1
|
Maikos JT, Chomack JM, Herlihy DV, Paglia DN, Wetterstrand C, O'Connor JP, Hyre MJ, Loan JP, D'Andrea SE. Quantifying Bone and Skin Movement in the Residual Limb-Socket Interface of Individuals With Transtibial Limb Loss Using Dynamic Stereo X-Ray: Protocol for a Lower Limb Loss Cadaver and Clinical Study. JMIR Res Protoc 2024; 13:e57329. [PMID: 38669065 PMCID: PMC11087852 DOI: 10.2196/57329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Relative motion between the residual limb and socket in individuals with transtibial limb loss can lead to substantial consequences that limit mobility. Although assessments of the relative motion between the residual limb and socket have been performed, there remains a substantial gap in understanding the complex mechanics of the residual limb-socket interface during dynamic activities that limits the ability to improve socket design. However, dynamic stereo x-ray (DSX) is an advanced imaging technology that can quantify 3D bone movement and skin deformation inside a socket during dynamic activities. OBJECTIVE This study aims to develop analytical tools using DSX to quantify the dynamic, in vivo kinematics between the residual limb and socket and the mechanism of residual tissue deformation. METHODS A lower limb cadaver study will first be performed to optimize the placement of an array of radiopaque beads and markers on the socket, liner, and skin to simultaneously assess dynamic tibial movement and residual tissue and liner deformation. Five cadaver limbs will be used in an iterative process to develop an optimal marker setup. Stance phase gait will be simulated during each session to induce bone movement and skin and liner deformation. The number, shape, size, and placement of each marker will be evaluated after each session to refine the marker set. Once an optimal marker setup is identified, 21 participants with transtibial limb loss will be fitted with a socket capable of being suspended via both elevated vacuum and traditional suction. Participants will undergo a 4-week acclimation period and then be tested in the DSX system to track tibial, skin, and liner motion under both suspension techniques during 3 activities: treadmill walking at a self-selected speed, at a walking speed 10% faster, and during a step-down movement. The performance of the 2 suspension techniques will be evaluated by quantifying the 3D bone movement of the residual tibia with respect to the socket and quantifying liner and skin deformation at the socket-residuum interface. RESULTS This study was funded in October 2021. Cadaver testing began in January 2023. Enrollment began in February 2024. Data collection is expected to conclude in December 2025. The initial dissemination of results is expected in November 2026. CONCLUSIONS The successful completion of this study will help develop analytical methods for the accurate assessment of residual limb-socket motion. The results will significantly advance the understanding of the complex biomechanical interactions between the residual limb and the socket, which can aid in evidence-based clinical practice and socket prescription guidelines. This critical foundational information can aid in the development of future socket technology that has the potential to reduce secondary comorbidities that result from complications of poor prosthesis load transmission. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/57329.
Collapse
Affiliation(s)
- Jason T Maikos
- Veterans Affairs New York Harbor Healthcare System, New York, NY, United States
| | - John M Chomack
- Veterans Affairs New York Harbor Healthcare System, New York, NY, United States
| | - David V Herlihy
- Narrows Institute for Biomedical Research and Education, Inc., Brooklyn, NY, United States
| | - David N Paglia
- Department of Orthopaedics, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Charlene Wetterstrand
- Department of Orthopaedics, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - J Patrick O'Connor
- Department of Orthopaedics, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Michael J Hyre
- Narrows Institute for Biomedical Research and Education, Inc., Brooklyn, NY, United States
| | | | - Susan E D'Andrea
- Department of Kinesiology, College of Health Sciences, University of Rhode Island, Kingston, RI, United States
| |
Collapse
|
2
|
Roda GF, Awad ME, Melton DH, Christiansen CL, Stoneback JW, Gaffney BMM. The Amputated Limb Gluteus Medius is Biomechanically Disadvantaged in Patients with Unilateral Transfemoral Amputation. Ann Biomed Eng 2024; 52:565-574. [PMID: 37946055 PMCID: PMC10922424 DOI: 10.1007/s10439-023-03400-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Patients with transfemoral amputation (TFA) are at an increased risk of secondary musculoskeleteal comorbidities, primarily due to asymmetric joint loading. Amputated limb muscle weakness is also prevalent in the TFA population, yet all factors that contribute to muscle strength and thus joint loading are not well understood. Our objective was to bilaterally compare gluteus medius (GMED) muscle factors (volume, fatty infiltration, moment arm) that all contribute to joint loading in patients with TFA. Quantitative magnetic resonance (MR) images of the hip were collected from eight participants with unilateral TFA (2M/6F; age: 47.3 ± 14.7 y/o; BMI: 25.4 ± 5.3 kg/m2; time since amputation: 20.6 ± 15.0 years) and used to calculate normalized GMED muscle volume and fatty infiltration. Six participants participated in an instrumented gait analysis session that collected whole-body kinematics during overground walking. Subject-specific musculoskeletal models were used to calculate bilateral GMED (anterior, middle, posterior) moment arms and frontal plane hip joint angles across three gait cycles. Differences in volume, fatty infiltration, hip adduction-abduction angle, and peak moment arms were compared between limbs using paired Cohen's d effect sizes. Volume was smaller by 36.3 ± 18.8% (d = 1.7) and fatty infiltration was greater by 6.4 ± 7.8% (d = 0.8) in the amputated limb GMED compared to the intact limb. The amputated limb GMED abduction moment arms were smaller compared to the intact limb for both overground walking (anterior: d = 0.9; middle: d = 0.1.2) and during normal range of motion (anterior: d = 0.8; middle: d = 0.8) while bilateral hip adduction-abduction angles were similar during overground walking (d = 0.5). These results indicate that in patients with TFA, the amputated limb GMED is biomechanically disadvantaged compared to the intact limb, which may contribute to the etiology of secondary comorbidities. This population might benefit from movement retraining to lengthen the amputated limb GMED abduction moment arm during gait.
