1
|
Unal S, Mayda M, Nyman JS, Unal M. Optimizing number of Raman spectra using an artificial neural network guided Monte Carlo simulation approach to analyze human cortical bone. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125035. [PMID: 39217957 PMCID: PMC11560527 DOI: 10.1016/j.saa.2024.125035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/06/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
This study presents a novel methodology for optimizing the number of Raman spectra required per sample for human bone compositional analysis. The methodology integrates Artificial Neural Network (ANN) and Monte Carlo Simulation (MCS). We demonstrate the robustness of ANN in enabling prediction of Raman spectroscopy-based bone quality properties even with limited spectral inputs. The ANN algorithms tailored to individual sex and age groups, which enhance the specificity and accuracy of predictions in bone quality properties. In addition, ANN guided MCS systematically explores the variability and uncertainty inherent in different sample sizes and spectral datasets, leading to the identification of an optimal number of spectra per sample for characterizing human bone tissues. The findings suggest that as low as 2 spectra are sufficient for biochemical analysis of bone, with R2 values between real and predicted values of v1/PO4/Amide I and ∼I1670/I1640 ratios, ranging from 0.60 to 0.89. Our results also suggest that up to 8 spectra could be optimal when balancing other factors. This optimized approach streamlines experimental workflows, reduces data and acquisition costs. Additionally, our study highlights the potential for advancing Raman spectroscopy in bone research through the innovative integration of ANN-guided probabilistic modeling techniques. This research could significantly contribute to the broader landscape of bone quality analyses by establishing a precedent for optimizing the number of Raman spectra with sophisticated computational tools. It also sets a novel platform for future optimization studies in Raman spectroscopy applications in biomedical field.
Collapse
Affiliation(s)
- Safa Unal
- Department of Mechanical Engineering, Karamanoglu Mehmetbey University, Karaman 70200, Turkey
| | - Murat Mayda
- Department of Mechanical Engineering, Karamanoglu Mehmetbey University, Karaman 70200, Turkey
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, 1215 21st Ave. S., Suite 4200, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37232, USA; United States Department of Veterans Affairs, Tennessee Valley Healthcare System, 1310 24(th) Ave. S., Nashville, TN 37212, USA
| | - Mustafa Unal
- Department of Mechanical Engineering, Karamanoglu Mehmetbey University, Karaman 70200, Turkey; Department of Bioengineering, Karamanoglu Mehmetbey University, Karaman 70200, Turkey; Faculty of Medicine, Department of Biophysics, Karamanoglu Mehmetbey University, Karaman 70200, Turkey; Department of Orthopedic Surgery, Harvard Medical School, Boston, MA 020115, USA; The Center for Advanced Orthopedic Studies, BIDMC, Boston, MA 020115, USA.
| |
Collapse
|
2
|
Emerzian SR, Chow J, Behzad R, Unal M, Brooks DJ, Wu IH, Gauthier J, Jangolla SVT, Yu MG, Shah HS, King GL, Johannesdottir F, Karim L, Yu EW, Bouxsein ML. Long-duration type 1 diabetes is associated with deficient cortical bone mechanical behavior and altered matrix composition in human femoral bone. J Bone Miner Res 2024; 40:87-99. [PMID: 39561104 PMCID: PMC11700620 DOI: 10.1093/jbmr/zjae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/21/2024] [Accepted: 11/18/2024] [Indexed: 11/21/2024]
Abstract
Type 1 diabetes (T1D) is associated with an increased risk of hip fracture beyond what can be explained by reduced bone mineral density, possibly due to changes in bone material from accumulation of advanced glycation end-products (AGEs) and altered matrix composition, though data from human cortical bone in T1D are limited. The objective of this study was to evaluate cortical bone material behavior in T1D by examining specimens from cadaveric femora from older adults with long-duration T1D (≥50 yr; n = 20) and age- and sex-matched nondiabetic controls (n = 14). Cortical bone was assessed by mechanical testing (4-point bending, cyclic reference point indentation, impact microindentation), AGE quantification [total fluorescent AGEs, pentosidine, carboxymethyl lysine (CML)], and matrix composition via Raman spectroscopy. Cortical bone from older adults with T1D had diminished postyield toughness to fracture (-30%, p = .036), elevated levels of AGEs (pentosidine, +17%, p = .039), lower mineral crystallinity (-1.4%, p = .010), greater proline hydroxylation (+1.9%, p = .009), and reduced glycosaminoglycan (GAG) content (-1.3%, p < .03) compared to nondiabetics. In multiple regression models to predict cortical bone toughness, cortical tissue mineral density, CML, and Raman spectroscopic measures of enzymatic collagen crosslinks and GAG content remained highly significant predictors of toughness, while diabetic status was no longer significant (adjusted R2 > 0.60, p < .001). Thus, the impairment of cortical bone to absorb energy following long-duration T1D is well explained by AGE accumulation and modifications to the bone matrix. These results provide novel insight into the pathogenesis of skeletal fragility in individuals with T1D.
