1
|
Ramachandra AB, Jiang B, Jennings IR, Manning EP, Humphrey JD. Remodeling of Murine Branch Pulmonary Arteries Under Chronic Hypoxia and Short-Term Normoxic Recovery. J Biomech Eng 2024; 146:084501. [PMID: 38421341 DOI: 10.1115/1.4064967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
Chronic hypoxia plays a central role in diverse pulmonary pathologies, but its effects on longitudinal changes in the biomechanical behavior of proximal pulmonary arteries remain poorly understood. Similarly, effects of normoxic recovery have not been well studied. Here, we report hypoxia-induced changes in composition, vasoactivity, and passive biaxial mechanics in the main branch pulmonary artery of male C57BL/6J mice exposed to 10% FiO2 for 1, 2, or 3 weeks. We observed significant changes in extracellular matrix, and consequently wall mechanics, as early as 1 week of hypoxia. While circumferential stress and stiffness returned toward normal values by 2-3 weeks of hypoxia, area fractions of cytoplasm and thin collagen fibers did not return toward normal until after 1 week of normoxic recovery. By contrast, elastic energy storage and overall distensibility remained reduced after 3 weeks of hypoxia as well as following 1 week of normoxic recovery. While smooth muscle and endothelial cell responses were attenuated under hypoxia, smooth muscle but not endothelial cell responses recovered following 1 week of subsequent normoxia. Collectively, these data suggest that homeostatic processes were unable to preserve or restore overall function, at least over a brief period of normoxic recovery. Longitudinal changes are critical in understanding large pulmonary artery remodeling under hypoxia, and its reversal, and will inform predictive models of vascular adaptation.
Collapse
Affiliation(s)
| | - Bo Jiang
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520
| | - Isabella R Jennings
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520
- Yale University
| | - Edward P Manning
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520;West Haven Connecticut VA and Pulmonary and Critical Care Medicine, VA Connecticut Healthcare System, West Haven, CT 06516
| | - Jay D Humphrey
- Department of Biomedical Engineering and Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06520
| |
Collapse
|
2
|
Colebank MJ, Oomen PA, Witzenburg CM, Grosberg A, Beard DA, Husmeier D, Olufsen MS, Chesler NC. Guidelines for mechanistic modeling and analysis in cardiovascular research. Am J Physiol Heart Circ Physiol 2024; 327:H473-H503. [PMID: 38904851 PMCID: PMC11442102 DOI: 10.1152/ajpheart.00766.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/07/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Computational, or in silico, models are an effective, noninvasive tool for investigating cardiovascular function. These models can be used in the analysis of experimental and clinical data to identify possible mechanisms of (ab)normal cardiovascular physiology. Recent advances in computing power and data management have led to innovative and complex modeling frameworks that simulate cardiovascular function across multiple scales. While commonly used in multiple disciplines, there is a lack of concise guidelines for the implementation of computer models in cardiovascular research. In line with recent calls for more reproducible research, it is imperative that scientists adhere to credible practices when developing and applying computational models to their research. The goal of this manuscript is to provide a consensus document that identifies best practices for in silico computational modeling in cardiovascular research. These guidelines provide the necessary methods for mechanistic model development, model analysis, and formal model calibration using fundamentals from statistics. We outline rigorous practices for computational, mechanistic modeling in cardiovascular research and discuss its synergistic value to experimental and clinical data.
Collapse
Affiliation(s)
- Mitchel J Colebank
- Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States
| | - Pim A Oomen
- Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States
| | - Colleen M Witzenburg
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Anna Grosberg
- Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States
| | - Daniel A Beard
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Dirk Husmeier
- School of Mathematics and Statistics, University of Glasgow, Glasgow, United Kingdom
| | - Mette S Olufsen
- Department of Mathematics, North Carolina State University, Raleigh, North Carolina, United States
| | - Naomi C Chesler
- Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States
| |
Collapse
|
3
|
Szafron JM, Heng EE, Boyd J, Humphrey JD, Marsden AL. Hemodynamics and Wall Mechanics of Vascular Graft Failure. Arterioscler Thromb Vasc Biol 2024; 44:1065-1085. [PMID: 38572650 PMCID: PMC11043008 DOI: 10.1161/atvbaha.123.318239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Blood vessels are subjected to complex biomechanical loads, primarily from pressure-driven blood flow. Abnormal loading associated with vascular grafts, arising from altered hemodynamics or wall mechanics, can cause acute and progressive vascular failure and end-organ dysfunction. Perturbations to mechanobiological stimuli experienced by vascular cells contribute to remodeling of the vascular wall via activation of mechanosensitive signaling pathways and subsequent changes in gene expression and associated turnover of cells and extracellular matrix. In this review, we outline experimental and computational tools used to quantify metrics of biomechanical loading in vascular grafts and highlight those that show potential in predicting graft failure for diverse disease contexts. We include metrics derived from both fluid and solid mechanics that drive feedback loops between mechanobiological processes and changes in the biomechanical state that govern the natural history of vascular grafts. As illustrative examples, we consider application-specific coronary artery bypass grafts, peripheral vascular grafts, and tissue-engineered vascular grafts for congenital heart surgery as each of these involves unique circulatory environments, loading magnitudes, and graft materials.
