1
|
Gupta S, Moini R. Tough Cortical Bone-Inspired Tubular Architected Cement-Based Material with Disorder. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313904. [PMID: 39252668 PMCID: PMC11681317 DOI: 10.1002/adma.202313904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/05/2024] [Indexed: 09/11/2024]
Abstract
Cortical bone is a tough biological material composed of tube-like osteons embedded in the organic matrix surrounded by weak interfaces known as cement lines. The cement lines provide a microstructurally preferable crack path, hence triggering in-plane crack deflection around osteons due to cement line-crack interaction. Inspired by this toughening mechanism and facilitated by a hybrid (3D-printing/casting) process, the study engineers architected tubular cement-based materials with the stepwise cracking toughening mechanism, that enables a non-brittle fracture. Using experimental and theoretical approaches, the study demonstrates the competition between tube size and shape on stress intensity factor from which engineering stepwise cracking can emerge. Two competing mechanisms, both positively and negatively affected by the growing tube size, arise to significantly enhance the overall fracture toughness by up to 5.6-fold compared to the monolithic brittle counterpart without sacrificing the specific strength. This is enabled by crack-tube interaction and engineering the tube size, shape, and orientation, which promotes rising resistance-curves (R-curve). "Disorder" curves and statistical mechanics parameters are proposed for the first time to quantitatively characterize the degree of disorder for describing the representation of the architected arrangement of materials in lieu of otherwise inadequate "periodicity" classification and misperceived disorder parameters (perturbation and Voronoi tessellation methods).
Collapse
Affiliation(s)
- Shashank Gupta
- Department of Civil and Environmental EngineeringPrinceton UniversityPrincetonNJ08544USA
| | - Reza Moini
- Department of Civil and Environmental EngineeringPrinceton UniversityPrincetonNJ08544USA
| |
Collapse
|
2
|
Bregoli C, Biffi CA, Tuissi A, Buccino F. Effect of trabecular architectures on the mechanical response in osteoporotic and healthy human bone. Med Biol Eng Comput 2024; 62:3263-3281. [PMID: 38822996 PMCID: PMC11485120 DOI: 10.1007/s11517-024-03134-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/18/2024] [Indexed: 06/03/2024]
Abstract
Research at the mesoscale bone trabeculae arrangement yields intriguing results that, due to their clinical resolution, can be applied in clinical field, contributing significantly to the diagnosis of bone-related diseases. While the literature offers quantitative morphometric parameters for a thorough characterization of the mesoscale bone network, there is a gap in understanding relationships among them, particularly in the context of various bone pathologies. This research aims to bridge these gaps by offering a quantitative evaluation of the interplay among morphometric parameters and mechanical response at mesoscale in osteoporotic and non-osteoporotic bones. Bone mechanical response, dependent on trabecular arrangement, is defined by apparent stiffness, computationally calculated using the Gibson-Ashby model. Key findings indicate that: (i) in addition to bone density, measured using X-ray absorptiometry, trabecular connectivity density, trabecular spacing and degree of anisotropy are crucial parameters for characterize osteoporosis state; (ii) apparent stiffness values exhibit strong correlations with bone density and connectivity density; (iii) connectivity density and degree of anisotropy result the best predictors of mechanical response. Despite the inherent heterogeneity in bone structure, suggesting the potential benefit of a larger sample size in the future, this approach presents a valuable method to enhance discrimination between osteoporotic and non-osteoporotic samples.
Collapse
Affiliation(s)
- Chiara Bregoli
- National Research Council, CNR-ICMTE, Lecco, Italy.
- Mechanical Engineering Department, Politecnico Di Milano, Milano, Italy.
| | | | | | - Federica Buccino
- Mechanical Engineering Department, Politecnico Di Milano, Milano, Italy
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
3
|
Ji C, Yang X, Zhang L, Chen X, Sun Y, Lin B. Microcrack behavior in bone: Stress field analysis at osteon cement line tips. Proc Inst Mech Eng H 2024; 238:909-921. [PMID: 39177050 DOI: 10.1177/09544119241272854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Bone microstructure governs microcrack propagation complexity. Current research, relying on linear elastic fracture mechanics, inadequately considers authentic multi-level structures, like cement lines and osteons, impacting stress intensity at cracks. This study, by constructing models encompassing single or multiple osteons, delves into the influence of factors like crack length, osteon radius, and modulus ratio on the stress intensity factor at the crack tip. Employing a fracture mechanics phase-field approach to simulate crack propagation paths, it particularly explores the role of cement lines as weak interfaces in crack extension. The aim is to comprehensively and systematically elucidate the critical factors of bone microstructure in the context of crack propagation.