Collapse
Affiliation(s)
- Shannon R Emerzian
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States
- Harvard Medical School, Boston, MA 02115, United States
| | - Jarred Chow
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States
| | - Ramina Behzad
- Department of Bioengineering, University of Massachusetts Dartmouth, Dartmouth, MA 02747, United States
| | - Mustafa Unal
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States
- Harvard Medical School, Boston, MA 02115, United States
- Department of Bioengineering, Karamanoglu Mehmetbey University, Karaman 70100, Türkiye
| | - Daniel J Brooks
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States
| | - I-Hsien Wu
- Research Division, Joslin Diabetes Center, Boston, MA 02215, United States
| | - John Gauthier
- Research Division, Joslin Diabetes Center, Boston, MA 02215, United States
| | | | - Marc Gregory Yu
- Research Division, Joslin Diabetes Center, Boston, MA 02215, United States
- Department of Internal Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Hetal S Shah
- Research Division, Joslin Diabetes Center, Boston, MA 02215, United States
- Department of Internal Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - George L King
- Research Division, Joslin Diabetes Center, Boston, MA 02215, United States
- Department of Internal Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Fjola Johannesdottir
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States
- Harvard Medical School, Boston, MA 02115, United States
| | - Lamya Karim
- Department of Bioengineering, University of Massachusetts Dartmouth, Dartmouth, MA 02747, United States
| | - Elaine W Yu
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Mary L Bouxsein
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States
- Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
3
|
Britton M, Monahan GE, Murphy CG, Kearns SR, Devitt AT, Okwieka A, Jaisson S, Van Gulick L, Beljebbar A, Kerdjoudj H, Schiavi J, Vaughan TJ. An investigation of composition, morphology, mechanical properties, and microdamage accumulation of human type 2 diabetic bone. Bone 2024; 187:117190. [PMID: 38960297 DOI: 10.1016/j.bone.2024.117190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/07/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
This study investigates the biomechanics of type 2 diabetic bone fragility through a multiscale experimental strategy that considers structural, mechanical, and compositional components of ex vivo human trabecular and cortical bone. Human tissue samples were obtained from the femoral heads of patients undergoing total hip replacement. Mechanical testing was carried out on isolated trabecular cores using monotonic and cyclic compression loading and nanoindentation experiments, with bone microdamage analysed using micro-computed tomography (CT) imaging. Bone composition was evaluated using Raman spectroscopy, high-performance liquid chromatography, and fluorometric spectroscopy. It was found that human type 2 diabetic bone had altered mechanical, compositional, and morphological properties compared to non-type 2 diabetic bone. High-resolution micro-CT imaging showed that cores taken from the central trabecular region of the femoral head had higher bone mineral density (BMD), bone volume, trabecular thickness, and reduced trabecular separation. Type 2 diabetic bone also had enhanced macro-mechanical compressive properties under mechanical loading compared to non-diabetic controls, with significantly higher apparent modulus, yield stress, and pre-yield toughness evident, even when properties were normalised against the bone volume. Using nanoindentation, there were no significant differences in the tissue-level mechanical properties of cortical or trabecular bone in type 2 diabetic samples compared to controls. Through compositional analysis, higher levels of furosine were found in type 2 diabetic trabecular bone, and an increase in both furosine and carboxymethyl-lysine (an advanced glycation end-product) was found in cortical bone. Raman spectroscopy showed that type 2 diabetic bone had a higher mineral-to-matrix ratio, carbonate substitution, and reduced crystallinity compared to the controls. Together, this study shows that type 2 diabetes leads to distinct changes in both organic and mineral phases of the bone tissue matrix, but these changes did not coincide with any reduction in the micro- or macro-mechanical properties of the tissue under monotonic or cyclic loading.