Collapse
Affiliation(s)
- Jason M Szafron
- Departments of Pediatrics (J.M.S., A.L.M.), Stanford University, CA
| | - Elbert E Heng
- Cardiothoracic Surgery (E.E.H., J.B.), Stanford University, CA
| | - Jack Boyd
- Cardiothoracic Surgery (E.E.H., J.B.), Stanford University, CA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT (J.D.H.)
| | | |
Collapse
|
4
|
Ramachandra AB, Cavinato C, Humphrey JD. A Systematic Comparison of Normal Structure and Function of the Greater Thoracic Vessels. Ann Biomed Eng 2024; 52:958-966. [PMID: 38227167 DOI: 10.1007/s10439-023-03432-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/23/2023] [Indexed: 01/17/2024]
Abstract
The greater thoracic vessels are central to a well-functioning circulatory system and are often targeted in congenital heart surgeries, yet the structure and function of these vessels have not been well studied. Here we use consistent methods to quantify and compare microstructural features and biaxial biomechanical properties of the following six greater thoracic vessels in wild-type mice: ascending thoracic aorta, descending thoracic aorta, right subclavian artery, right pulmonary artery, thoracic inferior vena cava, and superior vena cava. Specifically, we determine volume fractions and orientations of the structurally significant wall constituents (i.e., collagen, elastin, and cell nuclei) using multiphoton imaging, and we quantify vasoactive responses and mechanobiologically relevant mechanical quantities (e.g., stress, stiffness) using computer-controlled biaxial mechanical testing. Similarities and differences across systemic, pulmonary, and venous circulations highlight underlying design principles of the vascular system. Results from this study represent another step towards understanding growth and remodeling of greater thoracic vessels in health, disease, and surgical interventions by providing baseline information essential for developing and validating predictive computational models.
Collapse
Affiliation(s)
- Abhay B Ramachandra
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA.
- Department of Mechanical Engineering, Iowa State University, Ames, IA, USA.
| | - Cristina Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
- Laboratoire de Mécanique et Génie Civile, Université Montpellier, Montpellier, France
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA.
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Haider MA, Pearce KJ, Chesler NC, Hill NA, Olufsen MS. Application and reduction of a nonlinear hyperelastic wall model capturing ex vivo relationships between fluid pressure, area, and wall thickness in normal and hypertensive murine left pulmonary arteries. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3798. [PMID: 38214099 DOI: 10.1002/cnm.3798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 08/10/2023] [Accepted: 11/26/2023] [Indexed: 01/13/2024]
Abstract
Pulmonary hypertension is a cardiovascular disorder manifested by elevated mean arterial blood pressure (>20 mmHg) together with vessel wall stiffening and thickening due to alterations in collagen, elastin, and smooth muscle cells. Hypoxia-induced (type 3) pulmonary hypertension can be studied in animals exposed to a low oxygen environment for prolonged time periods leading to biomechanical alterations in vessel wall structure. This study introduces a novel approach to formulating a reduced order nonlinear elastic structural wall model for a large pulmonary artery. The model relating blood pressure and area is calibrated using ex vivo measurements of vessel diameter and wall thickness changes, under controlled pressure conditions, in left pulmonary arteries isolated from control and hypertensive mice. A two-layer, hyperelastic, and anisotropic model incorporating residual stresses is formulated using the Holzapfel-Gasser-Ogden model. Complex relations predicting vessel area and wall thickness with increasing blood pressure are derived and calibrated using the data. Sensitivity analysis, parameter estimation, subset selection, and physical plausibility arguments are used to systematically reduce the 16-parameter model to one in which a much smaller subset of identifiable parameters is estimated via solution of an inverse problem. Our final reduced one layer model includes a single set of three elastic moduli. Estimated ranges of these parameters demonstrate that nonlinear stiffening is dominated by elastin in the control animals and by collagen in the hypertensive animals. The pressure-area relation developed in this novel manner has potential impact on one-dimensional fluids network models of vessel wall remodeling in the presence of cardiovascular disease.
Collapse
Affiliation(s)
- Mansoor A Haider
- Department of Mathematics, North Carolina State University, Raleigh, North Carolina, USA
| | - Katherine J Pearce
- Department of Mathematics, North Carolina State University, Raleigh, North Carolina, USA
| | - Naomi C Chesler
- Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center & Department of Biomedical Engineering, University of California, Irvine (UCI), Irvine, California, USA
| | - Nicholas A Hill
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
| | - Mette S Olufsen
- Department of Mathematics, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
6
|
Choi R, Narayanan R, Jandu S, Savage W, Kang S, Wodu B, Nandakumar K, Santhanam L, Steppan J. Optimization of resting tension for wire myography in male rat pulmonary arteries. Physiol Rep 2024; 12:e15911. [PMID: 38212292 PMCID: PMC10784191 DOI: 10.14814/phy2.15911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024] Open
Abstract
Wire myography to test vasomotor functions of blood vessels ex-vivo are well-established for the systemic circulation, however, there is no consensus on protocols for pulmonary arteries. We created a standardized wire myography protocol for healthy rat PAs and validated this in a pulmonary hypertension (PH) model. Vessels stretched to higher initial tensions (5.0, 7.5 and 10.0 mN) exhibited a uniform response to phenylephrine, a larger dynamic range, and lower EC50 values. The endothelium-mediated relaxation showed that moderate tensions (7.5 and 10.0 mN) produced robust responses with higher maximum relaxation and lower EC50 values. For endothelium independent responses, the higher initial tension groups had lower and more consistent EC50 values than the lower initial tension groups. Pulmonary arteries from rats with PH were more responsive to vasoactive drugs when subjected to a higher initial tension. Notably, vessels in the PH group subjected to 15.0 mN exhibited high dynamic ranges in contractile and relaxation responses without tearing. Lastly, we observed attenuated cholinergic responses in these vessels-consistent with endothelial dysfunction in PH. Therefore, a moderate initial tension of 7.5-10.0 mN is optimal for healthy rat pulmonary arteries and a higher initial tension of 15.0 mN is optimal for pulmonary arteries from animals with PH.
