1
|
Brand YE, Kluge F, Palmerini L, Paraschiv-Ionescu A, Becker C, Cereatti A, Maetzler W, Sharrack B, Vereijken B, Yarnall AJ, Rochester L, Del Din S, Muller A, Buchman AS, Hausdorff JM, Perlman O. Self-supervised learning of wrist-worn daily living accelerometer data improves the automated detection of gait in older adults. Sci Rep 2024; 14:20854. [PMID: 39242792 PMCID: PMC11379690 DOI: 10.1038/s41598-024-71491-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
Progressive gait impairment is common among aging adults. Remote phenotyping of gait during daily living has the potential to quantify gait alterations and evaluate the effects of interventions that may prevent disability in the aging population. Here, we developed ElderNet, a self-supervised learning model for gait detection from wrist-worn accelerometer data. Validation involved two diverse cohorts, including over 1000 participants without gait labels, as well as 83 participants with labeled data: older adults with Parkinson's disease, proximal femoral fracture, chronic obstructive pulmonary disease, congestive heart failure, and healthy adults. ElderNet presented high accuracy (96.43 ± 2.27), specificity (98.87 ± 2.15), recall (82.32 ± 11.37), precision (86.69 ± 17.61), and F1 score (82.92 ± 13.39). The suggested method yielded superior performance compared to two state-of-the-art gait detection algorithms, with improved accuracy and F1 score (p < 0.05). In an initial evaluation of construct validity, ElderNet identified differences in estimated daily walking durations across cohorts with different clinical characteristics, such as mobility disability (p < 0.001) and parkinsonism (p < 0.001). The proposed self-supervised method has the potential to serve as a valuable tool for remote phenotyping of gait function during daily living in aging adults, even among those with gait impairments.
Collapse
Affiliation(s)
- Yonatan E Brand
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Felix Kluge
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Luca Palmerini
- Department of Electrical, Electronic and Information Engineering Guglielmo Marconi, University of Bologna, Bologna, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), University of Bologna, Bologna, Italy
| | - Anisoara Paraschiv-Ionescu
- Laboratory of Movement Analysis and Measurement, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Clemens Becker
- Robert Bosch Gesellschaft für Medizinische Forschung, Stuttgart, Germany
- Unit Digitale Geriatrie, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Andrea Cereatti
- Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Walter Maetzler
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Basil Sharrack
- Department of Neuroscience and Sheffield NIHR Translational Neuroscience BRC, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Beatrix Vereijken
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Alison J Yarnall
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
- The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
- National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre (BRC), Newcastle University, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Lynn Rochester
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
- The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
- National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre (BRC), Newcastle University, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Silvia Del Din
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
- National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre (BRC), Newcastle University, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Arne Muller
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Aron S Buchman
- Department of Neurological Sciences, Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Jeffrey M Hausdorff
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Department of Physical Therapy, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Rush Alzheimer's Disease Center and Department of Orthopedic Surgery , Rush University, Chicago, IL, USA
| | - Or Perlman
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
2
|
Kluge F, Brand YE, Micó-Amigo ME, Bertuletti S, D'Ascanio I, Gazit E, Bonci T, Kirk C, Küderle A, Palmerini L, Paraschiv-Ionescu A, Salis F, Soltani A, Ullrich M, Alcock L, Aminian K, Becker C, Brown P, Buekers J, Carsin AE, Caruso M, Caulfield B, Cereatti A, Chiari L, Echevarria C, Eskofier B, Evers J, Garcia-Aymerich J, Hache T, Hansen C, Hausdorff JM, Hiden H, Hume E, Keogh A, Koch S, Maetzler W, Megaritis D, Niessen M, Perlman O, Schwickert L, Scott K, Sharrack B, Singleton D, Vereijken B, Vogiatzis I, Yarnall A, Rochester L, Mazzà C, Del Din S, Mueller A. Real-World Gait Detection Using a Wrist-Worn Inertial Sensor: Validation Study. JMIR Form Res 2024; 8:e50035. [PMID: 38691395 PMCID: PMC11097052 DOI: 10.2196/50035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Wrist-worn inertial sensors are used in digital health for evaluating mobility in real-world environments. Preceding the estimation of spatiotemporal gait parameters within long-term recordings, gait detection is an important step to identify regions of interest where gait occurs, which requires robust algorithms due to the complexity of arm movements. While algorithms exist for other sensor positions, a comparative validation of algorithms applied to the wrist position on real-world data sets across different disease populations is missing. Furthermore, gait detection performance differences between the wrist and lower back position have not yet been explored but could yield valuable information regarding sensor position choice in clinical studies. OBJECTIVE The aim of this study was to validate gait sequence (GS) detection algorithms developed for the wrist position against reference data acquired in a real-world context. In addition, this study aimed to compare the performance of algorithms applied to the wrist position to those applied to lower