Collapse
Affiliation(s)
- Marissa Britton
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Genna E Monahan
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Colin G Murphy
- Department of Orthopaedics, Galway University Hospitals, Galway, Ireland
| | - Stephen R Kearns
- Department of Orthopaedics, Galway University Hospitals, Galway, Ireland
| | - Aiden T Devitt
- Department of Orthopaedics, Galway University Hospitals, Galway, Ireland
| | - Anaïs Okwieka
- University of Reims Champagne-Ardenne, CNRS, Extracellular Matrix and Cell Dynamics Unit (MEDyC) UMR, Reims, France
| | - Stéphane Jaisson
- University of Reims Champagne-Ardenne, CNRS, Extracellular Matrix and Cell Dynamics Unit (MEDyC) UMR, Reims, France
| | | | | | - Halima Kerdjoudj
- Biomatériaux et Inflammation en Site Osseux (BIOS), Université de Reims Champagne Ardenne, EA 4691 Reims, France
| | | | - Ted J Vaughan
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland.
| |
Collapse
|
4
|
Fernández-Galiana Á, Bibikova O, Vilms Pedersen S, Stevens MM. Fundamentals and Applications of Raman-Based Techniques for the Design and Development of Active Biomedical Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210807. [PMID: 37001970 DOI: 10.1002/adma.202210807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Raman spectroscopy is an analytical method based on light-matter interactions that can interrogate the vibrational modes of matter and provide representative molecular fingerprints. Mediated by its label-free, non-invasive nature, and high molecular specificity, Raman-based techniques have become ubiquitous tools for in situ characterization of materials. This review comprehensively describes the theoretical and practical background of Raman spectroscopy and its advanced variants. The numerous facets of material characterization that Raman scattering can reveal, including biomolecular identification, solid-to-solid phase transitions, and spatial mapping of biomolecular species in bioactive materials, are highlighted. The review illustrates the potential of these techniques in the context of active biomedical material design and development by highlighting representative studies from the literature. These studies cover the use of Raman spectroscopy for the characterization of both natural and synthetic biomaterials, including engineered tissue constructs, biopolymer systems, ceramics, and nanoparticle formulations, among others. To increase the accessibility and adoption of these techniques, the present review also provides the reader with practical recommendations on the integration of Raman techniques into the experimental laboratory toolbox. Finally, perspectives on how recent developments in plasmon- and coherently-enhanced Raman spectroscopy can propel Raman from underutilized to critical for biomaterial development are provided.
Collapse
Affiliation(s)
- Álvaro Fernández-Galiana
- Department of Materials, Department of Bioengineering, Imperial College London, SW7 2AZ, London, UK
| | - Olga Bibikova
- Department of Materials, Department of Bioengineering, Imperial College London, SW7 2AZ, London, UK
| | - Simon Vilms Pedersen
- Department of Materials, Department of Bioengineering, Imperial College London, SW7 2AZ, London, UK
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, Imperial College London, SW7 2AZ, London, UK
| |
Collapse
|
5
|
Wang R, Liu C, Wei W, Lin Y, Zhou L, Chen J, Wu D. Increased bone mass but delayed mineralization: in vivo and in vitro study for zoledronate in bone regeneration. BMC Oral Health 2024; 24:1146. [PMID: 39334089 PMCID: PMC11438265 DOI: 10.1186/s12903-024-04906-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Bisphosphonates (BPs) are widely used to inhibit excessive osteoclast activity. However, the potential to compromise bone defect healing has limited their broader application. To better understand the influence of BPs on bone regeneration, we established a bone grafting model with Zoledronate administration, aiming to deepen the understanding of bone remodeling and mineralization processes. METHODS A bone grafting model was established in the distal femurs of male Sprague-Dawley rats. The experimental group received systemic administration of Zoledronate (ZOL, 0.2 mg/kg, administered twice). Histological analysis and immunohistochemistry (IHC) were employed to assess osteoblastic and macrophage activity, tartrate-resistant acid phosphatase (TRAP) staining was used to evaluate