Collapse
Affiliation(s)
- Chunhui Ji
- Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin, China
| | - Xiuyan Yang
- Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin, China
| | - Liang Zhang
- Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin, China
| | - Xicheng Chen
- Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin, China
| | - Yadi Sun
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Bin Lin
- Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin, China
| |
Collapse
|
4
|
Vellwock AE, Libonati F. XFEM for Composites, Biological, and Bioinspired Materials: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:745. [PMID: 38591618 PMCID: PMC10856485 DOI: 10.3390/ma17030745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/09/2024] [Accepted: 01/29/2024] [Indexed: 04/10/2024]
Abstract
The eXtended finite element method (XFEM) is a powerful tool for structural mechanics, assisting engineers and designers in understanding how a material architecture responds to stresses and consequently assisting the creation of mechanically improved structures. The XFEM method has unraveled the extraordinary relationships between material topology and fracture behavior in biological and engineered materials, enhancing peculiar fracture toughening mechanisms, such as crack deflection and arrest. Despite its extensive use, a detailed revision of case studies involving XFEM with a focus on the applications rather than the method of numerical modeling is in great need. In this review, XFEM is introduced and briefly compared to other computational fracture models such as the contour integral method, virtual crack closing technique, cohesive zone model, and phase-field model, highlighting the pros and cons of the methods (e.g., numerical convergence, commercial software implementation, pre-set of crack parameters, and calculation speed). The use of XFEM in material design is demonstrated and discussed, focusing on presenting the current research on composites and biological and bioinspired materials, but also briefly introducing its application to other fields. This review concludes with a discussion of the XFEM drawbacks and provides an overview of the future perspectives of this method in applied material science research, such as the merging of XFEM and artificial intelligence techniques.
Collapse
Affiliation(s)
- Andre E. Vellwock
- B CUBE—Center for Molecular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany;
| | - Flavia Libonati
- Department of Mechanical, Energy, Management and Transportation Engineering, University of Genoa, 16145 Genoa, Italy
| |
Collapse
|
5
|
Pérez-Cano FD, Jiménez-Pérez JR, Molina-Viedma AJ, López-Alba E, Luque-Luque A, Delgado-Martínez A, Díaz-Garrido FA, Jiménez-Delgado JJ. Human femur fracture by mechanical compression: Towards the repeatability of bone fracture acquisition. Comput Biol Med 2023; 164:107249. [PMID: 37473562 DOI: 10.1016/j.compbiomed.2023.107249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
The increase in life expectancy combined with greater bone fragility over the years is causing a rise in the bone fracture cases. Femur fractures are the most important due to their high mortality rate. This multidisciplinary work is carried out in this context and focuses on the experimental reproduction of human femur fractures by compression. We describe a sequence of steps supervised by orthopaedic surgeons for the correct arrangement of specimens on the system set up to perform the experiment. The device applies force by compression until the human bone is fractured. All tests performed have been monitored and evaluated from different knowledge perspectives. The results obtained have demonstrated the repeatability of the fracture type in a controlled environment as well as identifying the main features involved in this process. In addition, the fractured bones have been digitized to analyze the fracture zone to recreate and evaluate future simulations.
Collapse
Affiliation(s)
- F D Pérez-Cano
- Graphics and Geomatics Group of Jaén, University of Jaén, Jaén, Spain.
| | - J R Jiménez-Pérez
- Graphics and Geomatics Group of Jaén, University of Jaén, Jaén, Spain.
| | - A J Molina-Viedma
- Department of Mechanical and Mining Engineering, University of Jaén, Jaén, Spain.
| | - E López-Alba
- Department of Mechanical and Mining Engineering, University of Jaén, Jaén, Spain.
| | - A Luque-Luque
- Graphics and Geomatics Group of Jaén, University of Jaén, Jaén, Spain.
| | - A Delgado-Martínez
- Department of Orthopedic Surgery, Complejo Hospitalario de Jaén, Jaén, Spain; Department of Health Sciences, University of Jaén, Jaén, Spain.
| | - F A Díaz-Garrido
- Department of Mechanical and Mining Engineering, University of Jaén, Jaén, Spain.