Collapse
Affiliation(s)
- Galen F Roda
- Department of Mechanical Engineering, University of Colorado Denver, Denver, CO, USA
| | - Mohamed E Awad
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Osseointegration Research Consortium, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Danielle H Melton
- University of Colorado Osseointegration Research Consortium, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Cory L Christiansen
- University of Colorado Osseointegration Research Consortium, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- VA Eastern Colorado Health Care System, Aurora, CO, USA
| | - Jason W Stoneback
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Osseointegration Research Consortium, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brecca M M Gaffney
- Department of Mechanical Engineering, University of Colorado Denver, Denver, CO, USA.
- University of Colorado Osseointegration Research Consortium, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Center for Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
3
|
Miller RH, Bell EM, Russell Esposito E. Transfemoral limb loss modestly increases the metabolic cost of optimal control simulations of walking. PeerJ 2024; 12:e16756. [PMID: 38223753 PMCID: PMC10785795 DOI: 10.7717/peerj.16756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024] Open
Abstract
Background In transtibial limb loss, computer simulations suggest that the maintenance of muscle strength between pre- and post-limb loss can maintain the pre-limb loss metabolic cost. These results are consistent with comparable costs found experimentally in select cases of high functioning military service members with transtibial limb loss. It is unlikely that similar results would be found with transfemoral limb loss, although the theoretical limits are not known. Here we performed optimal control simulations of walking with and without an above-knee prosthesis to determine if transfemoral limb loss per se increases the metabolic cost of walking. Methods OpenSim Moco was used to generate optimal control simulations of walking in 15 virtual "subjects" that minimized the weighted sum of (i) deviations from average able-bodied gait mechanics and (ii) the gross metabolic cost of walking, pre-limb loss in models with two intact biological limbs, and post-limb loss with one of the limbs replaced by a prosthetic knee and foot. No other changes were made to the model. Metabolic cost was compared between pre- and post-limb loss simulations in paired t-tests. Results Metabolic cost post-limb loss increased by 0.7-9.3% (p < 0.01) depending on whether cost was scaled by total body mass or biological body mass and on whether the prosthetic knee was passive or non-passive. Conclusions Given that the post-limb loss model had numerous features that predisposed it to low metabolic cost, these results suggest transfemoral limb loss per se increases the metabolic cost of walking. However, the large differences above able-bodied peers of ∼20-45% in most gait analysis experiments may be avoidable, even when minimizing deviations from able-bodied gait mechanics. Portions of this text were previously published as part of a preprint (https://www.biorxiv.org/content/10.1101/2023.06.26.546515v2.full.pdf).