osteoclastogenesis. Mineralization was assessed through Micro-CT analysis, Raman spectroscopy, and back-scatter scanning electron microscopy (BSE-SEM). Additionally, the in vitro effects of ZOL on osteoblast and osteoclast activity were investigated to further elucidate its impact on bone regeneration. RESULTS In vivo, the ZOL group showed increased bone mass, as observed in histological and radiological assessments. However, Micro-CT, Raman spectroscopy, and BSE-SEM detection revealed lower mineralization levels in ZOL group's regenerated bone. Acid-etched SEM analysis showed abnormal osteocyte characteristics in ZOL-group's regenerated bone. Simultaneously, elevated osteopontin (OPN), F4/80 expression along with reduced TRAP expressing was found in the grafting region of ZOL group. In vitro, ZOL did not negatively impact osteogenetic activity (ALP, BMP4, OCN expression) at the tested concentrations (0.02-0.5 g/ml) but significantly impaired mineralization and inhibited osteoclast formation, even at the lowest concentration. CONCLUSIONS This study highlights a less recognized negative effect of ZOL on bone mineralization during bone regeneration. More research is needed to elucidate the underlying mechanism.
Collapse
Affiliation(s)
- Rongchang Wang
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fujian, China
| | - Chaowei Liu
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fujian, China
| | - Wenwei Wei
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fujian, China
| | - Yanjun Lin
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fujian, China
| | - Lin Zhou
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fujian, China
| | - Jiang Chen
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fujian, China
| | - Dong Wu
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fujian, China.
- Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fujian, China.
| |
Collapse
|
6
|
Berteau JP. Predicting altered bone biomechanics in juvenile mice: insights from microgravity simulation, loading interventions, and Raman Spectroscopy. Lab Anim Res 2024; 40:20. [PMID: 38745255 PMCID: PMC11092207 DOI: 10.1186/s42826-024-00207-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Microgravity, a condition experienced in a spatial environment, poses unique challenges to the skeletal system, particularly in juvenile organisms. This study aimed to investigate alterations in bone biomechanics of juvenile mice due to unloading - that simulates microgravity in the laboratory-and the effects of a bone-loading intervention. We compared bone compositional and mechanical properties between 21-six-week-old C57Bl/6 from a control group (wild type) and a group that underwent a tail-suspension unloading protocol to mimic microgravity (MG). The second group (MG) experienced additional in vivo loading protocol (MG + LDG) on the right hind leg, where dynamic compressive loading was applied to the right knee using a custom-built loading device. RESULTS Our results show that after two weeks, we successfully induced bone alterations by (i) decreasing the energy dissipated before fracture and (ii) decreasing the yield and maximum stress. In addition, we showed that Mineral to matrix component [ν1PO4/Amide I], Carbonate to Amide [CO3/Amide I], and Crystallinity [1/FWHM(ν1PO4)] are strongly linked in physiological bone but not in microgravity even after loading intervention. While Crystallinity is very sensitive to bone deformation (strain) alterations coming from simulated microgravity, we show that Carbonate to Amide [CO3/Amide I] - a common marker of turnover rate/remodeling activity-is a specific predictor of bone deformation for bone after simulated microgravity. Our results also invalidate the current parameters of the loading intervention to prevent bone alterations entirely in juvenile mice. CONCLUSIONS Our study successfully induced bone alterations in juvenile mice by using an unloading protocol to simulate microgravity, and we provided a new Raman Spectroscopy (RS) dataset of juvenile mice that contributes to the prediction of cortical bone mechanical properties, where the degree of interrelationship for RS data for physiological bone is improved compared to the most recent evidence.
Collapse
Affiliation(s)
- J P Berteau
- Department of Physical Therapy, City University of New York - College of Staten Island, New-York, USA.
- New York Center for Biomedical Engineering, City University of New York - City College of New York, New-York, USA.
