ACDF for warfighters with cervical radiculopathy after failure of conservative management. The treating surgeon must pay close attention to the extent of facet resection to avoid potential spinal instability and future disc and facet degeneration after PCF. Posterior cervical foraminotomy can be more advantageous than ACDF in terms of adjacent segment degeneration, motion preservation, reoperation rate, surgical cost, and retention of warfighters.
Collapse
Affiliation(s)
- Hoon Choi
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic Florida, Weston, FL 33331, USA
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yuvaraj Purushothaman
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic Florida, Weston, FL 33331, USA
| | - Ifeanyichukwu Ozobu
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic Florida, Weston, FL 33331, USA
| | - Narayan Yoganandan
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53295, USA
| |
Collapse
|
3
|
Yoganandan N, Choi H, Purushothaman Y, Vedantam A, Harinathan B, Banerjee A. Comparison of Load-Sharing Responses Between Graded Posterior Cervical Foraminotomy and Conventional Fusion Using Finite Element Modeling. JOURNAL OF ENGINEERING AND SCIENCE IN MEDICAL DIAGNOSTICS AND THERAPY 2024; 7:021006. [PMID: 37860789 PMCID: PMC10583278 DOI: 10.1115/1.4063465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/23/2023] [Indexed: 10/21/2023]
Abstract
Following the diagnosis of unilateral cervical radiculopathy and need for surgical intervention, anterior cervical diskectomy and fusion (conventional fusion) and posterior cervical foraminotomy are common options. Although patient outcomes may be similar between the two procedures, their biomechanical effects have not been fully compared using a head-to-head approach, particularly, in relation to the amount of facet resection and internal load-sharing between spinal segments and components. The objective of this investigation was to compare load-sharing between conventional fusion and graded foraminotomy facet resections under physiological loading. A validated finite element model of the cervical spinal column was used in the study. The intact spine was modified to simulate the two procedures at the C5-C6 spinal segment. Flexion, extension, and lateral bending loads were applied to the intact, graded foraminotomy, and conventional fusion spines. Load-sharing was determined using range of motion data at the C5-C6 and immediate adjacent segments, facet loads at the three segments, and disk pressures at the adjacent segments. Results were normalized with respect to the intact spine to compare surgical options. Conventional fusion leads to increased motion, pressure, and facet loads at adjacent segments. Foraminotomy leads to increased motion and anterior loading at the index level, and motions decrease at adjacent levels. In extension, the left facet load decreases after foraminotomy. Recognizing that foraminotomy is a motion preserving alternative to conventional fusion, this study highlights various intrinsic biomechanical factors and potential instability issues with more than one-half facet resection.
Collapse
Affiliation(s)
| | - Hoon Choi
- Cleveland Clinic Florida, Weston, FL 33331
| | | | | | | | | |
Collapse
|
4
|
Yoganandan N, Harinathan B, Vedantam A. Cervical Column and Cord and Column Responses in Whiplash With Stenosis: A Finite Element Modeling Study. JOURNAL OF ENGINEERING AND SCIENCE IN MEDICAL DIAGNOSTICS AND THERAPY 2024; 7:021003. [PMID: 37860790 PMCID: PMC10583276 DOI: 10.1115/1.4063250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/18/2023] [Indexed: 10/21/2023]
Abstract
Spine degeneration is a normal aging process. It may lead to stenotic spines that may have implications for pain and quality of life. The diagnosis is based on clinical symptomatology and imaging. Magnetic resonance images often reveal the nature and degree of stenosis of the spine. Stenosis is concerning to clinicians and patients because of the decreased space in the spinal canal and potential for elevated risk of cord and/or osteoligamentous spinal column injuries. Numerous finite element models of the cervical spine have been developed to study the biomechanics of the osteoligamentous column such as range of motion and vertebral stress; however, spinal cord modeling is often ignored. The objective of this study was to determine the external column and internal cord and disc responses of stenotic spines using finite element modeling. A validated model of the subaxial spinal column was used. The osteoligamentous column was modified to include the spinal cord. Mild, moderate, and severe degrees of stenosis commonly identified in civilian populations were simulated at C5-C6. The column-cord model was subjected to postero-anterior acceleration at T1. The range of motion, disc pressure, and cord stress-strain were obtained at the index and superior and inferior adjacent levels of the stenosis. The external metric representing the segmental motion was insensitive while the intrinsic disc and cord variables were more sensitive, and the index level was more affected by stenosis. These findings may influence surgical planning and patient education in personalized medicine.
