1
|
Bi J, Cui D, Liu Z, Wang J, Chen Y, Wang S, Guo J, Dai X. Stent Graft-Induced High Wall Stress Promoted Aortic Wall Failure and Aortic Wall Injurious Complications After TEVAR: A Study of Numerical Simulation and Bioinformatics Analysis Based on Pig Models. J Endovasc Ther 2024:15266028241283324. [PMID: 39342458 DOI: 10.1177/15266028241283324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
OBJECTIVES Stent graft-related aortic injury is a major complication after thoracic endovascular aortic repair (TEVAR) and seriously affects patient prognosis. However, the distribution characteristics of aortic wall stress under the action of stent grafts and the mechanism of abnormal wall stress leading to aortic wall injury and adverse remodeling were unclear. The aim of this study was to explore the potential mechanisms of high wall stress on the structural and functional alterations of the aortic wall by combining animal experiments, numerical simulations, and bioinformatics. METHODS We observed stent graft-induced aortic injury by performing fenestrated TEVAR in 6 pigs, and quantitatively analyzed and visualized the stress distribution of the aortic wall under the stent graft through numerical simulation. Hematoxylin and eosin (HE) staining, Masson's trichrome staining, Verhoeff's Van Gieson (EVG) staining, and immunostaining were used to evaluate pathological changes in the aorta. Based on the numerical simulation results, the corresponding high-stress and low-stress regions of the aortic wall were subjected to bulk-RNA sequencing, and hub genes were identified by bioinformatics analysis. RESULTS Stent grafts were successfully implanted in 5 pigs. In all computational models, we found that obvious deformation and characteristic maximum stress concentration occurred on the side of the greater curve of the aortic arch in contact with the stent graft tip, and the high wall stress concentration areas were highly consistent with the obvious pathological injury area. Subsequent pathological analysis revealed that high wall stress-induced confusion and fragmentation of elastic fibers, collagen deposition, loss and phenotypic switching of vascular smooth muscle cells, and increased inflammatory responses. Gene expression profiles of the aortic wall under different wall stress conditions were described for the first time, and the hub genes (TGFB1, CDH5, DCN, ITGA5, ITGB3, and WT1) that may be involved in regulating the aortic injury and remodeling process in response to high wall stress stimulation were identified. CONCLUSIONS This study revealed a panoramic view of stent graft-associated high wall stress-induced aortic wall injury through technical approaches of multiple dimensions. Understanding these biomechanical features and hub genes is pivotal for advancing our comprehension of the complications associated with aortic injury after TEVAR and facilitating the development of future therapeutic interventions. CLINICAL IMPACT This study revealed a panoramic view of stent graft-associated high wall stress-induced aortic wall injury through technical approaches of multiple dimensions. The biomechanical distribution characteristics of the aortic wall, the secondary pathological injury and the alteration of gene expression profile under the action of stent graft were comprehensively revealed by animal experiments for the first time. This will advance clinicians' comprehension of complications associated with aortic injury after TEVAR, provide a new biomechanical perspective for the rational preoperative planning of TEVAR and the management of postoperative complications, and facilitate the development of future therapeutic interventions and stent graft device designs.
Collapse
Affiliation(s)
- Jiaxue Bi
- Department of Vascular Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin, China
| | - Dongsheng Cui
- Department of Vascular Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin, China
| | - Zongwei Liu
- Department of Vascular Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin, China
| | - Jiaxin Wang
- Department of Vascular Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin, China
| | - Yonghui Chen
- Department of Vascular Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin, China
| | - Shuaishuai Wang
- Department of Vascular Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin, China
| | - Jiayin Guo
- Department of Vascular Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin, China
| | - Xiangchen Dai
- Department of Vascular Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin, China
| |
Collapse
|
2
|
Parikh S, Giudici A, Huberts W, Delhaas T, Bidar E, Spronck B, Reesink K. Significance of Dynamic Axial Stretching on Estimating Biomechanical Behavior and Properties of the Human Ascending Aorta. Ann Biomed Eng 2024; 52:2485-2495. [PMID: 38836979 PMCID: PMC11329543 DOI: 10.1007/s10439-024-03537-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/02/2024] [Indexed: 06/06/2024]
Abstract
Contrary to most vessels, the ascending thoracic aorta (ATA) not only distends but also elongates in the axial direction. The purpose of this study is to investigate the biomechanical behavior of the ascending thoracic aorta (ATA) in response to dynamic axial stretching during the cardiac cycle. In addition, the implications of neglecting this dynamic axial stretching when estimating the constitutive model parameters of the ATA are investigated. The investigations were performed through in silico simulations by assuming a Gasser-Ogden-Holzapfel (GOH) constitutive model representative of ATA tissue material. The GOH model parameters were obtained from biaxial tests performed on four human ATA tissues in a previous study. Pressure-diameter curves were simulated as synthetic data to assess the effect of neglecting dynamic axial stretching on estimating constitutive model parameters. Our findings reveal a significant increase in axial stress (~ 16%) and stored strain energy (~ 18%) in the vessel when dynamic axial stretching is considered, as opposed to assuming a fixed axial stretch. All but one artery showed increased volume compliance while considering a dynamic axial stretching condition. Furthermore, we observe a notable difference in the estimated constitutive model parameters when dynamic axial stretching of the ATA is neglected, compared to the ground truth model parameters. These results underscore the critical importance of accounting for axial deformations when conducting in vivo biomechanical characterization of the ascending thoracic aorta.
Collapse
Affiliation(s)
- Shaiv Parikh
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Alessandro Giudici
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
- GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Wouter Huberts
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
- Department of Biomedical Engineering, Cardiovascular Biomechanics, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Tammo Delhaas
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Elham Bidar
- Department of Cardiothoracic Surgery, Heart & Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Bart Spronck
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Koen Reesink
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
3
|
Sun H, Cheng Z, Guo X, Gu H, Tang D, Wang L. Comparison of Biomechanical and Microstructural Properties of Aortic Graft Materials in Aortic Repair Surgeries. J Funct Biomater 2024; 15:248. [PMID: 39330224 PMCID: PMC11433388 DOI: 10.3390/jfb15090248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Mechanical mismatch between native aortas and aortic grafts can induce graft failure. This study aims to compare the mechanical and microstructural properties of different graft materials used in aortic repair surgeries with those of normal and dissected human ascending aortas. Five types of materials including normal aorta (n = 10), dissected aorta (n = 6), human pericardium (n = 8), bovine pericardium (n = 8) and Dacron graft (n = 5) were collected to perform uniaxial tensile testing to determine their material stiffness, and ultimate strength/stretch. The elastin and collagen contents in four tissue groups except for Dacron were quantified by histological examinations, while the material ultrastructure of five material groups was visualized by scanning electron microscope. Statistical results showed that three graft materials including Dacron, human pericardium and bovine pericardium had significantly higher ultimate strength and stiffness than both normal and dissected aortas. Human and bovine pericardia had significantly lower ultimate stretch than native aortas. Histological examinations revealed that normal and diseased aortic tissues had a significantly higher content of elastic fiber than two pericardial tissues, but less collagen fiber content. All four tissue groups exhibited lamellar fiber ultrastructure, with aortic tissues possessing thinner lamella. Dacron was composed of densely coalesced polyethylene terephthalate fibers in thick bundles. Aortic graft materials with denser fiber ultrastructure and/or higher content of collagen fiber than native aortic tissues, exhibited higher ultimate strength and stiffness. This information provides a basis to understand the mechanical failure of aortic grafts, and inspire the design of biomimetic aortic grafts.
Collapse
Affiliation(s)
- Haoliang Sun
- Department of Cardiovascular Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China;
| | - Zirui Cheng
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China; (Z.C.); (H.G.); (D.T.)
| | - Xiaoya Guo
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
| | - Hongcheng Gu
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China; (Z.C.); (H.G.); (D.T.)
| | - Dalin Tang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China; (Z.C.); (H.G.); (D.T.)
- Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Liang Wang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China; (Z.C.); (H.G.); (D.T.)
| |
Collapse
|
4
|
Li M, Ma T, Cai Y, Li J, Meng Z, Dong Z, Wang S. Numerical simulation of the distal stent graft-induced new entry after TEVAR. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3819. [PMID: 38551141 DOI: 10.1002/cnm.3819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/16/2024] [Accepted: 03/19/2024] [Indexed: 05/15/2024]
Abstract
The study aimed to investigate the mechanical factors for distal stent graft-induced new entry (dSINE) in aortic dissection patients and discussed these factors in conjunction with aortic morphology. Two patients (one dSINE and one non-dSINE), with the same age, gender, and type of implanted stent, were selected, then aortic morphological parameters were calculated. In addition, the stent material parameters used by the patients were also fitted. Simulations were performed based on the patient's aortic model and the stent graft used. The true lumen segment at the distal stent graft was designated as the "dSINE risk zone," and mechanical parameters (maximum principal strain, maximum principal stress) were computed. When approaching the area with higher mechanical parameters in the dSINE risk zone, dSINE patient exhibited higher values and growth rates in mechanical parameters compared to non-dSINE patient. Furthermore, dSINE patient also presented larger aortic taper ratio, stent oversizing ratio, and expansion mismatch ratio of the distal true lumen (EMRDTR). The larger mechanical parameters and growth rates in dSINE patient corresponded to a greater aortic taper ratio, stent oversizing ratio, and EMRDTR. The failure of dSINE prediction by the stent tortuosity index indicated that mechanical parameters were the fundamental reasons for dSINE development.
Collapse
Affiliation(s)
- Meixuan Li
- Department of Aeronautics and Astronautics, Institute of Biomechanics, Fudan University, Shanghai, China
| | - Tao Ma
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, and National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Yunhan Cai
- Department of Aeronautics and Astronautics, Institute of Biomechanics, Fudan University, Shanghai, China
| | - Jianming Li
- Department of Aeronautics and Astronautics, Institute of Biomechanics, Fudan University, Shanghai, China
| | - Zhuangyuan Meng
- Department of Aeronautics and Astronautics, Institute of Biomechanics, Fudan University, Shanghai, China
| | - Zhihui Dong
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, and National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Shengzhang Wang
- Department of Aeronautics and Astronautics, Institute of Biomechanics, Fudan University, Shanghai, China
- Institute of Biomedical Engineering Technology, Academy of Engineering and Technology, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Gheysen L, Maes L, Famaey N, Segers P. Growth and remodeling of the dissected membrane in an idealized dissected aorta model. Biomech Model Mechanobiol 2024; 23:413-431. [PMID: 37945985 PMCID: PMC10963465 DOI: 10.1007/s10237-023-01782-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
While transitioning from the acute to chronic phase, the wall of a dissected aorta often expands in diameter and adaptations in thickness and microstructure take place in the dissected membrane. Including the mechanisms, leading to these changes, in a computational model is expected to improve the accuracy of predictions of the long-term complications and optimal treatment timing of dissection patients. An idealized dissected wall was modeled to represent the elastin and collagen production and/or degradation imposed by stress- and inflammation-mediated growth and remodeling, using the homogenized constrained mixture theory. As no optimal growth and remodeling parameters have been defined for aortic dissections, a Latin hypercube sampling with 1000 parameter combinations was assessed for four inflammation patterns, with a varying spatial extent (full/local) and temporal evolution (permanent/transient). The dissected membrane thickening and microstructure was considered together with the diameter expansion over a period of 90 days. The highest success rate was found for the transient inflammation patterns, with about 15% of the samples leading to converged solutions after 90 days. Clinically observed thickening rates were found for 2-4% of the transient inflammation samples, which represented median total diameter expansion rates of about 5 mm/year. The dissected membrane microstructure showed an elastin decrease and, in most cases, a collagen increase. In conclusion, the model with the transient inflammation pattern allowed the reproduction of clinically observed dissected membrane thickening rates, diameter expansion rates and adaptations in microstructure, thus providing guidance in reducing the parameter space in growth and remodeling models of aortic dissections.
Collapse
Affiliation(s)
- Lise Gheysen
- Institute for Biomedical Engineering and Technology, Electronics and Information Systems, Ghent University, Ghent, Belgium.
| | - Lauranne Maes
- Biomechanics Section, Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Nele Famaey
- Biomechanics Section, Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Patrick Segers
- Institute for Biomedical Engineering and Technology, Electronics and Information Systems, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Gheysen L, Maes L, Caenen A, Segers P, Peirlinck M, Famaey N. Uncertainty quantification of the wall thickness and stiffness in an idealized dissected aorta. J Mech Behav Biomed Mater 2024; 151:106370. [PMID: 38224645 DOI: 10.1016/j.jmbbm.2024.106370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 12/21/2023] [Accepted: 01/01/2024] [Indexed: 01/17/2024]
Abstract
Personalized treatment informed by computational models has the potential to markedly improve the outcome for patients with a type B aortic dissection. However, existing computational models of dissected walls significantly simplify the characteristic false lumen, tears and/or material behavior. Moreover, the patient-specific wall thickness and stiffness cannot be accurately captured non-invasively in clinical practice, which inevitably leads to assumptions in these wall models. It is important to evaluate the impact of the corresponding uncertainty on the predicted wall deformations and stress, which are both key outcome indicators for treatment optimization. Therefore, a physiology-inspired finite element framework was proposed to model the wall deformation and stress of a type B aortic dissection at diastolic and systolic pressure. Based on this framework, 300 finite element analyses, sampled with a Latin hypercube, were performed to assess the global uncertainty, introduced by 4 uncertain wall thickness and stiffness input parameters, on 4 displacement and stress output parameters. The specific impact of each input parameter was estimated using Gaussian process regression, as surrogate model of the finite element framework, and a δ moment-independent analysis. The global uncertainty analysis indicated minor differences between the uncertainty at diastolic and systolic pressure. For all output parameters, the 4th quartile contained the major fraction of the uncertainty. The parameter-specific uncertainty analysis elucidated that the material stiffness and relative thickness of the dissected membrane were the respective main determinants of the wall deformation and stress. The uncertainty analysis provides insight into the effect of uncertain wall thickness and stiffness parameters on the predicted deformation and stress. Moreover, it emphasizes the need for probabilistic rather than deterministic predictions for clinical decision making in aortic dissections.
Collapse
Affiliation(s)
- Lise Gheysen
- Institute for Biomedical Engineering and Technology, Electronics and Information Systems, Ghent University, Belgium.