- Nanoscience Initiative, Advanced Science Research Center, City University of New York, New-York, USA.
| |
Collapse
|
7
|
Szabo E, Bensusan J, Akkus O, Rimnac C. Immature porcine cortical bone mechanical properties and composition change with maturation and displacement rate. J Mech Behav Biomed Mater 2024; 153:106487. [PMID: 38490048 DOI: 10.1016/j.jmbbm.2024.106487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/11/2024] [Accepted: 02/26/2024] [Indexed: 03/17/2024]
Abstract
Computational models of mature bone have been used to predict fracture; however, analogous study of immature diaphyseal fracture has not been conducted due to sparse experimental mechanical data. A model of immature bone fracture may be used to aid in the differentiation of accidental and non-accidental trauma fractures in young, newly ambulatory children (0-3 years). The objective of this study was to characterize the evolution of tissue-level mechanical behavior, composition, and microstructure of maturing cortical porcine bone with uniaxial tension, Raman spectroscopy, and light microscopy as a function of maturation. We asked: 1) How do the monotonic uniaxial tensile properties change with maturation and displacement rate; 2) How does the composition and microstructure change with maturation; and 3) Is there a correlation between composition and tensile properties with maturation? Elastic modulus (p < 0.001), fracture stress (p < 0.001), and energy absorption (p < 0.014) increased as a function of maturation at the quasistatic rate by 110%, 86%, and 96%, respectively. Fracture stress also increased by 90% with maturation at the faster rate (p = 0.001). Fracture stress increased as a function of increasing displacement rate by 28% (newborn p = 0.048; 1-month p = 0.004; 3-month p= < 0.001), and fracture strain decreased by 68% with increasing displacement rate (newborn p = 0.002; 1-month p = 0.036; 3-month p < 0.001). Carbonate-to-phosphate ratio was positively linearly related to elastic modulus, and fracture stress was positively related to carbonate-to-phosphate ratio and matrix maturation ratio. The results of this study support that immature bone is strain-rate dependent and becomes more brittle at faster rates, contributing to the foundation upon which a computational model can be built to evaluate immature bone fracture.
Collapse
Affiliation(s)
- Emily Szabo
- Case Western Reserve University, Department of Mechanical and Aerospace Engineering, 2123 Martin Luther King Jr Dr, Cleveland, OH 44106, USA.
| | - Jay Bensusan
- Case Western Reserve University, Department of Mechanical and Aerospace Engineering, 2123 Martin Luther King Jr Dr, Cleveland, OH 44106, USA
| | - Ozan Akkus
- Case Western Reserve University, Department of Mechanical and Aerospace Engineering, 2123 Martin Luther King Jr Dr, Cleveland, OH 44106, USA
| | - Clare Rimnac
- Case Western Reserve University, Department of Mechanical and Aerospace Engineering, 2123 Martin Luther King Jr Dr, Cleveland, OH 44106, USA
| |
Collapse
|
8
|
Liu H, Jiang H, Liu X, Wang X. Physicochemical understanding of biomineralization by molecular vibrational spectroscopy: From mechanism to nature. EXPLORATION (BEIJING, CHINA) 2023; 3:20230033. [PMID: 38264681 PMCID: PMC10742219 DOI: 10.1002/exp.20230033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/25/2023] [Indexed: 01/25/2024]
Abstract