| | | |
Collapse
|
6
|
Demirtas A, Taylor EA, Gludovatz B, Ritchie RO, Donnelly E, Ural A. An integrated experimental-computational framework to assess the influence of microstructure and material properties on fracture toughness in clinical specimens of human femoral cortical bone. J Mech Behav Biomed Mater 2023; 145:106034. [PMID: 37494816 DOI: 10.1016/j.jmbbm.2023.106034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/08/2023] [Accepted: 07/16/2023] [Indexed: 07/28/2023]
Abstract
Microstructural and compositional changes that occur due to aging, pathological conditions, or pharmacological treatments alter cortical bone fracture resistance. However, the relative importance of these changes to the fracture resistance of cortical bone has not been quantified in detail. In this technical note, we developed an integrated experimental-computational framework utilizing human femoral cortical bone biopsies to advance the understanding of how fracture resistance of cortical bone is modulated due to modifications in its microstructure and material properties. Four human biopsy samples from individuals with varying fragility fracture history and osteoporosis treatment status were converted to finite element models incorporating specimen-specific material properties and were analyzed using fracture mechanics-based modeling. The results showed that cement line density and osteonal volume had a significant effect on crack volume. The removal of cement lines substantially increased the crack volume in the osteons and interstitial bone, representing straight crack growth, compared to models with cement lines due to the lack of crack deflection in the models without cement lines. Crack volume in the osteons and interstitial bone increased when mean elastic modulus and ultimate strength increased and mean fracture toughness decreased. Crack volume in the osteons and interstitial bone was reduced when material property heterogeneity was incorporated in the models. Although both the microstructure and the heterogeneity of the material properties of the cortical bone independently increased the fracture toughness, the relative contribution of the microstructure was more significant. The integrated experimental-computational framework developed here can identify the most critical microscale features of cortical bone modulated by pathological processes or pharmacological treatments that drive changes in fracture resistance and improve our understanding of the relative influence of microstructure and material properties on fracture resistance of cortical bone.
Collapse
Affiliation(s)
- Ahmet Demirtas
- Department of Mechanical Engineering, Villanova University, Villanova, PA, USA
| | - Erik A Taylor
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Bernd Gludovatz
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Robert O Ritchie
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA; Musculoskeletal Integrity Program, Weill Cornell Medicine, Research Institute, Hospital for Special Surgery, New York City, NY, USA
| | - Ani Ural
- Department of Mechanical Engineering, Villanova University, Villanova, PA, USA.
| |
Collapse
|
7
|
The influence of foramina on femoral neck fractures and strains predicted with finite element analysis. J Mech Behav Biomed Mater 2022; 134:105364. [DOI: 10.1016/j.jmbbm.2022.105364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 11/21/2022]
|
8
|
Laurent C, Marano A, Baldit A, Ferrari M, Perrin JC, Perroud O, Bianchi A, Kempf H. A preliminary study exploring the mechanical properties of normal and Mgp-deficient mouse femurs during early growth. Proc Inst Mech Eng H 2022; 236:1106-1117. [PMID: 35778813 DOI: 10.1177/09544119221109019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Matrix Gla protein (MGP) is mostly known to be a calcification inhibitor, as its absence leads to ectopic calcification of different tissues such as cartilage or arteries. MGP deficiency also leads to low bone mass and delayed bone growth. In the present contribution, we investigate the effect of MGP deficiency on the structural and material mechanical bone properties by focusing on the elastic response of femurs undergoing three-points bending. To this aim, biomechanical tests are performed on femurs issued from Mgp-deficient mice at 14, 21, 28, and 35 days of postnatal life and compared to healthy control femurs. µCT acquisitions enable to reconstruct bone geometries and are used to construct subject-specific finite element models avoiding some of the reported limitations concerning the use of beam-like assumptions for small bone samples. Our results indicate that MGP deficiency may be associated to differences in both structural and material properties of femurs during early stages of development. MGP deficiency appears to be related to a decrease in bone dimensions, compensated by higher material properties resulting in similar structural bone properties at P35. The search for a unique density-elasticity relationship based on calibrated bone mineral density (BMD) indicates that MGP deficiency may affect bone tissue in several ways, that may not be represented uniquely from the quantification of BMD. Despite of its limitation to elastic response, the present preliminary study reports for the very first time the mechanical skeletal properties of Mgp-deficient mice at early stages of development.
Collapse
Affiliation(s)
- Cédric Laurent
- CNRS UMR 7239 LEM3, Université de Lorraine, Metz, France
| | - Alexandre Marano
- CNRS UMR 7365 IMoPA, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Adrien Baldit
- CNRS UMR 7239 LEM3, Université de Lorraine, Metz, France
| | - Maude Ferrari
- CNRS UMR 7563 LEMTA, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | | | | | - Arnaud Bianchi
- CNRS UMR 7365 IMoPA, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Hervé Kempf
- CNRS UMR 7365 IMoPA, Université de Lorraine, Vandœuvre-lès-Nancy, France
| |
Collapse
|
9
|
Orozco GA, Tanska P, Gustafsson A, Korhonen RK, Isaksson H. Crack propagation in articular cartilage under cyclic loading using cohesive finite element modeling. J Mech Behav Biomed Mater 2022; 131:105227. [DOI: 10.1016/j.jmbbm.2022.105227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/01/2022] [Accepted: 04/02/2022] [Indexed: 11/28/2022]
|