Collapse
Affiliation(s)
- Narayan Yoganandan
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226; Department of Veterans Affairs Medical Center, Milwaukee, WI 53295
| | - Balaji Harinathan
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226; School of Mechanical Engineering, Vellore Institute of Technology, Chennai, Tamilnadu 632014, India
| | - Aditya Vedantam
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226; Department of Veterans Affairs Medical Center, Milwaukee, WI 53295
| |
Collapse
|
5
|
Hsieh MK, Tai CL, Li YD, Lee DM, Lin CY, Tsai TT, Lai PL, Chen WP. Finite element analysis of optimized novel additively manufactured non-articulating prostheses for cervical total disc replacement. Front Bioeng Biotechnol 2023; 11:1182265. [PMID: 37324423 PMCID: PMC10267663 DOI: 10.3389/fbioe.2023.1182265] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Ball-and-socket designs of cervical total disc replacement (TDR) have been popular in recent years despite the disadvantages of polyethylene wear, heterotrophic ossification, increased facet contact force, and implant subsidence. In this study, a non-articulating, additively manufactured hybrid TDR with an ultra-high molecular weight polyethylene core and polycarbonate urethane (PCU) fiber jacket, was designed to mimic the motion of normal discs. A finite element (FE) study was conducted to optimize the lattice structure and assess the biomechanical performance of this new generation TDR with an intact disc and a commercial ball-and-socket Baguera®C TDR (Spineart SA, Geneva, Switzerland) on an intact C5-6 cervical spinal model. The lattice structure of the PCU fiber was constructed using the Tesseract or the Cross structures from the IntraLattice model in the Rhino software (McNeel North America, Seattle, WA) to create the hybrid I and hybrid II groups, respectively. The circumferential area of the PCU fiber was divided into three regions (anterior, lateral and posterior), and the cellular structures were adjusted. Optimal cellular distributions and structures were A2L5P2 in the hybrid I and A2L7P3 in the hybrid II groups. All but one of the maximum von Mises stresses were within the yield strength of the PCU material. The range of motions, facet joint stress, C6 vertebral superior endplate stress and path of instantaneous center of rotation of the hybrid I and II groups were closer to those of the intact group than those of the Baguera®C group under 100 N follower load and pure moment of 1.5 Nm in four different planar motions. Restoration of normal cervical spinal kinematics and prevention of implant subsidence could be observed from the FE analysis results. Superior stress distribution in the PCU fiber and core in the hybrid II group revealed that the Cross lattice structure of a PCU fiber jacket could be a choice for a next-generation TDR. This promising outcome suggests the feasibility of implanting an additively manufactured multi-material artificial disc that allows for better physiological motion than the current ball-and-socket design.
Collapse
Affiliation(s)
- Ming-Kai Hsieh
- Department of Orthopaedic Surgery, Spine Section, Bone and Joint Research Center, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ching-Lung Tai
- Department of Orthopaedic Surgery, Spine Section, Bone and Joint Research Center, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Yun-Da Li
- Department of Orthopaedic Surgery, Spine Section, Bone and Joint Research Center, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - De-Mei Lee
- Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Yi Lin
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Tsung-Ting Tsai
- Department of Orthopaedic Surgery, Spine Section, Bone and Joint Research Center, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Po-Liang Lai
- Department of Orthopaedic Surgery, Spine Section, Bone and Joint Research Center, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Weng-Pin Chen
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei, Taiwan
| |
Collapse
|
6
|
Li Y, Chen Q, Shu X, Liao Y, Zeng Q, Pou KC, Cai L, Huang Z, Tang S. Biomechanical Effect of Osteoporosis on Adjacent Segments After Anterior Cervical Corpectomy and Fusion. World Neurosurg 2023; 171:e432-e439. [PMID: 36521758 DOI: 10.1016/j.wneu.2022.12.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Adjacent segmental degeneration (ASD) is one common long-term complication of anterior cervical corpectomy and fusion (ACCF), and osteoporosis is one basic disease in the elderly. After ACCF, patients may experience osteoporosis with age. However, the influence of osteoporosis on ASD remains unclear. The purpose of this study was to determine whether osteoporosis could affect the development of ASD following ACCF. METHODS Three finite element models of the cervical spine, including 1 normal model, 1 ACCF model, and 1 ACCF with osteoporosis model, were constructed. ACCF was simulated at the C4-C6 level. A 73.6 N follower load and a 1 Nm moment were imposed on the normal model, and the same follower load together with an adjusted moment was applied to the ACCF model and the ACCF with osteoporosis model, to simulate movement in each direction. The range of motion, intradiscal pressure, shear stress on anulus fibrosus, and facet joint stress at C3-C4 and C6-C7 levels of the models were calculated. RESULTS In this study, the normal model was well validated. In flexion, extension, right lateral bending, and right axial rotation, the overall range of motion was 8.92°, 19.7°, 15.37°, and 45.27° in the normal model, and the adjusted moment was 1.4 Nm, 2.7 Nm, 1.1 Nm, and 2.6 Nm in the ACCF model, and 1.3 Nm, 2.5 Nm, 1.1 Nm, and 2.4 Nm in the ACCF with osteoporosis model. Despite of a few exceptions, the maximum values of the outcome measurements were mostly found in the ACCF model, and the minimum values in the normal model. Compared with the ACCF model, most of the outcome measurements were decreased in the ACCF with osteoporosis model. CONCLUSIONS Osteoporosis can retard the adverse influence of ACCF on adjacent segments.