Collapse
Affiliation(s)
- Rira Choi
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Roshini Narayanan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sandeep Jandu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - William Savage
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sara Kang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Bulouere Wodu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Kavitha Nandakumar
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Lakshmi Santhanam
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jochen Steppan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Szafron JM, Yang W, Feinstein JA, Rabinovitch M, Marsden AL. A computational growth and remodeling framework for adaptive and maladaptive pulmonary arterial hemodynamics. Biomech Model Mechanobiol 2023; 22:1935-1951. [PMID: 37658985 PMCID: PMC10929588 DOI: 10.1007/s10237-023-01744-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/05/2023] [Indexed: 09/05/2023]
Abstract
Hemodynamic loading is known to contribute to the development and progression of pulmonary arterial hypertension (PAH). This loading drives changes in mechanobiological stimuli that affect cellular phenotypes and lead to pulmonary vascular remodeling. Computational models have been used to simulate mechanobiological metrics of interest, such as wall shear stress, at single time points for PAH patients. However, there is a need for new approaches that simulate disease evolution to allow for prediction of long-term outcomes. In this work, we develop a framework that models the pulmonary arterial tree through adaptive and maladaptive responses to mechanical and biological perturbations. We coupled a constrained mixture theory-based growth and remodeling framework for the vessel wall with a morphometric tree representation of the pulmonary arterial vasculature. We show that non-uniform mechanical behavior is important to establish the homeostatic state of the pulmonary arterial tree, and that hemodynamic feedback is essential for simulating disease time courses. We also employed a series of maladaptive constitutive models, such as smooth muscle hyperproliferation and stiffening, to identify critical contributors to development of PAH phenotypes. Together, these simulations demonstrate an important step toward predicting changes in metrics of clinical interest for PAH patients and simulating potential treatment approaches.
Collapse
Affiliation(s)
- Jason M Szafron
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA, 94305, USA
- Cardiovascular Institute, Stanford University, Palo Alto, CA, 94305, USA
| | - Weiguang Yang
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA, 94305, USA
| | - Jeffrey A Feinstein
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA, 94305, USA
- Cardiovascular Institute, Stanford University, Palo Alto, CA, 94305, USA
| | - Marlene Rabinovitch
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA, 94305, USA
- Cardiovascular Institute, Stanford University, Palo Alto, CA, 94305, USA
| | - Alison L Marsden
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA, 94305, USA.
- Cardiovascular Institute, Stanford University, Palo Alto, CA, 94305, USA.
| |
Collapse
|
8
|
Clark-Patterson GL, Buchanan LM, Ogola BO, Florian-Rodriguez M, Lindsey SH, De Vita R, Miller KS. Smooth muscle contribution to vaginal viscoelastic response. J Mech Behav Biomed Mater 2023; 140:105702. [PMID: 36764168 DOI: 10.1016/j.jmbbm.2023.105702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/22/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Smooth muscle cells contribute to the mechanical function of various soft tissues, however, their contribution to the viscoelastic response when subjected to multiaxial loading remains unknown. The vagina is a fibromuscular viscoelastic organ that is exposed to prolonged and increased pressures with daily activities and physiologic processes such as vaginal birth. The vagina changes in geometry over time under prolonged pressure, known as creep. Vaginal smooth muscle cells may contribute to creep. This may be critical for the function of vaginal and other soft tissues that experience fluctuations in their biomechanical environment. Therefore, the objective of this study was to develop methods to evaluate the contribution of smooth muscle to vaginal creep under multiaxial loading using extension - inflation tests. The vaginas from wildtype mice (C57BL/6 × 129SvEv; 3-6 months; n = 10) were stimulated with various concentrations of potassium chloride then subjected to the measured in vivo pressure (7 mmHg) for 100 s. In a different cohort of mice (n = 5), the vagina was stimulated with a single concentration of potassium chloride then subjected to 5 and 15 mmHg. A laser micrometer measured vaginal outer diameter in real-time. Immunofluorescence evaluated the expression of alpha-smooth muscle actin and myosin heavy chain in the vaginal muscularis (n = 6). When smooth muscle contraction was activated, vaginal creep behavior increased compared to the relaxed state. However, increased pressure decreased the active creep response. This study demonstrated that extension - inflation protocols can be used to evaluate smooth muscle contribution to the viscoelastic response of tubular soft tissues.