The process and mechanism of biomineralization and relevant physicochemical properties of mineral crystals are remarkably sophisticated multidisciplinary fields that include biology, chemistry, physics, and materials science. The components of the organic matter, structural construction of minerals, and related mechanical interaction, etc., could help to reveal the unique nature of the special mineralization process. Herein, the paper provides an overview of the biomineralization process from the perspective of molecular vibrational spectroscopy, including the physicochemical properties of biomineralized tissues, from physiological to applied mineralization. These physicochemical characteristics closely to the hierarchical mineralization process include biological crystal defects, chemical bonding, atomic doping, structural changes, and content changes in organic matter, along with the interface between biocrystals and organic matter as well as the specific mechanical effects for hardness and toughness. Based on those observations, the special physiological properties of mineralization for enamel and bone, as well as the possible mechanism of pathological mineralization and calcification such as atherosclerosis, tumor micro mineralization, and urolithiasis are also reviewed and discussed. Indeed, the clearly defined physicochemical properties of mineral crystals could pave the way for studies on the mechanisms and applications.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| | - Hui Jiang
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| | - Xuemei Wang
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| |
Collapse
|
9
|
Ahmed R, Unal M, Gautam R, Uppuganti S, Derasari S, Mahadevan-Jansen A, Nyman JS. Sensitivity of the amide I band to matrix manipulation in bone: a Raman micro-spectroscopy and spatially offset Raman spectroscopy study. Analyst 2023; 148:4799-4809. [PMID: 37602820 PMCID: PMC10528211 DOI: 10.1039/d3an00527e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The fracture resistance of bone arises from the hierarchical arrangement of minerals, collagen fibrils (i.e., cross-linked triple helices of α1 and α2 collagen I chains), non-collagenous proteins, and water. Raman spectroscopy (RS) is not only sensitive to the relative fractions of these constituents, but also to the secondary structure of bone proteins. To assess the ability of RS to detect differences in the protein structure, we quantified the effect of sequentially autoclaving (AC) human cortical bone at 100 °C (∼34.47 kPa) and then at 120 °C (∼117.21 kPa) on the amide I band using a commercial Raman micro-spectroscopy (μRS) instrument and custom spatially offset RS (SORS) instrument in which rings of collection fiber optics are offset from the central excitation fiber optics within a hand-held, cylindrical probe. Being clinically viable, measurements by SORS involved collecting Raman spectra of cadaveric femur mid-shafts (5 male & 5 female donors) through layers of a tissue mimic. Otherwise, μRS and SORS measurements were acquired directly from each bone. AC-related changes in the helical status of collagen I were assessed using amide I sub-peak ratios (intensity, I, at ∼1670 cm-1 relative to intensities at ∼1610 cm-1 and ∼1640 cm-1). The autoclaving manipulation significantly decreased the selected amide I sub-peak ratios as well as shifted peaks at ∼1605 cm-1 (μRS), ∼1636 cm-1 (SORS) and ∼1667 cm-1 in both μRS and SORS. Compared to μRS, SORS detected more significant differences in the amide I sub-peak ratios when the fiber optic probe was directly applied to bone. SORS also detected AC-related decreases in I1670/I1610 and I1670/I1640 when spectra were acquired through layers of the tissue mimic with a thickness ≤2 mm by the 7 mm offset ring, but not with the 5 mm or 6 mm offset ring. Overall, the SORS instrument was more sensitive than the conventional μRS instrument to pressure- and temperature-related changes in the organic matrix that affect the fracture resistance of bone, but SORS analysis of the amide I band is limited to an overlying thickness layer of 2 mm.
Collapse
Affiliation(s)
- Rafay Ahmed
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, 1215 21st Ave. S., Suite 4200, Nashville, TN 37232, USA
| | - Mustafa Unal
- Department of Bioengineering, Karamanoglu Mehmetbey University, Karaman, Türkiye 70200
- Department of Biophysics, Faculty of Medicine, Karamanoglu Mehmetbey University, Karaman, Türkiye 70200.