| | - Lauranne Maes
- Biomechanics Section, Mechanical Engineering, KU Leuven, Belgium
| | - Annette Caenen
- Institute for Biomedical Engineering and Technology, Electronics and Information Systems, Ghent University, Belgium; Cardiovascular Imaging and Dynamics, Department of Cardiovascular Sciences, KU Leuven, Belgium
| | - Patrick Segers
- Institute for Biomedical Engineering and Technology, Electronics and Information Systems, Ghent University, Belgium
| | - Mathias Peirlinck
- Department of BioMechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, the Netherlands
| | - Nele Famaey
- Biomechanics Section, Mechanical Engineering, KU Leuven, Belgium
| |
Collapse
|
7
|
Kan X, Ma T, Jiang X, Holzapfel GA, Dong Z, Xu XY. Towards biomechanics-based pre-procedural planning for thoracic endovascular aortic repair of aortic dissection. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 244:107994. [PMID: 38159449 DOI: 10.1016/j.cmpb.2023.107994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND AND OBJECTIVE Although thoracic aortic endovascular repair (TEVAR) has shown promising outcomes in the treatment of patients with complicated type B aortic dissection, complications still occur after TEVAR that can lead to catastrophic events. Biomechanical interactions between the stent-graft (SG) and the local aortic tissue play a critical role in determining the outcome of TEVAR. Different SG design may cause different biomechanical responses in the treated aorta, but such information is not known at the time of pre-procedural planning. By developing patient-specific virtual stent-graft deployment tools, it is possible to analyse and compare the biomechanical impact of different SGs on the local aorta for individual patients. METHODS A finite element based virtual SG deployment model was employed in this study. Computational simulations were performed on a patient-specific model of type B aortic dissection, accounting for details of the SG design and the hyperelastic behaviour of the aortic wall. Based on the geometry reconstructed from the pre-TEVAR CTA scan, the patient-specific aortic dissection model was created and pre-stressed. Parametric models of three different SG products (SG1, SG2 and SG3) were built with two different lengths for each design. The SG models incorporated different stent and graft materials, stent strut patterns, and assembly approaches. Using our validated SG deployment simulation framework, virtual trials were performed on the patient-specific aortic dissection model using different SG products and varying SG lengths. CONCLUSION Simulation results for different SG products suggest that SG3 with a longer length (SG3-long) would be the most appropriate device for the individual patient. Compared to SG1-short (the SG deployed in the patient), SG3-long followed the true lumen tortuosity closely, resulted in a more uniform true lumen expansion and a significant reduction in peak stress in the distal landing zone. These simulation results are promising and demonstrate the feasibility of using the virtual SG deployment model to assist clinicians in pre-procedural planning.
Collapse
Affiliation(s)
- Xiaoxin Kan
- Centre for Vascular Surgery and Wound Care, Jinshan Hospital, Fudan University, Shanghai, China; Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - Tao Ma
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaolang Jiang
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria; Norwegian University of Science and Technology (NTNU), Department of Structural Engineering, Trondheim, Norway
| | - Zhihui Dong
- Centre for Vascular Surgery and Wound Care, Jinshan Hospital, Fudan University, Shanghai, China; Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao Yun Xu
- Department of Chemical Engineering, Imperial College London, London, United Kingdom.
| |
Collapse
|
8
|
Yang N, Wang J, Liu T. Quantitative study of aortic strain injuries originating from traffic accidents. Forensic Sci Med Pathol 2023; 19:310-318. [PMID: 36169877 DOI: 10.1007/s12024-022-00531-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2022] [Indexed: 11/30/2022]
Abstract
Aortic injuries are the second leading cause of death after head injuries due to traffic accidents, and strain-induced injuries are becoming increasingly prominent. The quantitative study of aortic strain injury allows for a rapid assessment of the degree of aortic injury after an accident and timely diagnosis of the pathology of aortic injury. It is more reliable than diagnosis based on clinical symptoms alone and it is faster than diagnosis based on imaging. Based on the porcine aortic tensile and injury tests, this study obtained the maximum stress threshold of the aorta that can withstand tensile stress and the safe stress threshold under tensile action, which provides a more detailed data reference about aortic injury in the field of internal medicine. Injuries to the aorta under various degrees of traction were analyzed in detail. A comprehensive and quantitative evaluation criterion for aortic strain injury was proposed, which provides a more in-depth reference for the mechanism of aortic strain injury. In addition, combining it with current imaging promises a combination of numbers and shapes for rapid and accurate diagnosis of aortic strain injury.
Collapse
Affiliation(s)
- Na Yang
- School of Automotive Engineering, Harbin Institute of Technology, Weihai, Shandong, China.
| | - Jiexiong Wang
- School of Automotive Engineering, Harbin Institute of Technology, Weihai, Shandong, China
| | - Tao Liu
- School of Automotive Engineering, Harbin Institute of Technology, Weihai, Shandong, China
| |
Collapse
|
9
|
Wang X, Carpenter HJ, Ghayesh MH, Kotousov A, Zander AC, Amabili M, Psaltis PJ. A review on the biomechanical behaviour of the aorta. J Mech Behav Biomed Mater 2023; 144:105922. [PMID: 37320894 DOI: 10.1016/j.jmbbm.2023.105922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/14/2023] [Accepted: 05/20/2023] [Indexed: 06/17/2023]
Abstract
Large aortic aneurysm and acute and chronic aortic dissection are pathologies of the aorta requiring surgery. Recent advances in medical intervention have improved patient outcomes; however, a clear understanding of the mechanisms leading to aortic failure and, hence, a better understanding of failure risk, is still missing. Biomechanical analysis of the aorta could provide insights into the development and progression of aortic abnormalities, giving clinicians a powerful tool in risk stratification. The complexity of the aortic system presents significant challenges for a biomechanical study and requires various approaches to analyse the aorta. To address this, here we present a holistic review of the biomechanical studies of the aorta by categorising articles into four broad approaches, namely theoretical, in vivo, experimental and combined investigations. Experimental studies that focus on identifying mechanical properties of the aortic tissue are also included. By reviewing the literature and discussing drawbacks, limitations and future challenges in each area, we hope to present a more complete picture of the state-of-the-art of aortic biomechanics to stimulate research on critical topics. Combining experimental modalities and computational approaches could lead to more comprehensive results in risk prediction for the aortic system.
Collapse
Affiliation(s)
- Xiaochen Wang
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Harry J Carpenter
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Mergen H Ghayesh
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Andrei Kotousov
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Anthony C Zander
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Marco Amabili
- Department of Mechanical Engineering, McGill University, Montreal H3A 0C3, Canada
| | - Peter J Psaltis
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia 5005, Australia; Department of Cardiology, Central Adelaide Local Health Network, Adelaide, South Australia 5000, Australia; Vascular Research Centre, Heart Health Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, South Australia 5000, Australia
| |
Collapse
|
10
|
Parikh S, Moerman KM, Ramaekers MJFG, Schalla S, Bidar E, Delhaas T, Reesink K, Huberts W. Biomechanical Characterisation of Thoracic Ascending Aorta with Preserved Pre-Stresses. Bioengineering (Basel) 2023; 10:846. [PMID: 37508873 PMCID: PMC10376551 DOI: 10.3390/bioengineering10070846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Mechanical properties of an aneurysmatic thoracic aorta are potential markers of future growth and remodelling and can help to estimate the risk of rupture. Aortic geometries obtained from routine medical imaging do not display wall stress distribution and mechanical properties. Mechanical properties for a given vessel may be determined from medical images at different physiological pressures using inverse finite element analysis. However, without considering pre-stresses, the estimation of mechanical properties will lack accuracy. In the present paper, we propose and evaluate a mechanical parameter identification technique, which recovers pre-stresses by determining the zero-pressure configuration of the aortic geometry. We first validated the method on a cylindrical geometry and subsequently applied it to a realistic aortic geometry. The verification of the assessed parameters was performed using synthetically generated reference data for both geometries. The method was able to estimate the true mechanical properties with an accuracy ranging from 98% to 99%.