back-worn inertial sensors. METHODS Participants with Parkinson disease, multiple sclerosis, proximal femoral fracture (hip fracture recovery), chronic obstructive pulmonary disease, and congestive heart failure and healthy older adults (N=83) were monitored for 2.5 hours in the real-world using inertial sensors on the wrist, lower back, and feet including pressure insoles and infrared distance sensors as reference. In total, 10 algorithms for wrist-based gait detection were validated against a multisensor reference system and compared to gait detection performance using lower back-worn inertial sensors. RESULTS The best-performing GS detection algorithm for the wrist showed a mean (per disease group) sensitivity ranging between 0.55 (SD 0.29) and 0.81 (SD 0.09) and a mean (per disease group) specificity ranging between 0.95 (SD 0.06) and 0.98 (SD 0.02). The mean relative absolute error of estimated walking time ranged between 8.9% (SD 7.1%) and 32.7% (SD 19.2%) per disease group for this algorithm as compared to the reference system. Gait detection performance from the best algorithm applied to the wrist inertial sensors was lower than for the best algorithms applied to the lower back, which yielded mean sensitivity between 0.71 (SD 0.12) and 0.91 (SD 0.04), mean specificity between 0.96 (SD 0.03) and 0.99 (SD 0.01), and a mean relative absolute error of estimated walking time between 6.3% (SD 5.4%) and 23.5% (SD 13%). Performance was lower in disease groups with major gait impairments (eg, patients recovering from hip fracture) and for patients using bilateral walking aids. CONCLUSIONS Algorithms applied to the wrist position can detect GSs with high performance in real-world environments. Those periods of interest in real-world recordings can facilitate gait parameter extraction and allow the quantification of gait duration distribution in everyday life. Our findings allow taking informed decisions on alternative positions for gait recording in clinical studies and public health. TRIAL REGISTRATION ISRCTN Registry 12246987; https://www.isrctn.com/ISRCTN12246987. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) RR2-10.1136/bmjopen-2021-050785.
Collapse
Affiliation(s)
- Felix Kluge
- Novartis Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Yonatan E Brand
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - M Encarna Micó-Amigo
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Stefano Bertuletti
- Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Ilaria D'Ascanio
- Department of Electrical, Electronic and Information Engineering, University of Bologna, Bologna, Italy
| | - Eran Gazit
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Tecla Bonci
- Department of Mechanical Engineering and Insigneo Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Cameron Kirk
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Arne Küderle
- Machine Learning and Data Analytics Lab, Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Luca Palmerini
- Department of Electrical, Electronic and Information Engineering, University of Bologna, Bologna, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), University of Bologna, Bologna, Italy
| | - Anisoara Paraschiv-Ionescu
- Laboratory of Movement Analysis and Measurement, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Francesca Salis
- Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Abolfazl Soltani
- Laboratory of Movement Analysis and Measurement, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Martin Ullrich
- Machine Learning and Data Analytics Lab, Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lisa Alcock
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre (BRC), Newcastle University and The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Kamiar Aminian
- Laboratory of Movement Analysis and Measurement, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Clemens Becker
- Robert Bosch Gesellschaft für Medizinische Forschung, Stuttgart, Germany
- Unit Digitale Geriatrie, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Philip Brown
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Joren Buekers
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Anne-Elie Carsin
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Marco Caruso
- Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Brian Caulfield
- Insight Centre for Data Analytics, University College Dublin, Dublin, Ireland
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Andrea Cereatti
- Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Lorenzo Chiari
- Department of Electrical, Electronic and Information Engineering, University of Bologna, Bologna, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), University of Bologna, Bologna, Italy
| | - Carlos Echevarria
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Bjoern Eskofier
- Machine Learning and Data Analytics Lab, Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Judith Garcia-Aymerich
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Tilo Hache
- Novartis Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Clint Hansen
- Department of Neurology, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Jeffrey M Hausdorff
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physical Therapy, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States
- Department of Orthopaedic Surgery, Rush Medical College, Chicago, IL, United States
| | - Hugo Hiden
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Emily Hume
- Department of Sport, Exercise and Rehabilitation, Northumbria University Newcastle, Newcastle upon Tyne, United Kingdom
| | - Alison Keogh
- Insight Centre for Data Analytics, University College Dublin, Dublin, Ireland
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Sarah Koch
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Walter Maetzler
- Department of Neurology, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Dimitrios Megaritis
- Department of Sport, Exercise and Rehabilitation, Northumbria University Newcastle, Newcastle upon Tyne, United Kingdom