Collapse
Affiliation(s)
- Yixuan Li
- School of Chinese Medicine, Jinan University, Guangzhou, China
| | - Qian Chen
- School of Chinese Medicine, Jinan University, Guangzhou, China
| | - Xinnong Shu
- General Hospital of Southern Theater Command, People's Liberation Army, Guangzhou, China
| | - Yi Liao
- School of Chinese Medicine, Jinan University, Guangzhou, China
| | - Qiuhong Zeng
- School of Chinese Medicine, Jinan University, Guangzhou, China
| | - Kuok Chou Pou
- School of Chinese Medicine, Jinan University, Guangzhou, China
| | - Lulu Cai
- School of Chinese Medicine, Jinan University, Guangzhou, China
| | - Zhen Huang
- School of Chinese Medicine, Jinan University, Guangzhou, China
| | - Shujie Tang
- School of Chinese Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
7
|
Rahman WU, Jiang W, Zhao F, Li Z, Wang G, Yang G. Biomechanical analysis of single- and double-level cervical disc arthroplasty using finite element modeling. Proc Inst Mech Eng H 2023; 237:91-103. [PMID: 36394294 DOI: 10.1177/09544119221135627] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recently, many different types of artificial discs have been introduced to persevere the biomechanical behavior of the cervical spine. This study compares the biomechanical behavior of single- and double-level cervical disc arthroplasty, that is "Prestige LP and Mobi-C" on the index and adjacent segment. A three-dimension finite element model of C2-C7 was developed and validated. In single-level prostheses, the Prestige LP or Mobi-C was implanted in the segment C5-C6, while the double-level arthroplasty was integrated at both segments C4-C5 and C5-C6 in the FE model. The intact FE and prosthesis-modified models were constrained from the inferior endplate of the vertebra C7 and applied a compressive load of 73.6 N with a moment load of 1 Nm on the odontoid process of the vertebra C2 to produce flexion/extension, lateral bending, and axial rotation. The prosthesis-modified model's range of motion and intradiscal pressure were determined and compared to the intact model. Also examined the impact of the prostheses on the stress at the bone-implant interface. The range of motion of the implanted segments in both single- and double-levels arthroplasty was increased while that of the adjacent segment of implanted segments decreased. The intradiscal pressure in both levels of arthroplasty was greater than in the intact model. In conclusion, Mobi-C's cervical prostheses could better preserve the normal range of motion and maintain intradiscal pressure than the Prestige LP.
Collapse
Affiliation(s)
- Waseemur Ur Rahman
- School of Mechanical Engineering, Dalian University of Technology, Dalian, China
| | - Wei Jiang
- School of Mechanical Engineering, Dalian University of Technology, Dalian, China
| | - Fulin Zhao
- School of Mechanical Engineering, Dalian University of Technology, Dalian, China
| | - Zhijun Li
- Department of Orthopedics, Dalian No. 2 People's Hospital, Dalian, China
| | - Guohua Wang
- Department of Orthopedics, Dalian No. 2 People's Hospital, Dalian, China
| | - Guanghui Yang
- School of Mechanical Engineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
8
|
Degenerative Disc Disease of the Spine: From Anatomy to Pathophysiology and Radiological Appearance, with Morphological and Functional Considerations. J Pers Med 2022; 12:jpm12111810. [PMID: 36579533 PMCID: PMC9698646 DOI: 10.3390/jpm12111810] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Degenerative disc disease is a common manifestation in routine imaging of the spine; this finding is partly attributable to physiological aging and partly to a pathological condition, and sometimes this distinction is simply not clear. In this review, we start focusing on disc anatomy and pathophysiology and try to correlate them with radiological aspects. Furthermore, there is a special focus on degenerative disc disease terminology, and, finally, some considerations regarding disc morphology and its specific function, as well as the way in which these aspects change in degenerative disease. Radiologists, clinicians and spine surgeons should be familiar with these aspects since they have an impact on everyday clinical practice.
Collapse
|
9
|
In Silico Meta-Analysis of Boundary Conditions for Experimental Tests on the Lumbar Spine. Ann Biomed Eng 2022; 50:1243-1254. [PMID: 35904702 PMCID: PMC9474587 DOI: 10.1007/s10439-022-03015-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/08/2022] [Indexed: 11/02/2022]
Abstract
The study of the spine range of motion under given external load has been the object of many studies in literature, finalised to a better understanding of the spine biomechanics, its physiology, eventual pathologic conditions and possible rehabilitation strategies. However, the huge amount of experimental work performed so far cannot be straightforwardly analysed due to significant differences among loading set-ups. This work performs a meta-analysis of various boundary conditions in literature, focusing on the flexion/extension behaviour of the lumbar spine. The comparison among range of motions is performed virtually through a validated multibody model. Results clearly illustrated the effect of various boundary conditions which can be met in literature, so justifying differences of biomechanical behaviours reported by authors implementing different set-up: for example, a higher value of the follower load can indeed result in a stiffer behaviour; the application of force producing spurious moments results in an apparently more deformable behaviour, however the respective effects change at various segments along the spine due to its natural curvature. These outcomes are reported not only in qualitative, but also in quantitative terms. The numerical approach here followed to perform the meta-analysis is original and it proved to be effective thanks to the bypass of the natural variability among specimens which might completely or partially hinder the effect of some boundary conditions. In addition, it can provide very complete information since the behaviour of each functional spinal unit can be recorded. On the whole, the work provided an extensive review of lumbar spine loading in flexion/extension.
Collapse
|
10
|
Ansaripour H, Ferguson S, Flohr M. In-vitro Biomechanics of the Cervical Spine: a Systematic Review. J Biomech Eng 2022; 144:1140519. [PMID: 35482019 DOI: 10.1115/1.4054439] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Indexed: 11/08/2022]
Abstract
In-vitro testing has been conducted to provide a comprehensive understanding of the biomechanics of the cervical spine. This has allowed a characterization of the stability of the spine as influenced by the intrinsic properties of its tissue constituents and the severity of degeneration or injury. This also enables the pre-clinical estimation of spinal implant functionality and the success of operative procedures. The purpose of this review paper was to compile methodologies and results from various studies addressing spinal kinematics in pre- and post-operative conditions so that they could be compared. The reviewed literature was evaluated to provide suggestions for a better approach for future studies, to reduce the uncertainties and facilitate comparisons among various results. The overview is presented in a way to inform various disciplines, such as experimental testing, design development, and clinical treatment. The biomechanical characteristics of the cervical spine, mainly the segmental range of motion (ROM), intradiscal pressure (IDP), and facet joint load (FJL), have been assessed by testing functional spinal units (FSUs). The relative effects of pathologies including disc degeneration, muscle dysfunction, and ligamentous transection have been studied by imposing on the specimen complex load scenarios imitating physiological conditions. The biomechanical response is strongly influenced by specimen type, test condition, and the different types of implants utilized in the different experimental groups.