Collapse
Affiliation(s)
- Shaiv Parikh
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Kevin M Moerman
- Department of Mechanical Engineering, University of Galway, H91 TK33 Galway, Ireland
| | - Mitch J F G Ramaekers
- Department of Cardiology, Heart & Vascular Centre, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| | - Simon Schalla
- Department of Cardiology, Heart & Vascular Centre, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| | - Elham Bidar
- Department of Cardiothoracic Surgery, Heart & Vascular Centre, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| | - Tammo Delhaas
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Koen Reesink
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Wouter Huberts
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Biomedical Engineering, Cardiovascular Biomechanics, Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
| |
Collapse
|
11
|
Wang X, Ghayesh MH, Kotousov A, Zander AC, Dawson JA, Psaltis PJ. Fluid-structure interaction study for biomechanics and risk factors in Stanford type A aortic dissection. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023:e3736. [PMID: 37258411 DOI: 10.1002/cnm.3736] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 04/04/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023]
Abstract
Aortic dissection is a life-threatening condition with a rising prevalence in the elderly population, possibly as a consequence of the increasing population life expectancy. Untreated aortic dissection can lead to myocardial infarction, aortic branch malperfusion or occlusion, rupture, aneurysm formation and death. This study aims to assess the potential of a biomechanical model in predicting the risks of a non-dilated thoracic aorta with Stanford type A dissection. To achieve this, a fully coupled fluid-structure interaction model was developed under realistic blood flow conditions. This model of the aorta was developed by considering three-dimensional artery geometry, multiple artery layers, hyperelastic artery wall, in vivo-based physiological time-varying blood velocity profiles, and non-Newtonian blood behaviours. The results demonstrate that in a thoracic aorta with Stanford type A dissection, the wall shear stress (WSS) is significantly low in the ascending aorta and false lumen, leading to potential aortic dilation and thrombus formation. The results also reveal that the WSS is highly related to blood flow patterns. The aortic arch region near the brachiocephalic and left common carotid artery is prone to rupture, showing a good agreement with the clinical reports. The results have been translated into their potential clinical relevance by revealing the role of the stress state, WSS and flow characteristics as the main parameters affecting lesion progression, including rupture and aneurysm. The developed model can be tailored for patient-specific studies and utilised as a predictive tool to estimate aneurysm growth and initiation of wall rupture inside the human thoracic aorta.
Collapse
Affiliation(s)
- Xiaochen Wang
- School of Mechanical Engineering, University of Adelaide, Adelaide, Australia
| | - Mergen H Ghayesh
- School of Mechanical Engineering, University of Adelaide, Adelaide, Australia
| | - Andrei Kotousov
- School of Mechanical Engineering, University of Adelaide, Adelaide, Australia
| | - Anthony C Zander
- School of Mechanical Engineering, University of Adelaide, Adelaide, Australia
| | - Joseph A Dawson
- Department of Vascular & Endovascular Surgery, Royal Adelaide Hospital, Adelaide, Australia
- Trauma Surgery Unit, Royal Adelaide Hospital, Adelaide, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Peter J Psaltis
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Vascular Research Centre, Lifelong Health Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, Australia
- Department of Cardiology, Central Adelaide Local Health Network, Adelaide, Australia
| |
Collapse
|
12
|
Gacek E, Mahutga RR, Barocas VH. Hybrid Discrete-Continuum Multiscale Model of Tissue Growth and Remodeling. Acta Biomater 2022; 163:7-24. [PMID: 36155097 DOI: 10.1016/j.actbio.2022.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/11/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022]
Abstract
Tissue growth and remodeling (G&R) is often central to disease etiology and progression, so understanding G&R is essential for understanding disease and developing effective therapies. While the state-of-the-art in this regard is animal and cellular models, recent advances in computational tools offer another avenue to investigate G&R. A major challenge for computational models is bridging from the cellular scale (at which changes are actually occurring) to the macroscopic, geometric-scale (at which physiological consequences arise). Thus, many computational models simplify one scale or another in the name of computational tractability. In this work, we develop a discrete-continuum modeling scheme for analyzing G&R, in which we apply changes directly to the discrete cell and extracellular matrix (ECM) architecture and pass those changes up to a finite-element macroscale geometry. We demonstrate the use of the model in three case-study scenarios: the media of a thick-walled artery, and the media and adventitia of a thick-walled artery, and chronic dissection of an arterial wall. We analyze each case in terms of the new and insightful data that can be gathered from this technique, and we compare our results from this model to several others. STATEMENT OF SIGNIFICANCE: This work is significant in that it provides a framework for combining discrete, microstructural- and cellular-scale models to the growth and remodeling of large tissue structures (such as the aorta). It is a significant advance in that it couples the microscopic remodeling with an existing macroscopic finite element model, making it relatively easy to use for a wide range of conceptual models. It has the potential to improve understanding of many growth and remodeling processes, such as organ formation during development and aneurysm formation, growth, and rupture.
Collapse
Affiliation(s)
- Elizabeth Gacek
- Department of Biomedical Engineering, University of Minnesota - Twin Cities, Minneapolis, MN, 55455
| | - Ryan R Mahutga
- Department of Biomedical Engineering, University of Minnesota - Twin Cities, Minneapolis, MN, 55455
| | - Victor H Barocas
- Department of Biomedical Engineering, University of Minnesota - Twin Cities, Minneapolis, MN, 55455.
| |
Collapse
|
13
|
Li Z, Luo T, Wang S, Jia H, Gong Q, Liu X, Sutcliffe MPF, Zhu H, Liu Q, Chen D, Xiong J, Teng Z. Mechanical and histological characteristics of aortic dissection tissues. Acta Biomater 2022; 146:284-294. [PMID: 35367380 DOI: 10.1016/j.actbio.2022.03.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/14/2022]
Abstract
AIMS This study investigated the association between the macroscopic mechanical response of aortic dissection (AoD) flap, its fibre features, and patient physiological features and clinical presentations. METHODS Uniaxial test was performed with tissue strips in both circumferential and longitudinal directions from 35 patients with (AoD:CC) and without (AoD:w/oCC) cerebral/coronary complications, and 19 patients with rheumatic or valve-related heart diseases (RH). A Bayesian inference framework was used to estimate the expectation of material constants (C1, D1, and D2) of the modified Mooney-Rivlin strain energy density function. Histological examination was used to visualise the elastin and collagen in the tissue strips and image processing was performed to quantify their area percentages, fibre misalignment and waviness. RESULTS The elastin area percentage was negatively associated with age (p = 0.008), while collagen increased about 6% from age 40 to 70 (p = 0.03). Elastin fibre was less dispersed and wavier in old patients and no significant association was found between patient age and collagen fibre dispersion or waviness. Features of fibrous microstructures, either elastin or collagen, were comparable between AoD:CC and AoD:w/oCC group. Elastin and collagen area percentages were positively correlated with C1 and D2, respectively, while the elastin and collagen waviness were negatively correlated with C1 and D2, respectively. Elastin dispersion was negatively correlated to D2. Multivariate analysis showed that D2 was an effective parameter which could differentiate patient groups with different age and clinical presentations, as well as the direction of tissue strip. CONCLUSION Fibre dispersion and waviness in the aortic dissection flap changed with patient age and clinical presentations, and these can be captured by the material constants in the strain energy density function. STATEMENT OF SIGNIFICANCE Aortic dissection (AoD) is a severe cardiovascular disease. Understanding the mechanical property of intimal flap is essential for its risk evaluation. In this study, mechanical testing and histology examination were combined to quantify the relationship between mechanical presentations and microstructure features. A Bayesian inference framework was employed to estimate the expectation of the material constants in the modified Mooney-Rivlin constitutive equation. It was found that fibre dispersion and waviness in the AoD flap changed with patient age and clinical presentations, and these could be captured by the material constants. This study firstly demonstrated that the expectation of material constants can be used to characterise tissue microstructures and differentiate patients with different clinical presentations.