| | | | - Or Perlman
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Lars Schwickert
- Robert Bosch Gesellschaft für Medizinische Forschung, Stuttgart, Germany
| | - Kirsty Scott
- Department of Mechanical Engineering and Insigneo Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Basil Sharrack
- Department of Neuroscience, The University of Sheffield, Sheffield, United Kingdom
- Sheffield NIHR Translational Neuroscience BRC, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - David Singleton
- Insight Centre for Data Analytics, University College Dublin, Dublin, Ireland
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Beatrix Vereijken
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ioannis Vogiatzis
- Department of Sport, Exercise and Rehabilitation, Northumbria University Newcastle, Newcastle upon Tyne, United Kingdom
| | - Alison Yarnall
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre (BRC), Newcastle University and The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Lynn Rochester
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre (BRC), Newcastle University and The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Claudia Mazzà
- Department of Mechanical Engineering and Insigneo Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Silvia Del Din
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre (BRC), Newcastle University and The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Arne Mueller
- Novartis Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
3
|
Brand YE, Kluge F, Palmerini L, Paraschiv-Ionescu A, Becker C, Cereatti A, Maetzler W, Sharrack B, Vereijken B, Yarnall AJ, Rochester L, Del Din S, Muller A, Buchman AS, Hausdorff JM, Perlman O. Automated Gait Detection in Older Adults during Daily-Living using Self-Supervised Learning of Wrist-Worn Accelerometer Data: Development and Validation of ElderNet. RESEARCH SQUARE 2024:rs.3.rs-4102403. [PMID: 38559043 PMCID: PMC10980143 DOI: 10.21203/rs.3.rs-4102403/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Progressive gait impairment is common in aging adults. Remote phenotyping of gait during daily living has the potential to quantify gait alterations and evaluate the effects of interventions that may prevent disability in the aging population. Here, we developed ElderNet, a self-supervised learning model for gait detection from wrist-worn accelerometer data. Validation involved two diverse cohorts, including over 1,000 participants without gait labels, as well as 83 participants with labeled data: older adults with Parkinson's disease, proximal femoral fracture, chronic obstructive pulmonary disease, congestive heart failure, and healthy adults. ElderNet presented high accuracy (96.43 ± 2.27), specificity (98.87 ± 2.15), recall (82.32 ± 11.37), precision (86.69 ± 17.61), and F1 score (82.92 ± 13.39). The suggested method yielded superior performance compared to two state-of-the-art gait detection algorithms, with improved accuracy and F1 score (p < 0.05). In an initial evaluation of construct validity, ElderNet identified differences in estimated daily walking durations across cohorts with different clinical characteristics, such as mobility disability (p < 0.001) and parkinsonism (p < 0.001). The proposed self-supervised gait detection method has the potential to serve as a valuable tool for remote phenotyping of gait function during daily living in aging adults.
Collapse
|
4
|
Romijnders R, Salis F, Hansen C, Küderle A, Paraschiv-Ionescu A, Cereatti A, Alcock L, Aminian K, Becker C, Bertuletti S, Bonci T, Brown P, Buckley E, Cantu A, Carsin AE, Caruso M, Caulfield B, Chiari L, D'Ascanio I, Del Din S, Eskofier B, Fernstad SJ, Fröhlich MS, Garcia Aymerich J, Gazit E, Hausdorff JM, Hiden H, Hume E, Keogh A, Kirk C, Kluge F, Koch S, Mazzà C, Megaritis D, Micó-Amigo E, Müller A, Palmerini L, Rochester L, Schwickert L, Scott K, Sharrack B, Singleton D, Soltani A, Ullrich M, Vereijken B, Vogiatzis I, Yarnall A, Schmidt G, Maetzler W. Ecological validity of a deep learning algorithm to detect gait events from real-life walking bouts in mobility-limiting diseases. Front Neurol 2023; 14:1247532. [PMID: 37909030 PMCID: PMC10615212 DOI: 10.3389/fneur.2023.1247532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/18/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction The clinical assessment of mobility, and walking specifically, is still mainly based on functional tests that lack ecological validity. Thanks to inertial measurement units (IMUs), gait analysis is shifting to unsupervised monitoring in naturalistic and unconstrained settings. However, the extraction of clinically relevant gait parameters from IMU data often depends on heuristics-based algorithms that rely on empirically determined thresholds. These were mainly validated on small cohorts in supervised settings. Methods Here, a deep learning (DL) algorithm was developed and validated for gait event detection in a heterogeneous population of different mobility-limiting disease cohorts and a cohort of healthy adults. Participants wore pressure insoles and IMUs on both feet for 2.5 h in their habitual environment. The raw accelerometer and gyroscope data from both feet were used as input to a deep convolutional neural network, while reference timings for gait events were based on the combined IMU and pressure insoles data. Results and discussion The results showed a high-detection performance for initial contacts (ICs) (recall: 98%, precision: 96%) and final contacts (FCs) (recall: 99%, precision: 94%) and a maximum median time error of -0.02 s for ICs and 0.03 s for FCs. Subsequently derived temporal gait parameters were in good agreement with a pressure insoles-based reference with a maximum mean difference of 0.07, -0.07, and <0.01 s for stance, swing, and stride time, respectively. Thus, the DL algorithm is considered successful in detecting gait events in ecologically valid environments across different mobility-limiting diseases.