Collapse
Affiliation(s)
- Ross H. Miller
- Department of Kinesiology, University of Maryland at College Park, College Park, MD, United States of America
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, United States of America
| | - Elizabeth M. Bell
- Department of Kinesiology, University of Maryland at College Park, College Park, MD, United States of America
- Department of Kinesiology, Towson University, Towson, MD, United States of America
| | - Elizabeth Russell Esposito
- Military Operational Medicine Research Program, Fort Detrick, MD, United States of America
- Extremity Trauma and Amputation Center of Excellence, Fort Sam Houston, TX, United States of America
- Center for Limb Loss and Mobility, VA Puget Sound Healthcare System, Seattle, WA, United States of America
- Madigan Army Medical Center, Tacoma, WA, United States of America
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of Health Sciences, Bethesda, MD, United States of America
| |
Collapse
|
4
|
Darter BJ, Syrett ED, Foreman KB, Kubiak E, Sinclair S. Changes in frontal plane kinematics over 12-months in individuals with the Percutaneous Osseointegrated Prosthesis (POP). PLoS One 2023; 18:e0281339. [PMID: 36812173 PMCID: PMC9946262 DOI: 10.1371/journal.pone.0281339] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 01/13/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND A bone-anchored prosthesis (BAP) eliminates the need for a conventional socket by attaching a prosthesis directly to the user's skeleton. Currently, limited research addresses changes in gait mechanics post BAP implantation. OBJECTIVE Examine changes in frontal plane movement patterns after BAP implantation. METHODS Participants were individuals with unilateral transfemoral amputation (TFA) enrolled in the US Food and Drug Administration (FDA) Early Feasibility Study examining the Percutaneous Osseointegrated Prosthesis (POP). The participants completed overground gait assessments using their conventional socket and at 6-weeks, 12-weeks, 6-months, and 12-months following POP implantation. Statistical parameter mapping techniques were used in examining changes in frontal plane kinematics over the 12-months and differences with reference values for individuals without limb loss. RESULTS Statistically significant deviations were found pre-implantation compared to reference values for hip and trunk angles during prosthetic limb stance phase, and for pelvis and trunk relative to the pelvis angles during prosthetic limb swing. At 6-weeks post-implantation, only the trunk angle demonstrated a statistically significant reduction in the percent of gait cycle with deviations relative to reference values. At 12-months post-implantation, results revealed frontal plane movements were no longer statistically different across the gait cycle for the trunk angle compared to reference values, and less of the gait cycle was statistically different compared to reference values for all other frontal plane patterns analyzed. No statistically significant within-participant differences were found for frontal plane movement patterns between pre-implantation and 6-weeks or 12-months post-implantation. CONCLUSIONS Deviations from reference values displayed prior to device implantation were reduced or eliminated 12-months post-implantation in all frontal plane patterns analyzed, while within-participant changes over the 12-month period did not reach statistical significance. Overall, the results suggest the transition to a BAP aided in normalizing gait patterns in a sample of relatively high functioning individuals with TFA.
Collapse
Affiliation(s)
- Benjamin J. Darter
- Department of Physical Therapy, Virginia Commonwealth University, Richmond, VA, United States of America
- Physical Medicine and Rehabilitation Service, Central Virginia Veterans Health Care System, Richmond, VA, United States of America
- * E-mail:
| | - E. Daniel Syrett
- Department of Physical Therapy, Virginia Commonwealth University, Richmond, VA, United States of America
| | - K. Bo Foreman
- Department of Physical Therapy, University of Utah, Salt Lake City, UT, United States of America
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, United States of America
- Research Service, Salt Lake City Health Care System, Salt Lake City, UT, United States of America
| | - Erik Kubiak
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, United States of America
- Research Service, Salt Lake City Health Care System, Salt Lake City, UT, United States of America
- Department of Orthopedic Surgery, University of Nevada Las Vegas, Las Vegas, NV, United States of America
| | - Sarina Sinclair
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, United States of America
- Research Service, Salt Lake City Health Care System, Salt Lake City, UT, United States of America
| |
Collapse
|
5
|
Guitteny S, Lafon Y, Bonnet V, Aissaoui R, Dumas R. Dynamic estimation of soft tissue stiffness for use in modeling socket, orthosis or exoskeleton interfaces with lower limb segments. J Biomech 2022; 134:110987. [DOI: 10.1016/j.jbiomech.2022.110987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/12/2022] [Accepted: 02/01/2022] [Indexed: 10/19/2022]
|
6
|
Gale T, Yang S, McGough R, Fiedler G, Anderst W. Residual limb shear strain during gait is correlated with patient reported outcomes for persons with transfemoral amputation. J Biomech 2021; 129:110826. [PMID: 34717161 DOI: 10.1016/j.jbiomech.2021.110826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 11/24/2022]
Abstract
The purpose of this study was to measure residual limb skin strain and strain rate within the socket during gait in individuals with a transfemoral amputation and to determine if skin strain during gait is related to patient-reported comfort and function. It was hypothesized that greater skin strain and skin strain rate would correlate to worse patient-reported outcomes. It was also hypothesized that skin strain would progressively increase from the distal to the proximal end of the residuum and maximum strain would occur shortly after heel strike. Dynamic biplane radiography (DBR), combined with conventional motion capture, was used to measure skin deformation within the socket during treadmill walking for 10 persons with unilateral transfemoral amputation. The questionnaire for persons with a transfemoral amputation (Q-TFA) was administered to assess prosthetic use, mobility, health problems, and global health. Q-TFA Prosthetic Use score and Problem score were negatively correlated with the peak shear strains in the proximal and distal regions of the residuum, respectively. Maximum shear strain increased progressively from proximal to distal regions of the residual limb. Within-subject variability in shear strain waveforms during gait was 0.7% or less, but between-subject variability was 3.3% to 5.0% shear. This study demonstrates that skin shear within the socket of persons with transfemoral amputation can be measured during gait using DBR and the results suggest that greater skin shear in the proximal region of the socket is related to decreased prosthetic use.