Collapse
|
14
|
Lin S, Morgant MC, Marín-Castrillón DM, Walker PM, Glélé LSA, Boucher A, Presles B, Bouchot O, Lalande A. Aortic local biomechanical properties in ascending aortic aneurysms. Acta Biomater 2022; 149:40-50. [PMID: 35714897 DOI: 10.1016/j.actbio.2022.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/01/2022]
Abstract
Ascending aortic aneurysm (AsAA) is a high-risk cardiovascular disease with an increased incidence over years. In this study, we compare different risk factors based on the pre-failure behavior (from a biomechanical point of view) obtained ex-vivo from an equi-biaxial tensile test. A total of 100 patients (63 ± 12 years, 72 males) with AsAA replacement, were recruited. Equi-biaxial tensile tests of AsAA walls were performed on freshly sampled aortic wall tissue after ascending aortic replacement. The aneurysmal aortic walls were divided into four quadrants (medial, anterior, lateral, and posterior) and two directions (longitudinal and circumferential) were considered. The stiffness was represented by the maximum Young Modulus (MYM). Based on patient information, the following subgroups were considered: age, gender, hypertension, obesity, dyslipidemia, diabetes, smoking history, aortic insufficiency, aortic stenosis, coronary artery disease, aortic diameter and aortic valve type. In general, when the aortic diameter increased, the aortic wall became thicker. In terms of the MYM, the longitudinal direction was significantly higher than that in the circumferential direction. In the multivariant analysis, the impact factors of age (p = 0.07), smoking (p = 0.05), diabetes (p = 0.03), aortic stenosis (p = 0.02), coronary artery disease (p < 10-3), and aortic diameters (p = 0.02) were significantly influencing the MYM. There was no significant MYM difference when the patients presented arterial hypertension, dyslipidemia, obesity, or bicuspid aortic valve. To conclude, the pre-failure aortic stiffness is multi-factorial, according to our population of 100 patients with AsAA. STATEMENT OF SIGNIFICANCE: : Our research on the topic of "Aortic local biomechanical properties in case of ascending aortic aneurysms" is about the biomechanical properties on one hundred aortic samples according to the aortic wall quadrants and the direction. More than ten factors and risks which may impact ascending aortic aneurysms have been studied. According to our knowledge, so far, this article involved the largest population on this topic. It will be our pleasure to share this information with all the readers.
Collapse
Affiliation(s)
- Siyu Lin
- ImViA laboratory, University of Burgundy, Dijon, France.
| | - Marie Catherine Morgant
- ImViA laboratory, University of Burgundy, Dijon, France; Department of Cardio-Vascular and Thoracic Surgery, University Hospital of Dijon, Dijon, France
| | | | - Paul M Walker
- ImViA laboratory, University of Burgundy, Dijon, France; Department of Medical Imaging, University Hospital of Dijon, Dijon, France
| | | | | | | | - Olivier Bouchot
- ImViA laboratory, University of Burgundy, Dijon, France; Department of Cardio-Vascular and Thoracic Surgery, University Hospital of Dijon, Dijon, France
| | - Alain Lalande
- ImViA laboratory, University of Burgundy, Dijon, France; Department of Medical Imaging, University Hospital of Dijon, Dijon, France
| |
Collapse
|
15
|
Fatma K, Carine GC, Marine G, Philippe P, Valérie D. Numerical modeling of residual type B aortic dissection: longitudinal analysis of favorable and unfavorable evolution. Med Biol Eng Comput 2022; 60:769-783. [PMID: 35076858 DOI: 10.1007/s11517-021-02480-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 11/24/2021] [Indexed: 11/26/2022]
Abstract
Residual type B aortic dissection was numerically investigated to highlight the contribution of biomechanical parameters to the pathology's evolution. Patient-specific geometries from cases involving both favorable and unfavorable evolution were modeled to assess their hemodynamic features. This original approach was supported by a longitudinal study confirming the association between morphological changes, hemodynamic features, adverse clinical outcomes, and CT-angioscan observations on the same patient. Comparing one patient with unfavorable evolution with one with favorable one, we identify potential biomechanical indicators predictive of unfavorable evolution: (i) a patent false lumen with a flow rate above 50% of inlet flow rate; (ii) high wall shear stress above 18 Pa at entry tears, and above 10 Pa at some regions of the false lumen wall; (iii) low time-averaged wall shear stress in distal false lumen below 0.5 Pa; (iv) vortical structure dynamics. Although these comparisons could only be conducted on 2 patients and need to be confirmed by a larger number of cases, our findings point to these hemodynamic markers as possible candidates for early evaluation of the pathology's evolution towards an unfavorable scenario. Graphical Abstract Correlation between hemodynamics index and thrombus initiation for unfavorable case. ET2 and ET3 are entry tear numbers 2 and 3 respectively. WSS is wall shear stress. TAWSS is time average shear stress.
Collapse
Affiliation(s)
- Khannous Fatma
- Aix Marseille Univ, CNRS, IRPHE-UMR7342, Ecole Centrale, Marseille, France
| | | | - Gaudry Marine
- Aix Marseille Univ, CNRS, IRPHE-UMR7342, Ecole Centrale, Marseille, France
- Aix Marseille Univ, APHM, Timone Hospital, Department of Vascular Surgery, Marseille, France
| | - Piquet Philippe
- Aix Marseille Univ, APHM, Timone Hospital, Department of Vascular Surgery, Marseille, France
| | - Deplano Valérie
- Aix Marseille Univ, CNRS, IRPHE-UMR7342, Ecole Centrale, Marseille, France.
| |
Collapse
|
16
|
Bhat SK, Yamada H. Mechanical characterization of dissected and dilated human ascending aorta using Fung-type hyperelastic models with pre-identified initial tangent moduli for low-stress distensibility. J Mech Behav Biomed Mater 2021; 125:104959. [PMID: 34800890 DOI: 10.1016/j.jmbbm.2021.104959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 10/24/2021] [Accepted: 11/06/2021] [Indexed: 10/19/2022]
Abstract
Ascending aortic dissection (AD) is a potentially fatal vascular disease associated with degradation and fragmentation of the elastic fibers in the aortic media, increasing low-stress distensibility, and a dilated aorta may lead to dissection. In this study, a Fung-type hyperelastic model was formulated incorporating the initial tangent moduli (ITM) of stress-strain curves as an index of low-stress distensibility. ITM were correlated with the material constants by linearizing incompressible stress-strain relationships at zero strain. For uniaxial loading tests, the robustness of the material constants was examined in the stress ranges of 0-200, 0-180, and 0-160 kPa and to the ITM values of 100%, 95%, and 90%. Examination revealed stable changes in the material constants of 80% of the specimens. For equibiaxial stretch tests, the material constants were determined for each curve of the isotropic and anisotropic deformation groups by pre-identifying the ITM and minimizing fitting errors using isotropic or anisotropic models. The errors for all groups were <6% using a transversely isotropic model, and <10% for an orthotropic model. Comparisons with experimental curves showed that Fung-type models described both the ITM and significant stiffening at high stress levels. The mechanical characteristics of the aorta in the stage prior/posterior to dissection is such that while hardening occurs under both low- and high-stress levels with an increase in collagen content as an aging response, softening occurs under low-stress conditions due to histological abnormalities such as elastin deficiency and fragmentation. Numerical simulations using Fung-type models implied that elastic fiber degeneration and fragmentation in AD tissues reduced not only the low-stress stiffness but also the elastic stiffness with superimposed shear. The latter stiffness was modulated by the stiffening at high stress levels in tensile deformation behavior and normal-strain state under physiological loading conditions, and therefore provides further insight into wall rupture.