Collapse
Affiliation(s)
- Robbin Romijnders
- Digital Signal Processing and System Theory, Electrical and Information Engineering, Faculty of Engineering, Kiel University, Kiel, Germany
- Arbeitsgruppe Neurogeriatrie, Department of Neurology, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Francesca Salis
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Clint Hansen
- Arbeitsgruppe Neurogeriatrie, Department of Neurology, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Arne Küderle
- Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anisoara Paraschiv-Ionescu
- Laboratory of Movement Analysis and Measurement, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Andrea Cereatti
- Department of Electronics and Telecommunications, Polytechnic of Turin, Turin, Italy
| | - Lisa Alcock
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kamiar Aminian
- Laboratory of Movement Analysis and Measurement, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Clemens Becker
- Gesellschaft für Medizinische Forschung, Robert-Bosch Foundation GmbH, Stuttgart, Germany
| | - Stefano Bertuletti
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Tecla Bonci
- INSIGNEO Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
- Department of Mechanical Engineering, The University of Sheffield, Sheffield, United Kingdom
| | - Philip Brown
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Ellen Buckley
- INSIGNEO Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
- Department of Mechanical Engineering, The University of Sheffield, Sheffield, United Kingdom
| | - Alma Cantu
- School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Anne-Elie Carsin
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Faculty of Health and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Marco Caruso
- Department of Electronics and Telecommunications, Polytechnic of Turin, Turin, Italy
| | - Brian Caulfield
- Insight Centre for Data Analytics, University College Dublin, Dublin, Ireland
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Lorenzo Chiari
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University of Bologna, Bologna, Italy
- Health Sciences and Technologies—Interdepartmental Center for Industrial Research (CIRISDV), University of Bologna, Bologna, Italy
| | - Ilaria D'Ascanio
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University of Bologna, Bologna, Italy
| | - Silvia Del Din
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Björn Eskofier
- Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | - Judith Garcia Aymerich
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Faculty of Health and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Eran Gazit
- Center for the Study of Movement, Cognition and Mobility, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Jeffrey M. Hausdorff
- Center for the Study of Movement, Cognition and Mobility, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Department of Physical Therapy, Sackler Faculty of Medicine & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Hugo Hiden
- School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Emily Hume
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Alison Keogh
- Insight Centre for Data Analytics, University College Dublin, Dublin, Ireland
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Cameron Kirk
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Felix Kluge
- Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Novartis Institute of Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Sarah Koch
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Faculty of Health and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Claudia Mazzà
- INSIGNEO Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
- Department of Mechanical Engineering, The University of Sheffield, Sheffield, United Kingdom
| | - Dimitrios Megaritis
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Encarna Micó-Amigo
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Arne Müller
- Novartis Institute of Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Luca Palmerini
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University of Bologna, Bologna, Italy
- Health Sciences and Technologies—Interdepartmental Center for Industrial Research (CIRISDV), University of Bologna, Bologna, Italy
| | - Lynn Rochester
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Lars Schwickert
- Gesellschaft für Medizinische Forschung, Robert-Bosch Foundation GmbH, Stuttgart, Germany
| | - Kirsty Scott
- INSIGNEO Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
- Department of Mechanical Engineering, The University of Sheffield, Sheffield, United Kingdom
| | - Basil Sharrack
- Department of Neuroscience and Sheffield NIHR Translational Neuroscience BRC, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - David Singleton