Collapse
Affiliation(s)
- Tom Gale
- Department of Orthopaedic Surgery, University of Pittsburgh, USA.
| | - Shumeng Yang
- Department of Orthopaedic Surgery, University of Pittsburgh, USA
| | - Richard McGough
- Department of Orthopaedic Surgery, University of Pittsburgh, USA
| | - Goeran Fiedler
- Department of Rehabilitation Science and Technology, University of Pittsburgh, USA
| | - William Anderst
- Department of Orthopaedic Surgery, University of Pittsburgh, USA
| |
Collapse
|
7
|
Maikos JT, Chomack JM, Loan JP, Bradley KM, D'Andrea SE. Effects of Prosthetic Socket Design on Residual Femur Motion Using Dynamic Stereo X-Ray - A Preliminary Analysis. Front Bioeng Biotechnol 2021; 9:697651. [PMID: 34447740 PMCID: PMC8383143 DOI: 10.3389/fbioe.2021.697651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/21/2021] [Indexed: 11/13/2022] Open
Abstract
Individuals with transfemoral amputation experience relative motion between their residual limb and prosthetic socket, which can cause inefficient dynamic load transmission and secondary comorbidities that limit mobility. Accurately measuring the relative position and orientation of the residual limb relative to the prosthetic socket during dynamic activities can provide great insight into the complex mechanics of the socket/limb interface. Five participants with transfemoral amputation were recruited for this study. All participants had a well-fitting, ischial containment socket and were also fit with a compression/release stabilization socket. Participants underwent an 8-wk, randomized crossover trial to compare differences between socket types. Dynamic stereo x-ray was used to quantify three-dimensional residual bone kinematics relative to the prosthetic socket during treadmill walking at self-selected speed. Comfort, satisfaction, and utility were also assessed. There were no significant differences in relative femur kinematics between socket types in the three rotational degrees of freedom, as well as anterior-posterior and medial-lateral translation (p > 0.05). The ischial containment socket demonstrated significantly less proximal-distal translation (pistoning) of the femur compared to the compression/release stabilization socket during the gait cycle (p < 0.05), suggesting that the compression/release stabilization socket provided less control of the residual femur during distal translation. No significant differences in comfort and utility were found between socket types (p > 0.05). The quantitative, dynamic analytical tools used in the study were sensitive to distinguish differences in three-dimensional residual femur motion between two socket types, which can serve as a platform for future comparative effectiveness studies of socket technology.
Collapse
Affiliation(s)
- Jason T Maikos
- VISN 2 Biomechanics Research for the Advancement of Veteran Outcomes Laboratory, Veterans Affairs New York Harbor Healthcare System, New York, NY, United States
| | - John M Chomack
- VISN 2 Biomechanics Research for the Advancement of Veteran Outcomes Laboratory, Veterans Affairs New York Harbor Healthcare System, New York, NY, United States
| | | | | | - Susan E D'Andrea
- Virtual Reality and Motion Analysis Rehabilitation Laboratory, Providence VA Medical Center, Providence, RI, United States
| |
Collapse
|
8
|
Chiu VL, Voloshina AS, Collins SH. The effects of ground-irregularity-cancelling prosthesis control on balance over uneven surfaces. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201235. [PMID: 33614071 PMCID: PMC7890502 DOI: 10.1098/rsos.201235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Over half of individuals with a lower-limb amputation are unable to walk on uneven terrain. Using a prosthesis emulator system, we developed an irregularity-cancelling controller intended to reduce the effect of disturbances resulting from uneven surfaces. This controller functions by changing the neutral angles of two forefoot digits in response to local terrain heights. To isolate the effects of the controller, we also programmed a spring-like controller that maintained fixed neutral angles. Five participants with transtibial amputation walked on a treadmill with an uneven walking surface. Compared with the spring-like controller, the irregularity-cancelling controller reduced ankle torque variability by 41% in the sagittal plane and 64% in the frontal plane. However, user outcomes associated with balance were mostly unaffected; only trunk movement variability was reduced, whereas metabolic rate, mediolateral centre of mass motion, and variabilities in step width, step length and step time were unchanged. We conclude that reducing ankle torque variability of the affected limb is not sufficient for reducing the overall effect of disturbances due to uneven terrain. It is possible that other factors, such as changes in step height or disturbances to the intact limb, play a larger role in difficulty balancing while walking over uneven surfaces.
Collapse
|