Collapse
Affiliation(s)
- Subraya Krishna Bhat
- Department of Biological Functions Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, 808-0196, Japan.
| | - Hiroshi Yamada
- Department of Biological Functions Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, 808-0196, Japan.
| |
Collapse
|
17
|
Uimonen M. Synthesis of multidimensional pathophysiological process leading to type A aortic dissection: a narrative review. J Thorac Dis 2021; 13:6026-6036. [PMID: 34795949 PMCID: PMC8575841 DOI: 10.21037/jtd-21-829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/06/2021] [Indexed: 11/06/2022]
Abstract
Objective This review aims to synthesize the existing knowledge on the etiological process leading to type A aortic dissection (TAAD) and to clarify the relationship between mechanical, biochemical, and histopathological processes behind the aortic disease. Background Extensive research has previously identified several risk factors for TAAD as well as pathological mechanisms leading to TAAD. However, due to the complexity of the pathological process and limited knowledge on the relationships between distinct pathomechanisms leading to TAAD, the ability to identify the patients at high risk for TAAD has been poor. Methods PubMed (National Library of Medicine) database was searched for suitable literature. The most relevant articles focusing on anatomy, histopathology, physiology, and mechanics of ascending aorta and aortic diseases were reviewed. Conclusions Pathophysiology of the TAAD is related to biochemical and histological as well as mechanical and hemodynamic alterations leading to a degeneration of the aortic wall via inflammatory response. The degradative mechanisms of aortic wall structures and the mechanical forces, to which the wall is predisposed, are interrelated and influence one another. The relativity between the factors influencing aortic wall strength and healing capacity, and factors influencing mechanical stress on the aortic wall suggest that the risk of TAAD is not a linear but rather a dynamic phenomenon. Accounting for the dynamical property of the aortic disease in assessing the need for preventive surgical aortic reconstruction may provide a wider perspective in identifying patients at risk of TAAD and in planning preventive medical therapies.
Collapse
Affiliation(s)
- Mikko Uimonen
- Department of Surgery, Central Finland Hospital Nova, Jyväskylä, Finland
| |
Collapse
|
18
|
Mechanobiology of the arterial tissue from the aortic root to the diaphragm. Med Eng Phys 2021; 96:64-70. [PMID: 34565554 DOI: 10.1016/j.medengphy.2021.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/26/2023]
Abstract
Arterial tissue microstructure and its mechanical properties directly correlate with cardiovascular diseases such as atherosclerosis and aneurysm. Experienced hemodynamic loads are the primary factor of arterial tissue remodeling. By virtue of altering hemodynamic loads along the arterial tree, respective structure-function relations will be region-dependent. Since, there is limited experimental evidence on these structure-function homeostases, the current study, aims to report microstructural and mechanical alterations along the aorta from the aortic root up to the diaphragm, where intense hemodynamic alterations take place. The ascending, arch, and descending parts of the same cadaveric aortas were investigated by histomechanical examinations. Anatomical landmarks were labeled on the specimens, and then biaxial tensile tests were conducted on samples from each region. Furthermore, area fractions of elastin and collagen were measured on stained sections of the tissue. Also, a fragmentation index of elastin tissue is proposed for quantitative measurement of ECM integrity, which correlates with the nature of experienced hemodynamic loads. For the ascending aorta and the aortic arch, different values for mechanical properties and fragmentation index are observed even in a specific cross-section of the artery. It is primarily due to the complex loading regimes and curved geometry. Conversely, microstructural and mechanical features along the descending aorta exhibited minimal variations, and hence, smooth blood flow and pressure waves are expected in this region, which is well-documented in the literature. Both of the microstructural and mechanical features of the aorta vary along the arterial tree depending on the hemodynamic and geometric complexities they incur and may shed light on the initiation of cardiovascular diseases.
Collapse
|
19
|
Kan X, Ma T, Lin J, Wang L, Dong Z, Xu XY. Patient-specific simulation of stent-graft deployment in type B aortic dissection: model development and validation. Biomech Model Mechanobiol 2021; 20:2247-2258. [PMID: 34431034 PMCID: PMC8595232 DOI: 10.1007/s10237-021-01504-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/11/2021] [Indexed: 11/29/2022]
Abstract
Thoracic endovascular aortic repair (TEVAR) has been accepted as the mainstream treatment for type B aortic dissection, but post-TEVAR biomechanical-related complications are still a major drawback. Unfortunately, the stent-graft (SG) configuration after implantation and biomechanical interactions between the SG and local aorta are usually unknown prior to a TEVAR procedure. The ability to obtain such information via personalised computational simulation would greatly assist clinicians in pre-surgical planning. In this study, a virtual SG deployment simulation framework was developed for the treatment for a complicated aortic dissection case. It incorporates patient-specific anatomical information based on pre-TEVAR CT angiographic images, details of the SG design and the mechanical properties of the stent wire, graft and dissected aorta. Hyperelastic material parameters for the aortic wall were determined based on uniaxial tensile testing performed on aortic tissue samples taken from type B aortic dissection patients. Pre-stress conditions of the aortic wall and the action of blood pressure were also accounted for. The simulated post-TEVAR configuration was compared with follow-up CT scans, demonstrating good agreement with mean deviations of 5.8% in local open area and 4.6 mm in stent strut position. Deployment of the SG increased the maximum principal stress by 24.30 kPa in the narrowed true lumen but reduced the stress by 31.38 kPa in the entry tear region where there was an aneurysmal expansion. Comparisons of simulation results with different levels of model complexity suggested that pre-stress of the aortic wall and blood pressure inside the SG should be included in order to accurately predict the deformation of the deployed SG.
Collapse
Affiliation(s)
- Xiaoxin Kan
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Tao Ma
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Lin
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Lu Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Zhihui Dong
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Xiao Yun Xu
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
20
|
Kan X, Ma T, Dong Z, Xu XY. Patient-Specific Virtual Stent-Graft Deployment for Type B Aortic Dissection: A Pilot Study of the Impact of Stent-Graft Length. Front Physiol 2021; 12:718140. [PMID: 34381380 PMCID: PMC8349983 DOI: 10.3389/fphys.2021.718140] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Thoracic endovascular aortic repair (TEVAR) has been accepted as a standard treatment option for complicated type B aortic dissection. Distal stent-graft-induced new entry (SINE) is recognised as one of the main post-TEVAR complications, which can lead to fatal prognosis. Previous retrospective cohort studies suggested that short stent-graft (SG) length (<165 mm) might correlate with increased risk of distal SINE. However, the influence of SG length on changes in local biomechanical conditions before and after TEVAR is unknown. In this paper, we aim to address this issue using a virtual SG deployment simulation model developed for application in type B aortic dissection. Our model incorporates detailed SG design and hyperelastic behaviour of the aortic wall. By making use of patient-specific geometry reconstructed from pre-TEVAR computed tomography angiography (CTA) scan, our model can predict post-TEVAR SG configuration and wall stress. Virtual SG deployment simulations were performed on a patient who underwent TEVAR with a short SG (158 mm in length), mimicking the actual clinical procedure. Further simulations were carried out on the same patient geometry but with different SG lengths (183 mm and 208 mm) in order to evaluate the effect of SG length on changes in local stress in the treated aorta. Comparisons of simulation results for different SG lengths showed the location of maximum stress varied with the SG length. With the short SG (deployed in the patient), the maximum von Mises stress of 238.9 kPa was found on the intimal flap at the distal landing zone where SINE was identified at 3-month follow-up. Increasing the SG length caused the maximum von Mises stress to move away from the distal landing zone where stress values were reduced by approximately 17% with the medium-length SG and by 60% with the long SG. This pilot study demonstrates the potential of using the virtual SG deployment model as a pre-surgical planning tool to help select the most appropriate SG length for individual patients.