- Insight Centre for Data Analytics, University College Dublin, Dublin, Ireland
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Abolfazl Soltani
- Laboratory of Movement Analysis and Measurement, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Digital Health Department, CSEM SA, Neuchâtel, Switzerland
| | - Martin Ullrich
- Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Beatrix Vereijken
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ioannis Vogiatzis
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Alison Yarnall
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Mechanical Engineering, The University of Sheffield, Sheffield, United Kingdom
| | - Gerhard Schmidt
- Digital Signal Processing and System Theory, Electrical and Information Engineering, Faculty of Engineering, Kiel University, Kiel, Germany
| | - Walter Maetzler
- Arbeitsgruppe Neurogeriatrie, Department of Neurology, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
5
|
Buekers J, Megaritis D, Koch S, Alcock L, Ammour N, Becker C, Bertuletti S, Bonci T, Brown P, Buckley E, Buttery SC, Caulfied B, Cereatti A, Chynkiamis N, Demeyer H, Echevarria C, Frei A, Hansen C, Hausdorff JM, Hopkinson NS, Hume E, Kuederle A, Maetzler W, Mazzà C, Micó-Amigo EM, Mueller A, Palmerini L, Salis F, Scott K, Troosters T, Vereijken B, Watz H, Rochester L, Del Din S, Vogiatzis I, Garcia-Aymerich J. Laboratory and free-living gait performance in adults with COPD and healthy controls. ERJ Open Res 2023; 9:00159-2023. [PMID: 37753279 PMCID: PMC10518872 DOI: 10.1183/23120541.00159-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/29/2023] [Indexed: 09/28/2023] Open
Abstract
Background Gait characteristics are important risk factors for falls, hospitalisations and mortality in older adults, but the impact of COPD on gait performance remains unclear. We aimed to identify differences in gait characteristics between adults with COPD and healthy age-matched controls during 1) laboratory tests that included complex movements and obstacles, 2) simulated daily-life activities (supervised) and 3) free-living daily-life activities (unsupervised). Methods This case-control study used a multi-sensor wearable system (INDIP) to obtain seven gait characteristics for each walking bout performed by adults with mild-to-severe COPD (n=17; forced expiratory volume in 1 s 57±19% predicted) and controls (n=20) during laboratory tests, and during simulated and free-living daily-life activities. Gait characteristics were compared between adults with COPD and healthy controls for all walking bouts combined, and for shorter (≤30 s) and longer (>30 s) walking bouts separately. Results Slower walking speed (-11 cm·s-1, 95% CI: -20 to -3) and lower cadence (-6.6 steps·min-1, 95% CI: -12.3 to -0.9) were recorded in adults with COPD compared to healthy controls during longer (>30 s) free-living walking bouts, but not during shorter (≤30 s) walking bouts in either laboratory or free-living settings. Double support duration and gait variability measures were generally comparable between the two groups. Conclusion Gait impairment of adults with mild-to-severe COPD mainly manifests during relatively long walking bouts (>30 s) in free-living conditions. Future research should determine the underlying mechanism(s) of this impairment to facilitate the development of interventions that can improve free-living gait performance in adults with COPD.
Collapse
Affiliation(s)
- Joren Buekers
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Barcelona, Spain
| | - Dimitrios Megaritis
- Department of Sport, Exercise and Rehabilitation, Northumbria University Newcastle, Newcastle upon Tyne, UK
| | - Sarah Koch
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Barcelona, Spain
| | - Lisa Alcock
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- National Institute for Health and Care Research Newcastle Biomedical Research Centre, Newcastle University and The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Nadir Ammour
- Clinical Science and Operations, GlobalDevelopment, Sanofi R&D, Chilly-Mazarin, France
| | - Clemens Becker
- Robert Bosch Gesellschaft für Medizinische Forschung, Stuttgart, Germany
| | - Stefano Bertuletti
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Tecla Bonci
- Department of Mechanical Engineering and INSIGNEO Institute for In Silico Medicine, The University of Sheffield, Sheffield, UK
| | - Philip Brown
- The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Ellen Buckley
- Department of Mechanical Engineering and INSIGNEO Institute for In Silico Medicine, The University of Sheffield, Sheffield, UK
| | - Sara C. Buttery
- National Lung and Heart Institute, Imperial College, London, UK
| | - Brian Caulfied
- Insight Centre for Data Analytics, University College Dublin, Dublin, Ireland
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Andrea Cereatti