Collapse
Affiliation(s)
| | - Lily M Buchanan
- University of Texas at Dallas, Department of Bioengineering, 800 W. Campbell Road, Richardson, TX, 75080, USA.
| | - Benard O Ogola
- Augusta University, Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, Augusta, GA, 30912, USA.
| | - Maria Florian-Rodriguez
- University of Texas Southwestern Medical Center, Department of Obstetrics and Gynecology, Division of Female Pelvic Medicine and Reconstructive Surgery and Cecil H and Ida Green Center for Reproductive Biological Sciences, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9032, USA.
| | - Sarah H Lindsey
- Tulane University School of Medicine, Department of Pharmacology, 1430 Tulane Ave, New Orleans, LA, 70112, USA.
| | - Raffaella De Vita
- Virginia Tech,Department of Biomedical Engineering and Mechanics, 330 A Kelly Hall, 325 Stanger St, Blacksburg, VA, 24061, USA.
| | - Kristin S Miller
- Tulane University, Department of Biomedical Engineering, 6823 St Charles Ave, New Orleans, LA, 70118, USA; University of Texas at Dallas, Department of Bioengineering, 800 W. Campbell Road, Richardson, TX, 75080, USA.
| |
Collapse
|
9
|
Ban E, Humphrey JD. New Computational Approach to Shunt Design in Congenital Heart Palliation. J Biomech 2023; 152:111568. [PMID: 37099931 DOI: 10.1016/j.jbiomech.2023.111568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/06/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
Shunts are commonly used to redirect blood to pulmonary arteries in procedures that palliate congenital cardiovascular defects. Previous clinical studies and hemodynamic simulations reveal a critical role of shunt diameter in balancing flow to pulmonary versus systemic vessels, but the biomechanical process of creating the requisite anastomosis between the shunt and host vessel has received little attention. Here, we report a new Lagrange multiplier-based finite element approach that represents the shunt and host vessels as individual structures and predicts the anastomosis geometry and attachment force that result when the shunt is sutured at an incision in the host, followed by pressurization. Simulations suggest that anastomosis orifice opening increases markedly with increasing length of the host incision and moderately with increasing blood pressure. The host artery is further predicted to conform to common stiff synthetic shunts, whereas more compliant umbilical vessel shunts should conform to the host, with orifice area transitioning between these two extremes via a Hill-type function of shunt stiffness. Moreover, a direct relationship is expected between attachment forces and shunt stiffness. This new computational approach promises to aid in surgical planning for diverse vascular shunts by predicting in vivo pressurized geometries.
Collapse
Affiliation(s)
- E Ban
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - J D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
10
|
Murtada SI, Ramachandra AB, Humphrey JD. Ex vivo biomechanical characterization of umbilical vessels: Possible shunts in congenital heart palliation. J Biomech 2023; 151:111518. [PMID: 36906968 DOI: 10.1016/j.jbiomech.2023.111518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023]
Abstract
Children born with congenital heart defects typically undergo staged palliative surgeries to reconstruct the circulation to improve transport of deoxygenated blood to the lungs. As part of the first surgery, a temporary shunt (Blalock-Thomas-Taussig) is often created in neonates to connect a systemic and a pulmonary artery. Standard-of-care shunts are synthetic, which can lead to thrombosis, and much stiffer than the two host vessels, which can cause adverse mechanobiological responses. Moreover, the neonatal vasculature can undergo significant changes in size and structure over a short period, thus constraining the use of a non-growing synthetic shunt. Recent studies suggest that autologous umbilical vessels could serve as improved shunts, but there has not been a detailed biomechanical characterization of the four primary vessels - subclavian artery, pulmonary artery, umbilical vein, and umbilical artery. Herein, we biomechanically phenotype umbilical veins and arteries from prenatal mice (E18.5) and compare them to subclavian and pulmonary arteries harvested at two critical postnatal developmental ages (P10, P21). Comparisons include age-specific physiological conditions and simulated 'surgical-like' shunt conditions. Results suggest that the intact umbilical vein is a better choice as a shunt than the umbilical artery due to concerns with lumen closure and constriction related intramural damage in the latter. Yet, decellularization of umbilical arteries may be a viable alternative, with the possibility of host cellular infiltration and subsequent remodeling. Given recent efforts using autologous umbilical vessels as Blalock-Thomas-Taussig shunts in a clinical trial, our findings highlight aspects of the associated biomechanics that deserve further investigation.
Collapse
Affiliation(s)
- S-I Murtada
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - A B Ramachandra
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - J D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
11
|
Cheng H, Li G, Dai J, Zhang K, Xu T, Wei L, Zhang X, Ding D, Hou J, Li J, Zhuang J, Tan K, Guo R. A fluid-structure interaction model accounting arterial vessels as a key part of the blood-flow engine for the analysis of cardiovascular diseases. Front Bioeng Biotechnol 2022; 10:981187. [PMID: 36061431 PMCID: PMC9438578 DOI: 10.3389/fbioe.2022.981187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
According to the classical Windkessel model, the heart is the only power source for blood flow, while the arterial system is assumed to be an elastic chamber that acts as a channel and buffer for blood circulation. In this paper we show that in addition to the power provided by the heart for blood circulation, strain energy stored in deformed arterial vessels in vivo can be transformed into mechanical work to propel blood flow. A quantitative relationship between the strain energy increment and functional (systolic, diastolic, mean and pulse blood pressure) and structural (stiffness, diameter and wall thickness) parameters of the aorta is described. In addition, details of blood flow across the aorta remain unclear due to changes in functional and other physiological parameters. Based on the arterial strain energy and fluid-structure interaction theory, the relationship between physiological parameters and blood supply to organs was studied, and a corresponding mathematical model was developed. The findings provided a new understanding about blood-flow circulation, that is, cardiac output allows blood to enter the aorta at an initial rate, and then strain energy stored in the elastic arteries pushes blood toward distal organs and tissues. Organ blood supply is a key factor in cardio-cerebrovascular diseases (CCVD), which are caused by changes in blood supply in combination with multiple physiological parameters. Also, some physiological parameters are affected by changes in blood supply, and vice versa. The model can explain the pathophysiological mechanisms of chronic diseases such as CCVD and hypertension among others, and the results are in good agreement with epidemiological studies of CCVD.