Collapse
Affiliation(s)
- Xiaoxin Kan
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - Tao Ma
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhihui Dong
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao Yun Xu
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
21
|
Association of NFE2L2 Gene Polymorphisms with Risk and Clinical Characteristics of Acute Type A Aortic Dissection in Han Chinese Population. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5173190. [PMID: 34336095 PMCID: PMC8313362 DOI: 10.1155/2021/5173190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/15/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023]
Abstract
The present study is aimed at investigating the association of NFE2L2 gene polymorphisms with risk and clinical characteristics of acute type A aortic dissection (AAAD) in a Han Chinese population. Six SNPs (rs1806649, rs13001694, rs2364723, rs35652124, rs6721961, and rs2706110) in NFE2L2 were genotyped using SNaPshot Multiplex Kit in 94 adult patients diagnosed with AAAD at our hospital, and 208 healthy Han Chinese subjects from the 1000 Genomes Project were served as the control group. The CC genotype of rs2364723 (CC versus (GC+GG), OR = 2.069, 95% CI: 1.222-3.502, p = 0.006) and CC genotype of rs35652124 (CC versus (CT+TT), OR = 1.889, 95% CI: 1.112-3.210, p = 0.018) were identified as risk factors for AAAD. Multivariable linear regression analysis revealed that the CC genotype of rs2364723 (β = 5.031, 95% CI: 1.878-8.183, p = 0.002) and CC genotype of rs35652124 (β = 4.751, 95% CI: 1.544-7.958, p = 0.004) were associated with increased maximum ascending aorta diameter of AAAD. Patients carrying rs2364723 CC genotype had a higher incidence of coronary artery involvement (31% vs. 12%, p = 0.027), while patients carrying rs35652124 CC genotype had a higher incidence of brain ischemia (9% vs. 0%, p = 0.045). In conclusion, NFE2L2 gene polymorphisms were correlated with risk and severity of AAAD in Han Chinese population.
Collapse
|
22
|
Gu W, Wu J, Pei Y, Ji J, Wu H, Wu J. Evaluation of Common Carotid Stiffness via Echo Tracking in Hypertensive Patients Complicated by Acute Aortic Dissection. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2021; 40:929-936. [PMID: 32888345 PMCID: PMC8246864 DOI: 10.1002/jum.15466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 05/08/2023]
Abstract
OBJECTIVES To evaluate the common carotid stiffness via echo tracking in patients with hypertension and acute aortic dissection (AD) and to investigate the independent predictors for the occurrence of AD in hypertensive (HP) patients. METHODS Fifty HP patients complicated by acute AD (AD group), 50 HP patients without AD (HP group), and 50 age-matched healthy volunteers (control group) were enrolled to assess the common carotid stiffness index (β), single-point pulsed wave velocity (PWVβ), and arterial compliance (AC) via echo tracking. RESULTS The intima-media thickness, diameter, β and PWVβ of the common carotid artery (CCA) in the AD group were significantly higher than those in the HP and control groups, whereas AC in the AD group was significantly lower (P < .05). In a multivariate logistic regression analysis, the systolic blood pressure (SBP; odds ratio [OR], 2.316; 95% confidence interval [CI], 2.033-2.563; P < .001), β (OR, 2.140; 95% CI, 1.931-2.367; P < .001), PWVβ (OR, 1.212; 95% CI, 1.004-1.397; P = .023), and AC (OR, 0.565; 95% CI, 0.339-0.654; P < .001) were significantly related to the occurrence of AD in HP patients. The area under the curve values for the AC, SBP, β, and PWVβ were 0.822, 0.806, 0.778, and 0.741, respectively, and the area under the curve was up to 0.943 when these parameters were combined. CONCLUSIONS The compliance of the CCA decreased, and the stiffness of the CCA increased significantly in HP patients complicated by AD. The AC, β, and PWVβ of the CCA, together with the SBP, were independent predictors of the occurrence of AD in HP patients.
Collapse
Affiliation(s)
- Wenhui Gu
- Department of UltrasoundSecond Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Juan Wu
- Department of UltrasoundSecond Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Yongkai Pei
- Department of UltrasoundSecond Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Jiamei Ji
- Department of UltrasoundSecond Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Haibo Wu
- Department of Cardiovascular SurgerySecond Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Jun Wu
- Department of UltrasoundSecond Affiliated Hospital of Dalian Medical UniversityDalianChina
| |
Collapse
|
23
|
Wu Y, Gong M, Fan R, Gu T, Qian X, Zhang H. Analysis of ascending aortic diameter and long-term prognosis in patients with ascending aortic dissection. Echocardiography 2021; 38:531-539. [PMID: 33528062 DOI: 10.1111/echo.14980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/22/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES This study was designed to review the ascending aortic diameter of patients undergoing surgery for AAD in China and its influence on prognosis. METHODS In the period between January 2018 and January 2020, 265 patients eligible for analysis of ascending aorta were included in this study. The maximum diameter of the ascending aorta was assessed using preoperative computed tomography (CT) scan for patients. RESULTS The mean diameter of the ascending aorta of the reference population was 48.16 ± 9.37 mm, and the percentage of subjects with an aorta <55 mm was 80.38%. In this study, we found that BMI, hypertension, and bicuspid aortic valve are the main factors affecting the widening of the ascending aorta, and the diameter of the ascending aorta in patients with AAD is negatively correlated with the patient's long-term prognosis. However, there is no significant difference in survival rates among patients with different ascending aortic diameter. CONCLUSIONS Ascending aortas with smaller diameter are also prone to dissection, most of which occur at a lower surgical threshold than recommended by current guidelines. Therefore, the diameter of ascending aorta cannot be used as an independent risk factor for high-risk patients with aortic dissection, but it can be used as an important indicator to evaluate the long-term prognosis of patients.
Collapse
Affiliation(s)
- Yuduo Wu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ming Gong
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ruixin Fan
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong, China
| | - Tianxiang Gu
- Department of Cardiac Surgery, The First Affiliated Hospital of the China Medical University, Shenyang, China
| | - Ximing Qian
- Department of Cardiac Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Hongjia Zhang
- Department of Cardiac Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
24
|
Subramaniam DR, Gutmark E, Andersen N, Nielsen D, Mortensen K, Gravholt C, Backeljauw P, Gutmark-Little I. Influence of Material Model and Aortic Root Motion in Finite Element Analysis of Two Exemplary Cases of Proximal Aortic Dissection. J Biomech Eng 2021; 143:014504. [PMID: 32793953 DOI: 10.1115/1.4048084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Indexed: 01/25/2023]
Abstract
The risk of type-A dissection is increased in subjects with connective tissue disorders and dilatation of the proximal aorta. The location and extents of vessel wall tears in these patients could be potentially missed during prospective imaging studies. The objective of this study is to estimate the distribution of systolic wall stress in two exemplary cases of proximal dissection using finite element analysis (FEA) and evaluate the sensitivity of the distribution to the choice of anisotropic material model and root motion. FEA was performed for predissection aortas, without prior knowledge of the origin and extents of vessel wall tear. The stress distribution was evaluated along the wall tear in the postdissection aortas. The stress distribution was compared for the Fung and Holzapfel models with and without root motion. For the subject with spiral dissection, peak stress coincided with the origin of the tear in the sinotubular junction. For the case with root dissection, maximum stress was obtained at the distal end of the tear. The FEA predicted tear pressure was 20% higher for the subject with root dissection as compared to the case with spiral dissection. The predicted tear pressure was higher (9-11%) for root motions up to 10 mm. The Holzapfel model predicted a tear pressure that was lower (8-15%) than the Fung model. The FEA results showed that both material response and root motion could potentially influence the predicted dissection pressure of the proximal aorta at least for conditions tested in this study.