- Polytechnic University of Torino, Department of Electronics and Telecommunications, Turin, Italy
| | - Nikolaos Chynkiamis
- Department of Sport, Exercise and Rehabilitation, Northumbria University Newcastle, Newcastle upon Tyne, UK
- Thorax Research Foundation and First Department of Respiratory Medicine, National and Kapodistrian University of Athens, Sotiria General Chest Hospital, Athens, Greece
| | - Heleen Demeyer
- KU Leuven, Department of Rehabilitation Sciences and Pulmonary Rehabilitation, Respiratory Division, University Hospital Gasthuisberg, Leuven, Belgium
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| | - Carlos Echevarria
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Anja Frei
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Clint Hansen
- Department of Neurology, University Hospital Schleswig-Holstein and Kiel University, Kiel, Germany
| | - Jeffrey M. Hausdorff
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience and Department of Physical Therapy, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Rush Alzheimer's Disease Center and Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | | | - Emily Hume
- Department of Sport, Exercise and Rehabilitation, Northumbria University Newcastle, Newcastle upon Tyne, UK
| | - Arne Kuederle
- Machine Learning and Data Analytics Lab, Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Walter Maetzler
- Department of Neurology, University Hospital Schleswig-Holstein and Kiel University, Kiel, Germany
| | - Claudia Mazzà
- Department of Mechanical Engineering and INSIGNEO Institute for In Silico Medicine, The University of Sheffield, Sheffield, UK
| | - Encarna M. Micó-Amigo
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Arne Mueller
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Luca Palmerini
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University of Bologna, Bologna, Italy
| | - Francesca Salis
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Kirsty Scott
- Department of Mechanical Engineering and INSIGNEO Institute for In Silico Medicine, The University of Sheffield, Sheffield, UK
| | - Thierry Troosters
- KU Leuven, Department of Rehabilitation Sciences and Pulmonary Rehabilitation, Respiratory Division, University Hospital Gasthuisberg, Leuven, Belgium
| | - Beatrix Vereijken
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Henrik Watz
- Pulmonary Research Institute at LungenClinic Grosshansdorf, Airway Research Center North, German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Lynn Rochester
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- National Institute for Health and Care Research Newcastle Biomedical Research Centre, Newcastle University and The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Silvia Del Din
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- National Institute for Health and Care Research Newcastle Biomedical Research Centre, Newcastle University and The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Ioannis Vogiatzis
- Department of Sport, Exercise and Rehabilitation, Northumbria University Newcastle, Newcastle upon Tyne, UK
- Thorax Research Foundation and First Department of Respiratory Medicine, National and Kapodistrian University of Athens, Sotiria General Chest Hospital, Athens, Greece
| | - Judith Garcia-Aymerich
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Barcelona, Spain
| |
Collapse
|
6
|
Prigent G, Aminian K, Cereatti A, Salis F, Bonci T, Scott K, Mazzà C, Alcock L, Del Din S, Gazit E, Hansen C, Paraschiv-Ionescu A. A robust walking detection algorithm using a single foot-worn inertial sensor: validation in real-life settings. Med Biol Eng Comput 2023; 61:2341-2352. [PMID: 37069465 PMCID: PMC10412496 DOI: 10.1007/s11517-023-02826-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/08/2023] [Indexed: 04/19/2023]
Abstract
Walking activity and gait parameters are considered among the most relevant mobility-related parameters. Currently, gait assessments have been mainly analyzed in laboratory or hospital settings, which only partially reflect usual performance (i.e., real world behavior). In this study, we aim to validate a robust walking detection algorithm using a single foot-worn inertial measurement unit (IMU) in real-life settings. We used a challenging dataset including 18 individuals performing free-living activities. A multi-sensor wearable system including pressure insoles, multiple IMUs, and infrared distance sensors (INDIP) was used as reference. Accurate walking detection was obtained, with sensitivity and specificity of 98 and 91% respectively. As robust walking detection is needed for ambulatory monitoring to complete the processing pipeline from raw recorded data to walking/mobility outcomes, a validated algorithm would pave the way for assessing patient performance and gait quality in real-world conditions.