Collapse
Affiliation(s)
- Hossein Ansaripour
- CeramTec GmbH, Plochingen, Germany; Institute for Biomechanics, D-HEST, ETH, Zurich, Switzerland, CeramTec GmbH, CeramTec-Platz 1-9, 73207 Plochingen, Germany
| | - Stephen Ferguson
- Institute for Biomechanics, D-HEST, ETH, Zurich, Switzerland, Hönggerbergring 64, HPP O-22, 8093 Zurich, Switzerland
| | - Markus Flohr
- CeramTec GmbH, Plochingen, Germany, CeramTec GmbH, CeramTec-Platz 1-9, 73207 Plochingen, Germany
| |
Collapse
|
11
|
Sun Z, Lu T, Li J, Liu J, Hu Y, Mi C. A finite element study on the effects of follower load on the continuous biomechanical responses of subaxial cervical spine. Comput Biol Med 2022; 145:105475. [PMID: 35381450 DOI: 10.1016/j.compbiomed.2022.105475] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/10/2022] [Accepted: 03/29/2022] [Indexed: 11/28/2022]
Abstract
In spine biomechanics, follower loads are used to mimic the in vivo muscle forces acting on a human spine. However, the effects of the follower load on the continuous biomechanical responses of the subaxial cervical spines (C2-T1) have not been systematically clarified. This study aims at investigating the follower load effects on the continuous biomechanical responses of C2-T1. A nonlinear finite element model is reconstructed and validated for C2-T1. Six levels follower loads are considered along the follower load path that is optimized through a novel range of motion-based method. A moment up to 2 Nm is subsequently superimposed to produce motions in three anatomical planes. The continuous biomechanical responses, including the range of motion, facet joint force, intradiscal pressure and flexibility are evaluated for each motion segment. In the sagittal plane, the change of the overall range of motion arising from the follower loads is less than 6%. In the other two anatomical planes, both the magnitude and shape of the rotation-moment curves change with follower loads. At the neutral position, over 50% decrease in flexibility occurs as the follower load increases from zero to 250 N. In all three anatomical planes, over 50% and 30% decreases in flexibility occur in the first 0.5 Nm for small (≤100 N) and large (≥150 N) follower loads, respectively. Moreover, follower loads tend to increase both the facet joint forces and the intradiscal pressures. The shape of the intradiscal pressure-moment curves changes from nonlinear to roughly linear with increased follower load, especially in the coronal and transverse planes. The results obtained in this work provide a comprehensive understanding on the effects of follower load on the continuous biomechanical responses of the C2-T1.
Collapse
Affiliation(s)
- Zhongwei Sun
- Jiangsu Key Laboratory of Engineering Mechanics, School of Civil Engineering, Southeast University, 2 Sipailou Street, Nanjing, 210096, Jiangsu, China
| | - Teng Lu
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, 30 Huangcheng West Road, Xi'an, 710004, Shaanxi, China
| | - Jialiang Li
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, 30 Huangcheng West Road, Xi'an, 710004, Shaanxi, China
| | - Jiantao Liu
- Department of Orthopedics, First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Yuanbin Hu
- Department of Orthopedics, Zhongda Hospital, Southeast University, 2 Sipailou Street, Nanjing, 210096, Jiangsu, China.
| | - Changwen Mi
- Jiangsu Key Laboratory of Engineering Mechanics, School of Civil Engineering, Southeast University, 2 Sipailou Street, Nanjing, 210096, Jiangsu, China.
| |
Collapse
|
12
|
Yang M, Xiang D, Wang S, Liu W. In Vitro Studies for Investigating Creep of Intervertebral Discs under Axial Compression: A Review of Testing Environment and Results. MATERIALS 2022; 15:ma15072500. [PMID: 35407833 PMCID: PMC9000064 DOI: 10.3390/ma15072500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 01/06/2023]
Abstract
Creep responses of intervertebral discs (IVDs) are essential for spinal biomechanics clarification. Yet, there still lacks a well-recognized investigation protocol for this phenomenon. Current work aims at providing researchers with an overview of the in vitro creep tests reported by previous studies, specifically specimen species, testing environment, loading regimes and major results, based on which a preliminary consensus that may guide future creep studies is proposed. Specimens used in creep studies can be simplified as a “bone–disc–bone” structure where three mathematical models can be adopted for describing IVDs’ responses. The preload of 10–50 N for 30 min or three cycles followed by 4 h-creep under constant compression is recommended for ex vivo simulation of physiological condition of long-time sitting or lying. It is worth noticing that species of specimens, environment temperature and humidity all have influences on biomechanical behaviors, and thus are summarized and compared through the literature review. All factors should be carefully set according to a guideline before tests are conducted to urge comparable results across studies. To this end, this review also provides a guideline, as mentioned before, and specific steps that might facilitate the community of biomechanics to obtain more repeatable and comparable results from both natural specimens and novel biomaterials.