| | - Rekha Gautam
- Biophotonics@Tyndall, IPIC, Tyndall National Institute, Cork, Ireland
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37232, USA
- Vanderbilt Biophotonics Center, 410 24th Ave. S., Nashville, TN 37232, USA
| | - Sasidhar Uppuganti
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, 1215 21st Ave. S., Suite 4200, Nashville, TN 37232, USA
| | - Shrey Derasari
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37232, USA
- Vanderbilt Biophotonics Center, 410 24th Ave. S., Nashville, TN 37232, USA
| | - Anita Mahadevan-Jansen
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37232, USA
- Vanderbilt Biophotonics Center, 410 24th Ave. S., Nashville, TN 37232, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, 1215 21st Ave. S., Suite 4200, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37232, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, 1310 24th Ave. S., Nashville, TN 37212, USA
| |
Collapse
|
10
|
Pendyala M, Stephen SJ, Vashishth D, Blaber EA, Chan DD. Loss of hyaluronan synthases impacts bone morphology, quality, and mechanical properties. Bone 2023; 172:116779. [PMID: 37100359 DOI: 10.1016/j.bone.2023.116779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 04/28/2023]
Abstract
Hyaluronan, a glycosaminoglycan synthesized by three isoenzymes (Has1, Has2, Has3), is known to play a role in regulating bone turnover, remodeling, and mineralization, which in turn can affect bone quality and strength. The goal of this study is to characterize how the loss of Has1 or Has3 affects the morphology, matrix properties, and overall strength of murine bone. Femora were isolated from Has1-/-,Has3-/-, and wildtype (WT) C57Bl/6 J female mice and were analyzed using microcomputed-tomography, confocal Raman spectroscopy, three-point bending, and nanoindentation. Of the three genotypes tested, Has1-/- bones demonstrated significantly lower cross-sectional area (p = 0.0002), reduced hardness (p = 0.033), and lower mineral-to-matrix ratio (p < 0.0001). Has3-/- bones had significantly higher stiffness (p < 0.0001) and higher mineral-to-matrix ratio (p < 0.0001) but lower strength (p = 0.0014) and bone mineral density (p < 0.0001) than WT. Interestingly, loss of Has3 was also associated with significantly lower accumulation of advanced glycation end-products than WT (p = 0.0478). Taken together, these results demonstrate, for the first time, the impact of the loss of hyaluronan synthase isoforms on cortical bone structure, content, and biomechanics. Loss of Has1 impacted morphology, mineralization, and micron-level hardness, while loss of Has3 reduced bone mineral density and affected organic matrix composition, impacting whole bone mechanics. This is the first study to characterize the effect of loss of hyaluronan synthases on bone quality, suggesting an essential role hyaluronan plays during the development and regulation of bone.
Collapse
Affiliation(s)
- Meghana Pendyala
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8(th) St. Troy, NY 12180, United States of America; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8(th) St. Troy, NY 12180, United States of America
| | - Samuel J Stephen
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8(th) St. Troy, NY 12180, United States of America; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8(th) St. Troy, NY 12180, United States of America
| | - Deepak Vashishth
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8(th) St. Troy, NY 12180, United States of America; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8(th) St. Troy, NY 12180, United States of America
| | - Elizabeth A Blaber
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8(th) St. Troy, NY 12180, United States of America; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8(th) St. Troy, NY 12180, United States of America; Blue Marble Space Institute of Science at NASA Ames Research Center, PO Box 1, Moffett Field, CA 94035, United States of America
| | - Deva D Chan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8(th) St. Troy, NY 12180, United States of America; Weldon School of Biomedical Engineering, 206 S. Martin Jischke Drive, Purdue University, West Lafayette, IN, United States of America.
| |
Collapse
|
11
|
Romanowicz GE, Terhune AH, Bielajew BJ, Sexton B, Lynch M, Mandair GS, McNerny EM, Kohn DH. Collagen cross-link profiles and mineral are different between the mandible and femur with site specific response to perturbed collagen. Bone Rep 2022; 17:101629. [PMID: 36325166 PMCID: PMC9618783 DOI: 10.1016/j.bonr.2022.101629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Compromises to collagen and mineral lead to a decrease in whole bone quantity and quality in a variety of systemic diseases, yet, clinically, disease manifestations differ between craniofacial and long bones. Collagen alterations can occur through post-translational modification via lysyl oxidase (LOX), which catalyzes enzymatic collagen cross-link formation, as well as through non-enzymatic advanced glycation end products (AGEs) such as pentosidine and carboxymethyl-lysine (CML). Characterization of the cross-links and AGEs, and comparison of the mineral and collagen modifications in craniofacial and long bones represent a critical gap in knowledge. However, alterations to either the mineral or collagen in bone may contribute to disease progression and, subsequently, the anatomical site dependence of a variety of diseases. Therefore, we hypothesized that collagen cross-links and AGEs differ between craniofacial and long bones and that altered collagen cross-linking reduces mineral quality in an anatomic location dependent. To study the effects of cross-link inhibition on mineralization between anatomical sites, beta-aminoproprionitrile (BAPN) was administered to rapidly growing, 5-8 week-old male mice. BAPN is a dose-dependent inhibitor of LOX that pharmacologically alters enzymatic cross-link formation. Long bones (femora) and craniofacial bones (mandibles) were compared for mineral quantity and quality, collagen cross-link and AGE profiles, and tissue level mechanics, as well as the response to altered cross-links via BAPN. A highly sensitive liquid chromatography/mass spectrometry (LC-MS) method was developed which allowed for quantification of site-dependent accumulation of the advanced glycation end-product, carboxymethyl-lysine (CML). CML was ∼8.3× higher in the mandible than the femur. The mandible had significantly higher collagen maturation, mineral crystallinity, and Young's modulus, but lower carbonation, than the femur. BAPN also had anatomic specific effects, leading to significant decreases in mature cross-links in the mandible, and an increase in mineral carbonation in the femur. This differential response of both the mineral and collagen composition to BAPN between the mandible and femur highlights the need to further understand how inherent compositional differences in collagen and mineral contribute to anatomic-site specific manifestations of disease in both craniofacial and long bones.