Collapse
Affiliation(s)
- Gaëlle Prigent
- Laboratory of Movement Analysis and Measurement (LMAM), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Kamiar Aminian
- Laboratory of Movement Analysis and Measurement (LMAM), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Andrea Cereatti
- Department of Electronics and Telecommunications, Politecnico Di Torino, Turin, Italy
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Francesca Salis
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, Sassari, Italy
| | - Tecla Bonci
- Department of Mechanical Engineering and Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, UK
| | - Kirsty Scott
- Department of Mechanical Engineering and Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, UK
| | - Claudia Mazzà
- Department of Mechanical Engineering and Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, UK
| | - Lisa Alcock
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Silvia Del Din
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Eran Gazit
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Clint Hansen
- Department of Neurology, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Anisoara Paraschiv-Ionescu
- Laboratory of Movement Analysis and Measurement (LMAM), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - for the Mobilise-D consortium
- Laboratory of Movement Analysis and Measurement (LMAM), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Electronics and Telecommunications, Politecnico Di Torino, Turin, Italy
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, Sassari, Italy
- Department of Mechanical Engineering and Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Department of Neurology, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| |
Collapse
|
7
|
van Gelder LMA, Bonci T, Buckley EE, Price K, Salis F, Hadjivassiliou M, Mazzà C, Hewamadduma C. A Single-Sensor Approach to Quantify Gait in Patients with Hereditary Spastic Paraplegia. SENSORS (BASEL, SWITZERLAND) 2023; 23:6563. [PMID: 37514857 PMCID: PMC10384193 DOI: 10.3390/s23146563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Hereditary spastic paraplegia (HSP) is characterised by progressive lower-limb spasticity and weakness resulting in ambulation difficulties. During clinical practice, walking is observed and/or assessed by timed 10-metre walk tests; time, feasibility, and methodological reliability are barriers to detailed characterisation of patients' walking abilities when instrumenting this test. Wearable sensors have the potential to overcome such drawbacks once a validated approach is available for patients with HSP. Therefore, while limiting patients' and assessors' burdens, this study aims to validate the adoption of a single lower-back wearable inertial sensor approach for step detection in HSP patients; this is the first essential algorithmic step in quantifying most gait temporal metrics. After filtering the 3D acceleration signal based on its smoothness and enhancing the step-related peaks, initial contacts (ICs) were identified as positive zero-crossings of the processed signal. The proposed approach was validated on thirteen individuals with HSP while they performed three 10-metre tests and wore pressure insoles used as a gold standard. Overall, the single-sensor approach detected 794 ICs (87% correctly identified) with high accuracy (median absolute errors (mae): 0.05 s) and excellent reliability (ICC = 1.00). Although about 12% of the ICs were missed and the use of walking aids introduced extra ICs, a minor impact was observed on the step time quantifications (mae 0.03 s (5.1%), ICC = 0.89); the use of walking aids caused no significant differences in the average step time quantifications. Therefore, the proposed single-sensor approach provides a reliable methodology for step identification in HSP, augmenting the gait information that can be accurately and objectively extracted from patients with HSP during their clinical assessment.
Collapse
Affiliation(s)
- Linda M A van Gelder
- Department of Mechanical Engineering, INSIGNEO Institute for In Silico Medicine, The University of Sheffield, Sheffield S10 2TN, UK
| | - Tecla Bonci
- Department of Mechanical Engineering, INSIGNEO Institute for In Silico Medicine, The University of Sheffield, Sheffield S10 2TN, UK
| | - Ellen E Buckley
- Department of Mechanical Engineering, INSIGNEO Institute for In Silico Medicine, The University of Sheffield, Sheffield S10 2TN, UK
| | - Kathryn Price
- Academic Department of Neurosciences, Sheffield Teaching Hospitals NHS Trust, University of Sheffield, Sheffield S10 2TN, UK
| | - Francesca Salis
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Marios Hadjivassiliou
- Academic Department of Neurosciences, Sheffield Teaching Hospitals NHS Trust, University of Sheffield, Sheffield S10 2TN, UK
| | - Claudia Mazzà
- Department of Mechanical Engineering, INSIGNEO Institute for In Silico Medicine, The University of Sheffield, Sheffield S10 2TN, UK
| | - Channa Hewamadduma
- Academic Department of Neurosciences, Sheffield Teaching Hospitals NHS Trust, University of Sheffield, Sheffield S10 2TN, UK
- The Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
8
|