Collapse
Affiliation(s)
- Mengying Yang
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China;
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
| | - Dingding Xiang
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China;
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
| | - Song Wang
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
- Correspondence: (S.W.); (W.L.)
| | - Weiqiang Liu
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
- Correspondence: (S.W.); (W.L.)
| |
Collapse
|
13
|
He T, Zhang J, Yu T, Wu J, Yuan T, Liu R, Yun Z, Du H, Qi L, An J, Xue W, Nie X, Liu Q. Comparative Analysis of the Biomechanical Characteristics After Different Minimally Invasive Surgeries for Cervical Spondylopathy: A Finite Element Analysis. Front Bioeng Biotechnol 2021; 9:772853. [PMID: 34976969 PMCID: PMC8716838 DOI: 10.3389/fbioe.2021.772853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/22/2021] [Indexed: 11/26/2022] Open
Abstract
Minimally invasive surgeries, including posterior endoscopic cervical foraminotomy (PECF), microsurgical anterior cervical foraminotomy (MACF), anterior transdiscal approach of endoscopic cervical discectomy (ATd-ECD), and anterior transcorporeal approach of endoscopic cervical discectomy (ATc-ECD), have obtained positive results for cervical spondylotic radiculopathy. Nonetheless, there is a lack of comparison among them regarding their biomechanical performance. The purpose of this study is to investigate the biomechanical changes of operated and adjacent segments after minimally invasive surgeries compared to a normal cervical spine. A three-dimensional model of normal cervical vertebrae C3–C7 was established using finite element analysis. Afterwards, four surgical models (PECF, MACF, ATd-ECD, and ATc-ECD) were constructed on the basis of the normal model. Identical load conditions were applied to simulate flexion, extension, lateral bending, and axial rotation of the cervical spine. We calculated the range of motion (ROM), intradiscal pressure (IDP), annulus fibrosus pressure (AFP), uncovertebral joints contact pressure (CPRESS), and facet joints CPRESS under different motions. For all circumstances, ATc-ECD was close to the normal cervical spine model, whereas ATd-ECD significantly increased ROM and joints CPRESS and decreased IDP in the operated segment. PECF increased more the operated segment ROM than did the MACF, but the MACF obtained maximum IDP and AFP. Except for ATc-ECD, the other models increased joints CPRESS of the operated segment. For adjacent segments, ROM, IDP, and joints CPRESS showed a downward trend in all models. All models showed good biomechanical stability. With their combination biomechanics, safety, and conditions of application, PECF and ATc-ECD could be appropriate choices for cervical spondylotic radiculopathy.
Collapse
|
14
|
Ovsepyan AL, Smirnov AA, Pustozerov EA, Mokhov DE, Mokhova ES, Trunin EM, Dydykin SS, Vasil'ev YL, Yakovlev EV, Budday S, Paulsen F, Zhivolupov SA, Starchik DA. Biomechanical analysis of the cervical spine segment as a method for studying the functional and dynamic anatomy of the human neck. Ann Anat 2021; 240:151856. [PMID: 34793958 DOI: 10.1016/j.aanat.2021.151856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/11/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Traditionally, dynamic and functional anatomy, in particular the dynamic anatomy of the neck, is studied on cadaveric material. However, the development of in vivo visualization technologies and in silico modeling has made it possible to expand these possibilities. Despite significant progress in the study of dynamic and functional anatomy of the neck by means of in silico methods, the issues of validating the developed models and taking into account the pronounced nonlinearity of soft tissues as well as local anisotropy remain open. The aim of this study was to develop a virtual dynamic anatomical model of the human neck and reproduce the dynamic processes in the cervical spine from this model using the finite element method. MATERIALS AND METHODS Reverse engineering was used to generate a dynamic anatomical model of the neck from CT data (both male, 24 and 22 years old). Two segments of the cervical spine (C3-C5, C2-T1) were isolated from the resulting model for finite element analysis. Finite element mesh generation and contact interactions were performed using the HyperMesh software (Altair Engineering Inc, Troy, Michigan, USA). The anisotropic hyperelastic Holzapfel-Gasser-Ogden model was used to describe the material behavior of the fibrous rings of the disc. Material modeling and finite element analysis were performed using Abaqus CAE 6.14 software (Simulia, Johnston, Rhode Island, USA). RESULTS A technique for creating a virtual dynamic anatomical model of the neck was elaborated and implemented. The model includes 79 major anatomical structures of the neck segmented from radiological data. A finite element analysis of the cervical spine was performed. The results of finite element analysis of the C3-C5 segment under axial load were compared with in vitro data. The proposed model shows nonlinear deformation of the disc under static loading; the model predicted displacement values agree well with the experimental ones. The displacement of the С3-С5 central vertebra with an axial load of 800 N reaches a value of 0.65 mm. For the segment C2-T1, data on intradiscal pressure, stress plots and displacements during flexion were obtained. The maximum stress value of 10.036 MPa is observed in the C3-C4 disc. CONCLUSION Simulation results using the proposed methodology are in good agreement with experimental data. The generated biomechanical models allow describing dynamic phenomena in the cervical spine and obtaining a wide range of quantitative properties of anatomical objects, which are otherwise inaccessible to classical methods for studying dynamic and functional anatomy.