Collapse
Affiliation(s)
- Heming Cheng
- Department of Mechanics, Kunming University of Science and Technology, Kunming, China
- *Correspondence: Heming Cheng, ; Ke Zhang,
| | - Gen Li
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, China
| | - Jifeng Dai
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, China
| | - Ke Zhang
- Department of Mechanics, Kunming University of Science and Technology, Kunming, China
- Department of Hydraulic Engineering, Kunming University of Science and Technology, Kunming, China
- *Correspondence: Heming Cheng, ; Ke Zhang,
| | - Tianrui Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Liuchuang Wei
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, China
| | - Xue Zhang
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, China
| | - Dongfang Ding
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, China
| | - Jie Hou
- Department of Mechanics, Kunming University of Science and Technology, Kunming, China
| | - Jianyun Li
- Department of Mechanics, Kunming University of Science and Technology, Kunming, China
| | - Jiangping Zhuang
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, China
| | - Kaijun Tan
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, China
| | - Ran Guo
- Department of Mechanics, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
12
|
Ramachandra AB, Mikush N, Sauler M, Humphrey JD, Manning EP. Compromised Cardiopulmonary Function in Fibulin-5 Deficient Mice. J Biomech Eng 2022; 144:081008. [PMID: 35171214 PMCID: PMC8990734 DOI: 10.1115/1.4053873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/08/2022] [Indexed: 11/08/2022]
Abstract
Competent elastic fibers are critical to the function of the lung and right circulation. Murine models of elastopathies can aid in understanding the functional roles of the elastin and elastin-associated glycoproteins that constitute elastic fibers. Here, we quantify together lung and pulmonary arterial structure, function, and mechanics with right heart function in a mouse model deficient in the elastin-associated glycoprotein fibulin-5. Differences emerged as a function of genotype, sex, and arterial region. Specifically, functional studies revealed increased lung compliance in fibulin-5 deficiency consistent with a histologically observed increased alveolar disruption. Biaxial mechanical tests revealed that the primary branch pulmonary arteries exhibit decreased elastic energy storage capacity and wall stress despite only modest differences in circumferential and axial material stiffness in the fibulin-5 deficient mice. Histological quantifications confirm a lower elastic fiber content in the fibulin-5 deficient pulmonary arteries, with fragmented elastic laminae in the outer part of the wall - likely the reason for reduced energy storage. Ultrasound measurements confirm sex differences in compromised right ventricular function in the fibulin-5 deficient mice. These results reveal compromised right heart function, but opposite effects of elastic fiber dysfunction on the lung parenchyma (significantly increased compliance) and pulmonary arteries (trend toward decreased distensibility), and call for further probing of ventilation-perfusion relationships in pulmonary pathologies. Amongst many other models, fibulin-5 deficient mice can contribute to our understanding of the complex roles of elastin in pulmonary health and disease.
Collapse
Affiliation(s)
| | - Nicole Mikush
- Translational Research Imaging Center, Yale School of Medicine, New Haven, CT 06520
| | - Maor Sauler
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510
| | - Jay D. Humphrey
- Department of Biomedical Engineering and Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06520
| | - Edward P. Manning
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510; West Haven Connecticut VA and Pulmonary and Critical Care Medicine, VA Connecticut Healthcare System, West Haven, CT 06516
| |
Collapse
|
13
|
Ho E, Mulorz J, Wong J, Wagenhäuser MU, Tsao PS, Ramasubramanian AK, Lee SJJ. Nicotine Affects Murine Aortic Stiffness and Fatigue Response During Supraphysiological Cycling. J Biomech Eng 2022; 144:1114460. [PMID: 34244728 PMCID: PMC8420792 DOI: 10.1115/1.4051706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Indexed: 01/03/2023]
Abstract
Nicotine exposure is a major risk factor for several cardiovascular diseases. Although the deleterious effects of nicotine on aortic remodeling processes have been studied to some extent, the biophysical consequences are not fully elucidated. In this investigation, we applied quasi-static and dynamic loading to quantify ways in which exposure to nicotine affects the mechanical behavior of murine arterial tissue. Segments of thoracic aortas from C57BL/6 mice exposed to 25 mg/kg/day of subcutaneous nicotine for 28 days were subjected to uniaxial tensile loading in an open-circumferential configuration. Comparing aorta segments from nicotine-treated mice relative to an equal number of control counterparts, stiffness in the circumferential direction was nearly twofold higher (377 kPa ± 165 kPa versus 191 kPa ± 65 kPa, n = 5, p = 0.03) at 50% strain. Using a degradative power-law fit to fatigue data at supraphysiological loading, we observed that nicotine-treated aortas exhibited significantly higher peak stress, greater loss of tension, and wider oscillation band than control aortas (p ≤ 0.01 for all three variables). Compared to simple stress relaxation tests, fatigue cycling is shown to be more sensitive and versatile in discerning nicotine-induced changes in mechanical behavior over many cycles. Supraphysiological fatigue cycling thus may have broader potential to reveal subtle changes in vascular mechanics caused by other exogenous toxins or pathological conditions.
