1
|
Zhang S, Grifno G, Passaro R, Regan K, Zheng S, Hadzipasic M, Banerji R, O'Connor L, Chu V, Kim SY, Yang J, Shi L, Karrobi K, Roblyer D, Grinstaff MW, Nia HT. Intravital measurements of solid stresses in tumours reveal length-scale and microenvironmentally dependent force transmission. Nat Biomed Eng 2023; 7:1473-1492. [PMID: 37640900 PMCID: PMC10836235 DOI: 10.1038/s41551-023-01080-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/19/2023] [Indexed: 08/31/2023]
Abstract
In cancer, solid stresses impede the delivery of therapeutics to tumours and the trafficking and tumour infiltration of immune cells. Understanding such consequences and the origin of solid stresses requires their probing in vivo at the cellular scale. Here we report a method for performing volumetric and longitudinal measurements of solid stresses in vivo, and findings from its applicability to tumours. We used multimodal intravital microscopy of fluorescently labelled polyacrylamide beads injected in breast tumours in mice as well as mathematical modelling to compare solid stresses at the single-cell and tissue scales, in primary and metastatic tumours, in vitro and in mice, and in live mice and post-mortem tissue. We found that solid-stress transmission is scale dependent, with tumour cells experiencing lower stresses than their embedding tissue, and that tumour cells in lung metastases experience substantially higher solid stresses than those in the primary tumours. The dependence of solid stresses on length scale and the microenvironment may inform the development of therapeutics that sensitize cancer cells to such mechanical forces.
Collapse
Affiliation(s)
- Sue Zhang
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Gabrielle Grifno
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Rachel Passaro
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Kathryn Regan
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Siyi Zheng
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Muhamed Hadzipasic
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Rohin Banerji
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Logan O'Connor
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Vinson Chu
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Sung Yeon Kim
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Jiarui Yang
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Linzheng Shi
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Kavon Karrobi
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Darren Roblyer
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Mark W Grinstaff
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Hadi T Nia
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
2
|
Matias M, Pinho JO, Penetra MJ, Campos G, Reis CP, Gaspar MM. The Challenging Melanoma Landscape: From Early Drug Discovery to Clinical Approval. Cells 2021; 10:3088. [PMID: 34831311 PMCID: PMC8621991 DOI: 10.3390/cells10113088] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 02/06/2023] Open
Abstract
Melanoma is recognized as the most dangerous type of skin cancer, with high mortality and resistance to currently used treatments. To overcome the limitations of the available therapeutic options, the discovery and development of new, more effective, and safer therapies is required. In this review, the different research steps involved in the process of antimelanoma drug evaluation and selection are explored, including information regarding in silico, in vitro, and in vivo experiments, as well as clinical trial phases. Details are given about the most used cell lines and assays to perform both two- and three-dimensional in vitro screening of drug candidates towards melanoma. For in vivo studies, murine models are, undoubtedly, the most widely used for assessing the therapeutic potential of new compounds and to study the underlying mechanisms of action. Here, the main melanoma murine models are described as well as other animal species. A section is dedicated to ongoing clinical studies, demonstrating the wide interest and successful efforts devoted to melanoma therapy, in particular at advanced stages of the disease, and a final section includes some considerations regarding approval for marketing by regulatory agencies. Overall, considerable commitment is being directed to the continuous development of optimized experimental models, important for the understanding of melanoma biology and for the evaluation and validation of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mariana Matias
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Jacinta O. Pinho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Maria João Penetra
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Gonçalo Campos
- CICS–UBI–Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal;
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| |
Collapse
|
3
|
Micalet A, Moeendarbary E, Cheema U. 3D In Vitro Models for Investigating the Role of Stiffness in Cancer Invasion. ACS Biomater Sci Eng 2021. [PMID: 34081437 DOI: 10.1021/acsbiomaterials.0c01530] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Tumorigenesis is attributed to the interactions of cancer cells with the tumor microenvironment through both biochemical cues and physical stimuli. Increased matrix deposition and realignment of the collagen fibers are detected by cancer cells, inducing epithelial-to-mesenchymal transition, which in turn stimulates cell motility and invasiveness. METHODS This review provides an overview of current research on the role of the physical microenvironment in cancer invasion. This was achieved by using a systematic approach and providing meta-analyses. Particular focus was placed on in vitro three-dimensional models of epithelial cancers. We investigated questions such as the effect of matrix stiffening, activation of stromal cells, and identified potential advances in mechano-based therapies. RESULTS Meta-analysis revealed that 64% of studies report cancer invasion promotion as stiffness increases, while 36% report the opposite. Experimental approaches and data interpretations were varied, each affecting the invasion of cancer differently. Examples are the experimental timeframes used (24 h to 21 days), the type of polymer used (24 types), and choice of cell line (33 cell lines). The stiffness of the 3D matrices varied from 0.5 to 300 kPa and 19% of these matrices' stiffness were outside commonly accepted physiological range. 100% of the studies outside biological stiffness range (above 20 kPa) report that stiffness does not promote cancer invasion. CONCLUSIONS Taking this analysis into account, we inform on the type of experimental approaches that could be the most relevant and provide what would be a standardized protocol and reporting strategy.