Collapse
Affiliation(s)
- A L Ovsepyan
- Saint Petersburg Electrotechnical University "LETI", Department of Bioengineering Systems, St. Petersburg, Russia
| | - A A Smirnov
- Moscow Region State University, Moscow, Russia.
| | - E A Pustozerov
- Saint Petersburg Electrotechnical University "LETI", Department of Bioengineering Systems, St. Petersburg, Russia; Almazov National Medical Research Centre, Institute of Endocrinology, St. Petersburg, Russia
| | - D E Mokhov
- North-Western State Medical University Named After I.I. Mechnikov, Department of Osteopathy, St. Petersburg, Russia
| | - E S Mokhova
- Insitute of the Osteopathy, St. Petersburg State University, Russia
| | - E M Trunin
- North-Western State Medical University Named After I.I. Mechnikov, Department of Operative and Clinical Surgery with Topographical Anatomy Named After S.A. Simbirtsev, St. Petersburg, Russia
| | - S S Dydykin
- Sechenov University, Department of Operative Surgery and Topographic Anatomy, Moscow, Russia
| | - Yu L Vasil'ev
- Sechenov University, Department of Operative Surgery and Topographic Anatomy, Moscow, Russia
| | - E V Yakovlev
- Medical Center of JSC "Admiralteyskie Verfi", St. Petersburg, Russia; Department of Psychophysiology of the Institute of Applied Psychoanalysis and Psychology of the "University at the Interparliamentary Assembly of EurAsEC", St. Petersburg, Russia
| | - S Budday
- Friedrich Alexander University Erlangen-Nürnberg, Department of Mechanical Engineering, Erlangen, Germany
| | - F Paulsen
- Sechenov University, Department of Operative Surgery and Topographic Anatomy, Moscow, Russia; Friedrich Alexander University Erlangen-Nürnberg, Institute of Functional and Clinical Anatomy, Erlangen, Germany
| | - S A Zhivolupov
- Military Medical Academy Named After S.M. Kirov of the Ministry of Defense of the Russian Federation (St. Petersburg), Department of Nervous Diseases, St. Petersburg, Russia
| | - D A Starchik
- North-Western State Medical University Named After I.I. Mechnikov, Department of Morphology, St. Petersburg, Russia
| |
Collapse
|
15
|
Yoganandan N, Purushothaman Y, Choi H, Jebaseelan D, Baisden J. Biomechanical effects of uncinate process excision in cervical disc arthroplasty. Clin Biomech (Bristol, Avon) 2021; 89:105451. [PMID: 34455338 DOI: 10.1016/j.clinbiomech.2021.105451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Studies on the role of uncinate process have been limited to responses of the intact spine and patient's outcomes, and procedures to perform the excision. The aim of this study was to determine the role of uncinate process on the biomechanical response at the index and adjacent levels in three artificial discs used in cervical disc arthroplasty. METHODS A validated finite element model of cervical spine was used. Flexion, extension, and lateral moments and follower load were applied to Bryan, Mobi-C, and Prestige LP artificial discs at C5-C6 level with and without uncinate process. Ranges of motion at index level and adjacent caudal and cranial segments, intradiscal pressures at adjacent segments, and facet loads at index level and adjacent segments were obtained. Data were normalized with respect to the preservation of uncinate process. FINDINGS Uncinate process removal increased motions up to 27% at index and decreased up to 10% at adjacent levels, decreased disc pressures up to 14% at adjacent segments, decreased facet loads at adjacent segments up to 14%, while at index level, change in loads depended on mode and arthroplasty, with Mobi-C responding with up to 51% increase and Bryan disc up to 11% decrease, while Prestige LP increased loads by 17% in extension and decreased by 9%% in lateral bending. INTERPRETATION As surgical selection is based on morphology and surgeon's experience, the present computational findings provide quantitative information for an optimal choice of the device and procedure, while further studies (in vitro/clinical) would be required.
Collapse
Affiliation(s)
- Narayan Yoganandan
- Center for NeuroTrauma Research, Department of Neurosurgery, 8701 Watertown Plank Road, Medical College of Wisconsin, Zablocki Veterans Administration Medical Center, Milwaukee, WI 53226, USA.
| | - Yuvaraj Purushothaman
- Center for NeuroTrauma Research, Department of Neurosurgery, 8701 Watertown Plank Road, Medical College of Wisconsin, Zablocki Veterans Administration Medical Center, Milwaukee, WI 53226, USA; School of Mechanical Engineering, Kelambakkam Vandalur Road, Rajan Nagar, Vellore Institute of Technology, Chennai Campus, Chennai 600127, India
| | - Hoon Choi
- Center for NeuroTrauma Research, Department of Neurosurgery, 8701 Watertown Plank Road, Medical College of Wisconsin, Zablocki Veterans Administration Medical Center, Milwaukee, WI 53226, USA
| | - Davidson Jebaseelan
- School of Mechanical Engineering, Kelambakkam Vandalur Road, Rajan Nagar, Vellore Institute of Technology, Chennai Campus, Chennai 600127, India
| | - Jamie Baisden
- Center for NeuroTrauma Research, Department of Neurosurgery, 8701 Watertown Plank Road, Medical College of Wisconsin, Zablocki Veterans Administration Medical Center, Milwaukee, WI 53226, USA
| |
Collapse
|
16
|
Wawrose RA, Howington FE, LeVasseur CM, Smith CN, Couch BK, Shaw JD, Donaldson WF, Lee JY, Patterson CG, Anderst WJ, Bell KM. Assessing the biofidelity of in vitro biomechanical testing of the human cervical spine. J Orthop Res 2021; 39:1217-1226. [PMID: 32333606 PMCID: PMC7606317 DOI: 10.1002/jor.24702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 12/10/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023]
Abstract
In vitro biomechanical studies of the osteoligamentous spine are widely used to characterize normal biomechanics, identify injury mechanisms, and assess the effects of degeneration and surgical instrumentation on spine mechanics. The objective of this study was to determine how well four standards in vitro loading paradigms replicate in vivo kinematics with regards to the instantaneous center of rotation and arthrokinematics in relation to disc deformation. In vivo data were previously collected from 20 asymptomatic participants (45.5 ± 5.8 years) who performed full range of motion neck flexion-extension (FE) within a biplane x-ray system. Intervertebral kinematics were determined with sub-millimeter precision using a validated model-based tracking process. Ten cadaveric spines (51.8 ± 7.3 years) were tested in FE within a robotic testing system. Each specimen was tested under four loading conditions: pure moment, axial loading, follower loading, and combined loading. The in vivo and in vitro bone motion data were directly compared. The average in vitro instant center of rotation was significantly more anterior in all four loading paradigms for all levels. In general, the anterior and posterior disc heights were larger in the in vitro models than in vivo. However, after adjusting for gender, the observed differences in disc height were not statistically significant. This data suggests that in vitro biomechanical testing alone may fail to replicate in vivo conditions, with significant implications for novel motion preservation devices such as cervical disc arthroplasty implants.