Collapse
Affiliation(s)
- Elizabeth Ho
- Mechanical Engineering, San José State University, One Washington Square, San José, CA 95192-0087,e-mail:
| | - Joscha Mulorz
- Department of Vascular and Endovascular Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Moorenstraße 5, Düsseldorf 40225, Germany,e-mail:
| | - Jason Wong
- Mechanical Engineering, San José State University, One Washington Square, San José, CA 95192-0087,e-mail:
| | - Markus U. Wagenhäuser
- Department of Vascular and Endovascular Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Moorenstraße 5, Düsseldorf 40225, Germany,e-mail:
| | - Philip S. Tsao
- Stanford University School of Medicine and VA Palo Alto Health Care System,3801 Miranda Avenue, Palo Alto, CA 94304,e-mail:
| | - Anand K. Ramasubramanian
- Chemical and Materials Engineering, San José State University, One Washington Square, San José, CA 95192-0082,e-mail:
| | - Sang-Joon John Lee
- Mechanical Engineering, San José State University, One Washington Square, San José, CA 95192-0087,e-mail:
| |
Collapse
|
14
|
Vignali E, Gasparotti E, Celi S, Avril S. Fully-Coupled FSI Computational Analyses in the Ascending Thoracic Aorta Using Patient-Specific Conditions and Anisotropic Material Properties. Front Physiol 2021; 12:732561. [PMID: 34744774 PMCID: PMC8564074 DOI: 10.3389/fphys.2021.732561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/17/2021] [Indexed: 12/27/2022] Open
Abstract
Computational hemodynamics has become increasingly important within the context of precision medicine, providing major insight in cardiovascular pathologies. However, finding appropriate compromise between speed and accuracy remains challenging in computational hemodynamics for an extensive use in decision making. For example, in the ascending thoracic aorta, interactions between the blood and the aortic wall must be taken into account for the sake of accuracy, but these fluid structure interactions (FSI) induce significant computational costs, especially when the tissue exhibits a hyperelastic and anisotropic response. The objective of the current study is to use the Small On Large (SOL) theory to linearize the anisotropic hyperelastic behavior in order to propose a reduced-order model for FSI simulations of the aorta. The SOL method is tested for fully-coupled FSI simulations in a patient-specific aortic geometry presenting an Ascending Thoracic Aortic Aneurysm (aTAA). The same model is also simulated with a fully-coupled FSI with non-linear material behavior, without SOL linearization. Eventually, the results and computational times with and without the SOL are compared. The SOL approach is demonstrated to provide a significant reduction of computational costs for FSI analysis in the aTAA, and the results in terms of stress state distribution are comparable. The method is implemented in ANSYS and will be further evaluated for clinical applications.
Collapse
Affiliation(s)
- Emanuele Vignali
- BioCardioLab, UOC Bioingegneria, Fondazione Toscana Gabriele Monasterio, Massa, Italy
| | - Emanuele Gasparotti
- BioCardioLab, UOC Bioingegneria, Fondazione Toscana Gabriele Monasterio, Massa, Italy
| | - Simona Celi
- BioCardioLab, UOC Bioingegneria, Fondazione Toscana Gabriele Monasterio, Massa, Italy
| | - Stéphane Avril
- Mines Saint-Etienne, Université de Lyon, INSERM, SaInBioSE U1059, Saint-Étienne, France
| |
Collapse
|
15
|
Clark-Patterson GL, Roy S, Desrosiers L, Knoepp LR, Sen A, Miller KS. Role of fibulin-5 insufficiency and prolapse progression on murine vaginal biomechanical function. Sci Rep 2021; 11:20956. [PMID: 34697337 PMCID: PMC8546087 DOI: 10.1038/s41598-021-00351-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/31/2021] [Indexed: 02/04/2023] Open
Abstract
The vagina plays a critical role in supporting the pelvic organs and loss of support leads to pelvic organ prolapse. It is unknown what microstructural changes influence prolapse progression nor how decreased elastic fibers contributes to vaginal remodeling and smooth muscle contractility. The objective for this study was to evaluate the effect of fibulin-5 haploinsufficiency, and deficiency with progressive prolapse on the biaxial contractile and biomechanical function of the murine vagina. Vaginas from wildtype (n = 13), haploinsufficient (n = 13), and deficient mice with grade 1 (n = 9) and grade 2 or 3 (n = 9) prolapse were explanted for biaxial contractile and biomechanical testing. Multiaxial histology (n = 3/group) evaluated elastic and collagen fiber microstructure. Western blotting quantified protein expression (n = 6/group). A one-way ANOVA or Kruskal-Wallis test evaluated statistical significance. Pearson's or Spearman's test determined correlations with prolapse grade. Axial contractility decreased with fibulin-5 deficiency and POP (p < 0.001), negatively correlated with prolapse grade (ρ = - 0.80; p < 0.001), and positively correlated with muscularis elastin area fraction (ρ = - 0.78; p = 0.004). Circumferential (ρ = 0.71; p < 0.001) and axial (ρ = 0.69; p < 0.001) vaginal wall stresses positively correlated with prolapse grade. These findings demonstrated that fibulin-5 deficiency and prolapse progression decreased vaginal contractility and increased vaginal wall stress. Future work is needed to better understand the processes that contribute to prolapse progression in order to guide diagnostic, preventative, and treatment strategies.