Collapse
Key Words
- AGE, advanced glycation end product
- Advanced glycation end products
- BAPN, beta-aminoproprionitrile
- Biomechanical properties
- Bone quality
- CML, carboxymethyl-lysine
- Collagen cross-link
- DHLNL, dihydroxylysinonorleucine
- DPD, lysylpyridinoline
- Femur
- HLKNL, hydroxylysinoketonorleucine
- HLNL, hydroxylysinonorleucine
- HPLC-FLD, high-performance liquid chromatography with fluorescence detection
- LC-MS, liquid chromatography/mass spectrometry
- LH, lysyl hydroxylase
- LKNL, lysinoketonorleucine
- LOX, lysyl oxidase
- Mandible
- Mineralization
- PEN, pentosidine
- PMMA, poly-methyl-methacrylate
- PYD, hydroxylysylpyridinoline
- Pyr, pyrroles
Collapse
Affiliation(s)
- Genevieve E. Romanowicz
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Aidan H. Terhune
- Department of Mechanical Engineering, College of Engineering, University of Michigan, MI, USA
| | - Benjamin J. Bielajew
- Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA
| | - Benjamin Sexton
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Michelle Lynch
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Gurjit S. Mandair
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Erin M.B. McNerny
- Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA
| | - David H. Kohn
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
- Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA
| |
Collapse
|
12
|
Empirical evidence that bone collagen molecules denature as a result of bone fracture. J Mech Behav Biomed Mater 2022; 131:105220. [DOI: 10.1016/j.jmbbm.2022.105220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/16/2022] [Accepted: 04/02/2022] [Indexed: 12/11/2022]
|
13
|
Abstract
Raman spectroscopy (RS) is used to analyze the physiochemical properties of bone because it is non-destructive and requires minimal sample preparation. With over two decades of research involving measurements of mineral-to-matrix ratio, type-B carbonate substitution, crystallinity, and other compositional characteristics of the bone matrix by RS, there are multiple methods to acquire Raman signals from bone, to process those signals, and to determine peak ratios including sub-peak ratios as well as the full-width at half maximum of the most prominent Raman peak, which is nu1 phosphate (ν1PO4). Selecting which methods to use is not always clear. Herein, we describe the components of RS instruments and how they influence the quality of Raman spectra acquired from bone because signal-to-noise of the acquisition and the accompanying background fluorescence dictate the pre-processing of the Raman spectra. We also describe common methods and challenges in preparing acquired spectra for the determination of matrix properties of bone. This article also serves to provide guidance for the analysis of bone by RS with examples of how methods for pre-processing the Raman signals and for determining properties of bone composition affect RS sensitivity to potential differences between experimental groups. Attention is also given to deconvolution methods that are used to ascertain sub-peak ratios of the amide I band as a way to assess characteristics of collagen type I. We provide suggestions and recommendations on the application of RS to bone with the goal of improving reproducibility across studies and solidify RS as a valuable technique in the field of bone research.
Collapse
Affiliation(s)
- Mustafa Unal
- Department of Mechanical Engineering, Karamanoglu Mehmetbey University, Karaman, 70200, Turkey.
- Department of Bioengineering, Karamanoglu Mehmetbey University, Karaman, Turkey 70200
- Department of Biophysics, Faculty of Medicine, Karamanoglu Mehmetbey University, Karaman, Turkey 70200
| | - Rafay Ahmed
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Anita Mahadevan-Jansen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN 37235, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| |
Collapse
|