Collapse
Affiliation(s)
- Richard A. Wawrose
- School of Medicine, Department of Orthopaedic Surgery, Ferguson Lab for Orthopaedic Research, University of Pittsburgh, Pittsburgh, PA 15213
| | - Forbes E. Howington
- School of Medicine, Department of Orthopaedic Surgery, Ferguson Lab for Orthopaedic Research, University of Pittsburgh, Pittsburgh, PA 15213
| | - Clarissa M. LeVasseur
- Department of Orthopaedic Surgery, Biodynamics Laboratory, University of Pittsburgh, Pittsburgh, PA 15203
| | - Clair N. Smith
- School of Medicine, Department of Orthopaedic Surgery, Ferguson Lab for Orthopaedic Research, University of Pittsburgh, Pittsburgh, PA 15213
| | - Brandon K. Couch
- School of Medicine, Department of Orthopaedic Surgery, Ferguson Lab for Orthopaedic Research, University of Pittsburgh, Pittsburgh, PA 15213
| | - Jeremy D. Shaw
- School of Medicine, Department of Orthopaedic Surgery, Ferguson Lab for Orthopaedic Research, University of Pittsburgh, Pittsburgh, PA 15213
| | - William F. Donaldson
- School of Medicine, Department of Orthopaedic Surgery, Ferguson Lab for Orthopaedic Research, University of Pittsburgh, Pittsburgh, PA 15213
| | - Joon Y. Lee
- School of Medicine, Department of Orthopaedic Surgery, Ferguson Lab for Orthopaedic Research, University of Pittsburgh, Pittsburgh, PA 15213
| | - Charity G. Patterson
- School of Medicine, Department of Orthopaedic Surgery, Ferguson Lab for Orthopaedic Research, University of Pittsburgh, Pittsburgh, PA 15213
| | - William J. Anderst
- Department of Orthopaedic Surgery, Biodynamics Laboratory, University of Pittsburgh, Pittsburgh, PA 15203
| | - Kevin M. Bell
- School of Medicine, Department of Orthopaedic Surgery, Ferguson Lab for Orthopaedic Research, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
17
|
Yoganandan N, Purushothaman Y, Choi H, Baisden J, Rajasekaran D, Banerjee A, Jebaseelan D, Kurpad S. Biomechanical Study of Cervical Disc Arthroplasty Devices Using Finite Element Modeling. JOURNAL OF ENGINEERING AND SCIENCE IN MEDICAL DIAGNOSTICS AND THERAPY 2021; 4:021004. [PMID: 35832636 PMCID: PMC8597568 DOI: 10.1115/1.4049907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/11/2021] [Indexed: 06/15/2023]
Abstract
Many artificial discs for have been introduced to overcome the disadvantages of conventional anterior discectomy and fusion. The purpose of this study was to evaluate the performance of different U.S. Food and Drug Administration (FDA)-approved cervical disc arthroplasty (CDA) on the range of motion (ROM), intradiscal pressure, and facet force variables under physiological loading. A validated three-dimensional finite element model of the human intact cervical spine (C2-T1) was used. The intact spine was modified to simulate CDAs at C5-C6. Hybrid loading with a follower load of 75 N and moments under flexion, extension, and lateral bending of 2 N·m each were applied to intact and CDA spines. From this work, it was found that at the index level, all CDAs except the Bryan disc increased ROM, and at the adjacent levels, motion decreased in all modes. The largest increase occurred under the lateral bending mode. The Bryan disc had compensatory motion increases at the adjacent levels. Intradiscal pressure reduced at the adjacent levels with Mobi-C and Secure-C. Facet force increased at the index level in all CDAs, with the highest force with the Mobi-C. The force generally decreased at the adjacent levels, except for the Bryan disc and Prestige LP in lateral bending. This study demonstrates the influence of different CDA designs on the anterior and posterior loading patterns at the index and adjacent levels with head supported mass type loadings. The study validates key clinical observations: CDA procedure is contraindicated in cases of facet arthroplasty and may be protective against adjacent segment degeneration.