Collapse
Affiliation(s)
| | - Sambit Roy
- Department of Animal Sciences, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, 48824, USA
| | - Laurephile Desrosiers
- Department of Female Pelvic Medicine and Reconstructive Surgery, University of Queensland Ochsner Clinical School, New Orleans, 70121, USA
| | - Leise R Knoepp
- Department of Female Pelvic Medicine and Reconstructive Surgery, University of Queensland Ochsner Clinical School, New Orleans, 70121, USA
| | - Aritro Sen
- Department of Animal Sciences, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, 48824, USA
| | - Kristin S Miller
- Department of Biomedical Engineering, Tulane University, New Orleans, 70118, USA.
| |
Collapse
|
16
|
Manning EP, Ramachandra AB, Schupp JC, Cavinato C, Raredon MSB, Bärnthaler T, Cosme C, Singh I, Tellides G, Kaminski N, Humphrey JD. Mechanisms of Hypoxia-Induced Pulmonary Arterial Stiffening in Mice Revealed by a Functional Genetics Assay of Structural, Functional, and Transcriptomic Data. Front Physiol 2021; 12:726253. [PMID: 34594238 PMCID: PMC8478173 DOI: 10.3389/fphys.2021.726253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/19/2021] [Indexed: 01/08/2023] Open
Abstract
Hypoxia adversely affects the pulmonary circulation of mammals, including vasoconstriction leading to elevated pulmonary arterial pressures. The clinical importance of changes in the structure and function of the large, elastic pulmonary arteries is gaining increased attention, particularly regarding impact in multiple chronic cardiopulmonary conditions. We establish a multi-disciplinary workflow to understand better transcriptional, microstructural, and functional changes of the pulmonary artery in response to sustained hypoxia and how these changes inter-relate. We exposed adult male C57BL/6J mice to normoxic or hypoxic (FiO2 10%) conditions. Excised pulmonary arteries were profiled transcriptionally using single cell RNA sequencing, imaged with multiphoton microscopy to determine microstructural features under in vivo relevant multiaxial loading, and phenotyped biomechanically to quantify associated changes in material stiffness and vasoactive capacity. Pulmonary arteries of hypoxic mice exhibited an increased material stiffness that was likely due to collagen remodeling rather than excessive deposition (fibrosis), a change in smooth muscle cell phenotype reflected by decreased contractility and altered orientation aligning these cells in the same direction as the remodeled collagen fibers, endothelial proliferation likely representing endothelial-to-mesenchymal transitioning, and a network of cell-type specific transcriptomic changes that drove these changes. These many changes resulted in a system-level increase in pulmonary arterial pulse wave velocity, which may drive a positive feedback loop exacerbating all changes. These findings demonstrate the power of a multi-scale genetic-functional assay. They also highlight the need for systems-level analyses to determine which of the many changes are clinically significant and may be potential therapeutic targets.
Collapse
Affiliation(s)
- Edward P Manning
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, United States.,VA Connecticut Healthcare System, West Haven, CT, United States
| | - Abhay B Ramachandra
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Jonas C Schupp
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, United States.,Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Cristina Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Micha Sam Brickman Raredon
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States.,Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, United States.,Department of Anesthesiology, Yale School of Medicine, New Haven, CT, United States
| | - Thomas Bärnthaler
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, United States.,Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Carlos Cosme
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Inderjit Singh
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, United States
| | - George Tellides
- VA Connecticut Healthcare System, West Haven, CT, United States.,Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, United States.,Department of Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States.,Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, United States
| |
Collapse
|
17
|
Dong ML, Lan IS, Yang W, Rabinovitch M, Feinstein JA, Marsden AL. Computational simulation-derived hemodynamic and biomechanical properties of the pulmonary arterial tree early in the course of ventricular septal defects. Biomech Model Mechanobiol 2021; 20:2471-2489. [PMID: 34585299 DOI: 10.1007/s10237-021-01519-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 09/12/2021] [Indexed: 01/15/2023]
Abstract
Untreated ventricular septal defects (VSDs) can lead to pulmonary arterial hypertension (PAH) characterized by elevated pulmonary artery (PA) pressure and vascular remodeling, known as PAH associated with congenital heart disease (PAH-CHD). Though previous studies have investigated hemodynamic effects on vascular mechanobiology in late-stage PAH, hemodynamics leading to PAH-CHD initiation have not been fully quantified. We hypothesize that abnormal hemodynamics from left-to-right shunting in early stage VSDs affects PA biomechanical properties leading to PAH initiation. To model PA hemodynamics in healthy, small, moderate, and large VSD conditions prior to the onset of vascular remodeling, computational fluid dynamics simulations were performed using a 3D finite element model of a healthy 1-year-old's proximal PAs and a body-surface-area-scaled 0D distal PA tree. VSD conditions were modeled with increased pulmonary blood flow to represent degrees of left-to-right shunting. In the proximal PAs, pressure, flow, strain, and wall shear stress (WSS) increased with increasing VSD size; oscillatory shear index decreased with increasing VSD size in the larger PA vessels. WSS was higher in smaller diameter vessels and increased with VSD size, with the large VSD condition exhibiting WSS >100 dyn/cm[Formula: see text], well above values typically used to study dysfunctional mechanotransduction pathways in PAH. This study is the first to estimate hemodynamic and biomechanical metrics in the entire pediatric PA tree with VSD severity at the stage leading to PAH initiation and has implications for future studies assessing effects of abnormal mechanical stimuli on endothelial cells and vascular wall mechanics that occur during PAH-CHD initiation and progression.