Collapse
Affiliation(s)
- Auxtine Micalet
- Department of Mechanical Engineering, University College London (UCL), Torrington Place, London, U.K. WC1E 6BT.,Division of Surgery and Interventional Sciences, UCL Centre for 3D Models of Health and Disease, University College London (UCL), Charles Bell House, London, U.K. W1W 7TS
| | - Emad Moeendarbary
- Department of Mechanical Engineering, University College London (UCL), Torrington Place, London, U.K. WC1E 6BT.,Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
| | - Umber Cheema
- Division of Surgery and Interventional Sciences, UCL Centre for 3D Models of Health and Disease, University College London (UCL), Charles Bell House, London, U.K. W1W 7TS
| |
Collapse
|
4
|
Gutierrez RA, Fang W, Kesari H, Darling EM. Force sensors for measuring microenvironmental forces during mesenchymal condensation. Biomaterials 2021; 270:120684. [PMID: 33535143 DOI: 10.1016/j.biomaterials.2021.120684] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/30/2022]
Abstract
Mechanical forces are an essential element to early tissue formation. However, few techniques exist that can quantify the mechanical microenvironment present within cell-dense neotissues and organoid structures. Here is a versatile approach to measure microscale, cellular forces during mesenchymal condensation using specially tailored, hyper-compliant microparticles (HCMPs). Through monitoring of HCMP deformation over both space and time, measurements of the mechanical forces that cells exert, and have exerted on them, during tissue formation are acquired. The current study uses this technology to track changes in the mechanical microenvironment as mesenchymal stem cells self-assemble into spheroids and condense into cohesive units. An array analysis approach, using a high-content imaging system, shows that cells exert a wide range of tensile and compressive forces during the first few hours of self-assembly, followed by a period of relative equilibrium. Cellular interactions with HCMPs are further examined by applying collagen coating, which allows for increased tensile forces to be exerted compared to non-coated HCMPs. Importantly, the hyper-compliant nature of our force sensors allows for increased precision over less compliant versions of the same particle. This sensitivity resolves small changes in the microenvironment even at the earliest stages of development and morphogenesis. The overall experimental platform provides a versatile means for measuring direct and indirect spatiotemporal forces in cell-dense biological systems.
Collapse
Affiliation(s)
- Robert A Gutierrez
- Center for Biomedical Engineering, Brown University, Providence, RI, 02912, USA
| | - Wenqiang Fang
- School of Engineering, Brown University, Providence, RI, 02912, USA
| | - Haneesh Kesari
- School of Engineering, Brown University, Providence, RI, 02912, USA.
| | - Eric M Darling
- Center for Biomedical Engineering, Brown University, Providence, RI, 02912, USA; School of Engineering, Brown University, Providence, RI, 02912, USA; Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, 02912, USA; Department of Orthopaedics, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
5
|
Roy V, Magne B, Vaillancourt-Audet M, Blais M, Chabaud S, Grammond E, Piquet L, Fradette J, Laverdière I, Moulin VJ, Landreville S, Germain L, Auger FA, Gros-Louis F, Bolduc S. Human Organ-Specific 3D Cancer Models Produced by the Stromal Self-Assembly Method of Tissue Engineering for the Study of Solid Tumors. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6051210. [PMID: 32352002 PMCID: PMC7178531 DOI: 10.1155/2020/6051210] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/07/2020] [Accepted: 02/28/2020] [Indexed: 12/24/2022]
Abstract
Cancer research has considerably progressed with the improvement of in vitro study models, helping to understand the key role of the tumor microenvironment in cancer development and progression. Over the last few years, complex 3D human cell culture systems have gained much popularity over in vivo models, as they accurately mimic the tumor microenvironment and allow high-throughput drug screening. Of particular interest, in vitrohuman 3D tissue constructs, produced by the self-assembly method of tissue engineering, have been successfully used to model the tumor microenvironment and now represent a very promising approach to further develop diverse cancer models. In this review, we describe the importance of the tumor microenvironment and present the existing in vitro cancer models generated through the self-assembly method of tissue engineering. Lastly, we highlight the relevance of this approach to mimic various and complex tumors, including basal cell carcinoma, cutaneous neurofibroma, skin melanoma, bladder cancer, and uveal melanoma.
Collapse
Affiliation(s)
- Vincent Roy
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Brice Magne
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Maude Vaillancourt-Audet
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Mathieu Blais
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Stéphane Chabaud
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Emil Grammond
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Léo Piquet
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Julie Fradette
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Isabelle Laverdière
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
- Faculty of Pharmacy, Université Laval and CHU de Québec-Université Laval Research Center, Oncology Division, Québec, QC, Canada
| | - Véronique J. Moulin
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Solange Landreville
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
- Department of Ophthalmology, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Lucie Germain
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - François A. Auger
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - François Gros-Louis
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Stéphane Bolduc
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| |
Collapse
|