Collapse
Affiliation(s)
| | - Ephraim Gutmark
- Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, OH 45221-0070
| | - Niels Andersen
- Department of Cardiology, Aalborg University Hospital, Aalborg 9100, Denmark
| | - Dorte Nielsen
- Department of Cardiology, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Kristian Mortensen
- Cardiorespiratory Unit, Great Ormond Street Hospital for Children, London WC1N 3JH, UK
| | - Claus Gravholt
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Philippe Backeljauw
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Iris Gutmark-Little
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| |
Collapse
|
25
|
Jadidi M, Razian SA, Habibnezhad M, Anttila E, Kamenskiy A. Mechanical, structural, and physiologic differences in human elastic and muscular arteries of different ages: Comparison of the descending thoracic aorta to the superficial femoral artery. Acta Biomater 2021; 119:268-283. [PMID: 33127484 PMCID: PMC7738395 DOI: 10.1016/j.actbio.2020.10.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/28/2020] [Accepted: 10/22/2020] [Indexed: 12/23/2022]
Abstract
Elastic and muscular arteries differ in structure, function, and mechanical properties, and may adapt differently to aging. We compared the descending thoracic aortas (TA) and the superficial femoral arteries (SFA) of 27 tissue donors (average 41±18 years, range 13-73 years) using planar biaxial testing, constitutive modeling, and bidirectional histology. Both TAs and SFAs increased in size with age, with the outer radius increasing more than the inner radius, but the TAs thickened 6-fold and widened 3-fold faster than the SFAs. The circumferential opening angle did not change in the TA, but increased 2.4-fold in the SFA. Young TAs were relatively isotropic, but the anisotropy increased with age due to longitudinal stiffening. SFAs were 51% more compliant longitudinally irrespective of age. Older TAs and SFAs were stiffer, but the SFA stiffened 5.6-fold faster circumferentially than the TA. Physiologic stresses decreased with age in both arteries, with greater changes occurring longitudinally. TAs had larger circumferential, but smaller longitudinal stresses than the SFAs, larger cardiac cycle stretch, 36% lower circumferential stiffness, and 8-fold more elastic energy available for pulsation. TAs contained elastin sheets separated by smooth muscle cells (SMCs), collagen, and glycosaminoglycans, while the SFAs had SMCs, collagen, and longitudinal elastic fibers. With age, densities of elastin and SMCs decreased, collagen remained constant due to medial thickening, and the glycosaminoglycans increased. Elastic and muscular arteries demonstrate different morphological, mechanical, physiologic, and structural characteristics and adapt differently to aging. While the aortas remodel to preserve the Windkessel function, the SFAs maintain higher longitudinal compliance.
Collapse
Affiliation(s)
- Majid Jadidi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Mahmoud Habibnezhad
- Department of Computer Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Eric Anttila
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Alexey Kamenskiy
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA.
| |
Collapse
|
26
|
Khannous F, Guivier-Curien C, Gaudry M, Piquet P, Deplano V. Residual type B aortic dissection FSI modeling. Comput Methods Biomech Biomed Engin 2020. [DOI: 10.1080/10255842.2020.1812165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- F. Khannous
- Aix-Marseille Univ, CNRS, Ecole Centrale, IRPHE, Marseille, France
| | | | - M. Gaudry
- Aix-Marseille Univ, CNRS, Ecole Centrale, IRPHE, Marseille, France
- Aix-Marseille Univ, AP-HM, Service de chirurgie vasculaire de l’hôpital de la Timone, Marseille, France
| | - P. Piquet
- Aix-Marseille Univ, AP-HM, Service de chirurgie vasculaire de l’hôpital de la Timone, Marseille, France
| | - V. Deplano
- Aix-Marseille Univ, CNRS, Ecole Centrale, IRPHE, Marseille, France
| |
Collapse
|
27
|
Yuan X, Kan X, Xu XY, Nienaber CA. Finite element modeling to predict procedural success of thoracic endovascular aortic repair in type A aortic dissection. JTCVS Tech 2020; 4:40-47. [PMID: 34317961 PMCID: PMC8307501 DOI: 10.1016/j.xjtc.2020.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 01/16/2023] Open
Abstract
Objective Thoracic endovascular aortic repair (TEVAR) is recommended for type B aortic dissection and recently has even been used in selected cases of proximal (Stanford type A) aortic dissections in scenarios of prohibitive surgical risk. However, mechanical interactions between the native aorta and stent-graft are poorly understood, as some cases ended in failure. The aim of this study is to explore and better understand biomechanical changes after TEVAR and predict the result via virtual stenting. Methods A case of type A aortic dissection was considered inoperable and selected for TEVAR. The procedure failed due to stent-graft migration even with precise deployment. A novel patient-specific virtual stent-graft deployment model based on finite element method was employed to analyze TEVAR-induced changes under such conditions. Two landing positions were simulated to investigate the reason for stent-graft migration immediately after TEVAR and explore options for optimization. Results Simulation of the actual procedure revealed that the proximal bare metal stent pushed the lamella into the false lumen and led to further stent-graft migration during the launch phase. An alternative landing position has reduced the local deformation of the dissection lamella and avoided stent-graft migration. Higher maximum principal stress (>20 KPa) was found on the lamella with deployment at the actual position, while the alternative strategy would have reduced the stress to <5 KPa. Conclusions Virtual stent-graft deployment simulation based on finite element model could be helpful to both predict outcomes of TEVAR and better plan future endovascular procedures.
Collapse
Affiliation(s)
- Xun Yuan
- Cardiology and Aortic Centre, Royal Brompton & Harefield NHS Foundation Trust, London, United Kingdom.,National Heart and Lung Institute, School of Medicine, Imperial College London, London, United Kingdom
| | - Xiaoxin Kan
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - Xiao Yun Xu
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - Christoph A Nienaber
- Cardiology and Aortic Centre, Royal Brompton & Harefield NHS Foundation Trust, London, United Kingdom.,National Heart and Lung Institute, School of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
28
|
Jadidi M, Habibnezhad M, Anttila E, Maleckis K, Desyatova A, MacTaggart J, Kamenskiy A. Mechanical and structural changes in human thoracic aortas with age. Acta Biomater 2020; 103:172-188. [PMID: 31877371 DOI: 10.1016/j.actbio.2019.12.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 12/22/2022]
Abstract
Aortic mechanical and structural characteristics have profound effects on pathophysiology, but many aspects of physiologic stress-stretch state and intramural changes due to aging remain poorly understood in human tissues. While difficult to assess in vivo due to residual stresses and pre-stretch, physiologic stress-stretch characteristics can be calculated using experimentally-measured mechanical properties and constitutive modeling. Mechanical properties of 76 human descending thoracic aortas (TA) from 13 to 78-year-old donors (mean age 51±18 years) were measured using multi-ratio planar biaxial extension. Constitutive parameters were derived for aortas in 7 age groups, and the physiologic stress-stretch state was calculated. Intramural characteristics were quantified from histological images and related to aortic morphometry and mechanics. TA stiffness increased with age, and aortas became more nonlinear and anisotropic. Systolic and diastolic elastic energy available for pulsation decreased with age from 30 to 8 kPa and from 18 to 5 kPa, respectively. Cardiac cycle circumferential stretch dropped from 1.14 to 1.04, and circumferential and longitudinal physiologic stresses decreased with age from 90 to 72 kPa and from 90 to 17 kPa, respectively. Aortic wall thickness and radii increased with age, while the density of elastin in the tunica media decreased. The number of elastic lamellae and circumferential physiologic stress per lamellae unit remained constant with age at 102±10 and 0.85±0.04 kPa, respectively. Characterization of mechanical, physiological, and structural features in human aortas of different ages can help understand aortic pathology, inform the development of animal models that simulate human aging, and assist with designing devices for open and endovascular aortic repairs. STATEMENT OF SIGNIFICANCE: This manuscript describes mechanical and structural changes occurring in human thoracic aortas with age, and presents material parameters for 4 commonly used constitutive models. Presented data can help better understand aortic pathology, inform the development of animal models that simulate human aging, and assist with designing devices for open and endovascular aortic repairs.
Collapse
Affiliation(s)
- Majid Jadidi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Mahmoud Habibnezhad
- Department of Computer Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Eric Anttila
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Kaspars Maleckis
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, United States; Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, United States
| | - Anastasia Desyatova
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, United States; Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, United States
| | - Jason MacTaggart
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, United States
| | - Alexey Kamenskiy
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, United States; Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, United States.
| |
Collapse
|