Collapse
Affiliation(s)
- Melody L Dong
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Ingrid S Lan
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Weiguang Yang
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | | | - Jeffrey A Feinstein
- Department of Pediatrics and Bioengineering, Stanford University, Stanford, CA, USA
| | - Alison L Marsden
- Department of Pediatrics and Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
18
|
Moreno J, Escobedo D, Calhoun C, Le Saux CJ, Han HC. Arterial Wall Stiffening in Caveolin-1 Deficiency-Induced Pulmonary Artery Hypertension in Mice. EXPERIMENTAL MECHANICS 2021; 6:217-228. [PMID: 33776068 PMCID: PMC7993546 DOI: 10.1007/s11340-020-00666-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 09/08/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Pulmonary artery hypertension (PAH) is a complex disorder that can lead to right heart failure. The generation of caveolin-1 deficient mice (CAV-1-/-) has provided an alternative genetic model to study the mechanisms of pulmonary hypertension. However, the vascular adaptations in these mice have not been characterized. OBJECTIVE To determine the histological and functional changes in the pulmonary and carotid arteries in CAV-1-/- induced PAH. METHODS Pulmonary and carotid arteries of young (4-6 months old) and mature (9-12 months old) CAV-1-/- mice were tested and compared to normal wild type mice. RESULTS Artery stiffness increases in CAV-1-/- mice, especially the circumferential stiffness of the pulmonary arteries. Increases in stiffness were quantified by a decrease in circumferential stretch and transition strain, increases in elastic moduli, and an increase in total strain energy at physiologic strains. Changes in mechanical properties for the pulmonary artery correlated with increased collagen content while carotid artery mechanical properties correlated with decreased elastin content. CONCLUSIONS We demonstrated that an increase in artery stiffness is associated with CAV-1 deficiency-induced pulmonary hypertension. These results improve our understanding of artery remodeling in PAH.
Collapse
Affiliation(s)
- J. Moreno
- Department of Mechanical Engineering, University of Texas at San Antonio
- Biomedical Engineering Program, UTSA-UTHSCSA
| | - D. Escobedo
- Department of Medicine/Cardiology, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - C. Calhoun
- Department of Medicine/Cardiology, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - C. Jourdan Le Saux
- Department of Medicine/Cardiology, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - H. C. Han
- Department of Mechanical Engineering, University of Texas at San Antonio
- Biomedical Engineering Program, UTSA-UTHSCSA
| |
Collapse
|
19
|
Ramachandra AB, Latorre M, Szafron JM, Marsden AL, Humphrey JD. Vascular adaptation in the presence of external support - A modeling study. J Mech Behav Biomed Mater 2020; 110:103943. [PMID: 32957235 DOI: 10.1016/j.jmbbm.2020.103943] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/24/2020] [Accepted: 06/17/2020] [Indexed: 10/24/2022]
Abstract
Vascular grafts have long been used to replace damaged or diseased vessels with considerable success, but a new approach is emerging where native vessels are merely supported, not replaced. Although external supports have been evaluated in diverse situations - ranging from aneurysmal disease to vein grafts or the Ross operation - optimal supports and procedures remain wanting. In this paper, we present a novel application of a growth and remodeling model well suited for parametrically exploring multiple designs of external supports while accounting for mechanobiological and immunobiological responses of the supported native vessel. These results suggest that a load bearing external support can reduce vessel thickening in response to pressure elevation. Results also suggest that the final adaptive state of the vessel depends on the structural stiffness of the support via a mechano-driven adaptation, although luminal encroachment may be a complication in the presence of chronic inflammation. Finally, the supported vessel can stiffen (structurally and materially) along circumferential and axial directions, which could have implications on overall hemodynamics and thus subsequent vascular remodeling. The proposed framework can provide valuable insights into vascular adaptation in the presence of external support, accelerate rational design, and aid translation of this emerging approach.
Collapse
Affiliation(s)
| | - Marcos Latorre
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Jason M Szafron
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Alison L Marsden
- Departments of Bioengineering and Pediatrics, Institute of Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
20
|
Caulk AW, Janes KA. Robust latent-variable interpretation of in vivo regression models by nested resampling. Sci Rep 2019; 9:19671. [PMID: 31873087 PMCID: PMC6928252 DOI: 10.1038/s41598-019-55796-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/03/2019] [Indexed: 11/21/2022] Open
Abstract
Simple multilinear methods, such as partial least squares regression (PLSR), are effective at interrelating dynamic, multivariate datasets of cell-molecular biology through high-dimensional arrays. However, data collected in vivo are more difficult, because animal-to-animal variability is often high, and each time-point measured is usually a terminal endpoint for that animal. Observations are further complicated by the nesting of cells within tissues or tissue sections, which themselves are nested within animals. Here, we introduce principled resampling strategies that preserve the tissue-animal hierarchy of individual replicates and compute the uncertainty of multidimensional decompositions applied to global averages. Using molecular-phenotypic data from the mouse aorta and colon, we find that interpretation of decomposed latent variables (LVs) changes when PLSR models are resampled. Lagging LVs, which statistically improve global-average models, are unstable in resampled iterations that preserve nesting relationships, arguing that these LVs should not be mined for biological insight. Interestingly, resampling is less discriminatory for multidimensional regressions of in vitro data, where replicate-to-replicate variance is sufficiently low. Our work illustrates the challenges and opportunities in translating systems-biology approaches from cultured cells to living organisms. Nested resampling adds a straightforward quality-control step for interpreting the robustness of in vivo regression models.
Collapse
Affiliation(s)
- Alexander W Caulk
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, USA
| | - Kevin A Janes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA.
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
21
|
Multiscale modeling of ventricular–vascular dysfunction in pulmonary arterial hypertension. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019. [DOI: 10.1016/j.cobme.2019.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|