Collapse
Affiliation(s)
- Narayan Yoganandan
- Center for NeuroTrauma Research, Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226; VA Medical Center, Medical College of Wisconsin, Milwaukee, WI 53226; Department of Neurosurgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Yuvaraj Purushothaman
- Center for NeuroTrauma Research, Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Hoon Choi
- Center for NeuroTrauma Research, Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Jamie Baisden
- Center for NeuroTrauma Research, Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Deepak Rajasekaran
- Center for NeuroTrauma Research, Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Anjishnu Banerjee
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Davidson Jebaseelan
- School of Mechanical Engineering, Vellore Institute of Technology, Chennai Campus, Chennai 600036, India
| | - Shekar Kurpad
- Center for NeuroTrauma Research, Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226; VA Medical Center, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
18
|
Wilke HJ, Herkommer A, Werner K, Liebsch C. In vitro Analysis of the Intradiscal Pressure of the Thoracic Spine. Front Bioeng Biotechnol 2020; 8:614. [PMID: 32626699 PMCID: PMC7311578 DOI: 10.3389/fbioe.2020.00614] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/20/2020] [Indexed: 11/13/2022] Open
Abstract
The hydrostatic pressure of the nucleus pulposus represents an important parameter in the characterization of spinal biomechanics, affecting the segmental stability as well as the stress distribution across the anulus fibrosus and the endplates. For the development of experimental setups and the validation of numerical models of the spine, intradiscal pressure (IDP) values under defined boundary conditions are therefore essential. Due to the lack of data regarding the thoracic spine, the purpose of this in vitro study was to quantify the IDP of human thoracic spinal motion segments under pure moment loading. Thirty fresh-frozen functional spinal units from 19 donors, aged between 43 and 75 years, including all segmental levels from T1-T2 to T11-T12, were loaded up to 7.5 Nm in flexion/extension, lateral bending, and axial rotation. During loading, the IDP was measured using a flexible sensor tube, which was inserted into the nucleus pulposus under x-ray control. Pressure values were evaluated from third full loading cycles at 0.0, 2.5, 5.0, and 7.5 Nm in each motion direction. Highest IDP increase was found in flexion, being significantly (p < 0.05) increased compared to extension IDP. Median pressure values were lowest in lateral bending while exhibiting a large variation range. Flexion IDP was significantly increased in the upper compared to the mid- and lower thoracic spine, whereas extension IDP was significantly higher in the lower compared to the upper thoracic spine, both showing significant (p < 0.01) linear correlation with the segmental level at 7.5 Nm (flexion: r = -0.629, extension: r = 0.500). No significant effects of sex or age were detected, however trends toward higher IDP in specimens from female donors and decreasing IDP with increasing age, potentially caused by fibrotic degenerative changes in the nucleus pulposus tissue. Sagittal and transversal cuttings after testing revealed possible relationships between nucleus pulposus quality and pressure moment characteristics, overall leading to low or negative intrinsic IDP and non-linear pressure-moment behavior in case of fibrotic tissue alterations. In conclusion, this study provides insights into thoracic spinal IDP and offers a large dataset for the validation of numerical models of the thoracic spine.
Collapse
Affiliation(s)
- Hans-Joachim Wilke
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Centre Ulm, Ulm University, Ulm, Germany
| | - Andrea Herkommer
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Centre Ulm, Ulm University, Ulm, Germany
| | - Karin Werner
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Centre Ulm, Ulm University, Ulm, Germany
| | - Christian Liebsch
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Centre Ulm, Ulm University, Ulm, Germany
| |
Collapse
|
19
|
Cai XY, YuChi CX, Du CF, Mo ZJ. The effect of follower load on the range of motion, facet joint force, and intradiscal pressure of the cervical spine: a finite element study. Med Biol Eng Comput 2020; 58:1695-1705. [DOI: 10.1007/s11517-020-02189-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 05/10/2020] [Indexed: 12/20/2022]
|
20
|
Choi H, Purushothaman Y, Baisden J, Yoganandan N. Unique biomechanical signatures of Bryan, Prodisc C, and Prestige LP cervical disc replacements: a finite element modelling study. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2019; 29:2631-2639. [DOI: 10.1007/s00586-019-06113-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/26/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022]
|
21
|
Optimization of compressive loading parameters to mimic in vivo cervical spine kinematics in vitro. J Biomech 2019; 87:107-113. [PMID: 30905402 DOI: 10.1016/j.jbiomech.2019.02.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/22/2019] [Accepted: 02/25/2019] [Indexed: 01/12/2023]
Abstract
The human cervical spine supports substantial compressive load in vivo. However, the traditional in vitro testing methods rarely include compressive loads, especially in investigations of multi-segment cervical spine constructs. Previously, a systematic comparison was performed between the standard pure moment with no compressive loading and published compressive loading techniques (follower load - FL, axial load - AL, and combined load - CL). The systematic comparison was structured a priori using a statistical design of experiments and the desirability function approach, which was chosen based on the goal of determining the optimal compressive loading parameters necessary to mimic the segmental contribution patterns exhibited in vivo. The optimized set of compressive loading parameters resulted in in vitro segmental rotations that were within one standard deviation and 10% of average percent error of the in vivo mean throughout the entire motion path. As hypothesized, the values for the optimized independent variables of FL and AL varied dynamically throughout the motion path. FL was not necessary at the extremes of the flexion-extension (FE) motion path but peaked through the neutral position, whereas, a large negative value of AL was necessary in extension and increased linearly to a large positive value in flexion. Although further validation is required, the long-term goal is to develop a "physiologic" in vitro testing method, which will be valuable for evaluating adjacent segment effect following spinal fusion surgery, disc arthroplasty instrumentation testing and design, as well as mechanobiology experiments where correct kinematics and arthrokinematics are critical.
Collapse
|