Micó-Amigo ME, Bonci T, Paraschiv-Ionescu A, Ullrich M, Kirk C, Soltani A, Küderle A, Gazit E, Salis F, Alcock L, Aminian K, Becker C, Bertuletti S, Brown P, Buckley E, Cantu A, Carsin AE, Caruso M, Caulfield B, Cereatti A, Chiari L, D'Ascanio I, Eskofier B, Fernstad S, Froehlich M, Garcia-Aymerich J, Hansen C, Hausdorff JM, Hiden H, Hume E, Keogh A, Kluge F, Koch S, Maetzler W, Megaritis D, Mueller A, Niessen M, Palmerini L, Schwickert L, Scott K, Sharrack B, Sillén H, Singleton D, Vereijken B, Vogiatzis I, Yarnall AJ, Rochester L, Mazzà C, Del Din S. Assessing real-world gait with digital technology? Validation, insights and recommendations from the Mobilise-D consortium. J Neuroeng Rehabil 2023; 20:78. [PMID: 37316858 PMCID: PMC10265910 DOI: 10.1186/s12984-023-01198-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 05/26/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Although digital mobility outcomes (DMOs) can be readily calculated from real-world data collected with wearable devices and ad-hoc algorithms, technical validation is still required. The aim of this paper is to comparatively assess and validate DMOs estimated using real-world gait data from six different cohorts, focusing on gait sequence detection, foot initial contact detection (ICD), cadence (CAD) and stride length (SL) estimates. METHODS Twenty healthy older adults, 20 people with Parkinson's disease, 20 with multiple sclerosis, 19 with proximal femoral fracture, 17 with chronic obstructive pulmonary disease and 12 with congestive heart failure were monitored for 2.5 h in the real-world, using a single wearable device worn on the lower back. A reference system combining inertial modules with distance sensors and pressure insoles was used for comparison of DMOs from the single wearable device. We assessed and validated three algorithms for gait sequence detection, four for ICD, three for CAD and four for SL by concurrently comparing their performances (e.g., accuracy, specificity, sensitivity, absolute and relative errors). Additionally, the effects of walking bout (WB) speed and duration on algorithm performance were investigated. RESULTS We identified two cohort-specific top performing algorithms for gait sequence detection and CAD, and a single best for ICD and SL. Best gait sequence detection algorithms showed good performances (sensitivity > 0.73, positive predictive values > 0.75, specificity > 0.95, accuracy > 0.94). ICD and CAD algorithms presented excellent results, with sensitivity > 0.79, positive predictive values > 0.89 and relative errors < 11% for ICD and < 8.5% for CAD. The best identified SL algorithm showed lower performances than other DMOs (absolute error < 0.21 m). Lower performances across all DMOs were found for the cohort with most severe gait impairments (proximal femoral fracture). Algorithms' performances were lower for short walking bouts; slower gait speeds (< 0.5 m/s) resulted in reduced performance of the CAD and SL algorithms. CONCLUSIONS Overall, the identified algorithms enabled a robust estimation of key DMOs. Our findings showed that the choice of algorithm for estimation of gait sequence detection and CAD should be cohort-specific (e.g., slow walkers and with gait impairments). Short walking bout length and slow walking speed worsened algorithms' performances. Trial registration ISRCTN - 12246987.
Collapse
Affiliation(s)
- M Encarna Micó-Amigo
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Tecla Bonci
- Department of Mechanical Engineering and Insigneo Institute for in Silico Medicine, The University of Sheffield, Sheffield, UK
| | - Anisoara Paraschiv-Ionescu
- Laboratory of Movement Analysis and Measurement, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Martin Ullrich
- Machine Learning and Data Analytics Lab, Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Cameron Kirk
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Abolfazl Soltani
- Laboratory of Movement Analysis and Measurement, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Arne Küderle
- Machine Learning and Data Analytics Lab, Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Eran Gazit
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Francesca Salis
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Lisa Alcock
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre (BRC), Newcastle University and The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Kamiar Aminian
- Laboratory of Movement Analysis and Measurement, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Clemens Becker
- Robert Bosch Gesellschaft für Medizinische Forschung, Stuttgart, Germany
| | - Stefano Bertuletti
- Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Philip Brown
- The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Ellen Buckley
- Department of Mechanical Engineering and Insigneo Institute for in Silico Medicine, The University of Sheffield, Sheffield, UK
| | - Alma Cantu
- School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Anne-Elie Carsin
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Marco Caruso
- Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Brian Caulfield
- Insight Centre for Data Analytics, University College Dublin, Dublin, Ireland
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Andrea Cereatti
- Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Lorenzo Chiari
- Department of Electrical, Electronic and Information Engineering «Guglielmo Marconi», University of Bologna, Bologna, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), University of Bologna, Bologna, Italy
| | - Ilaria D'Ascanio
- Department of Electrical, Electronic and Information Engineering «Guglielmo Marconi», University of Bologna, Bologna, Italy
| | - Bjoern Eskofier
- Machine Learning and Data Analytics Lab, Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sara Fernstad
- School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | | | - Judith Garcia-Aymerich
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Clint Hansen
- Department of Neurology, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Jeffrey M Hausdorff
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience and Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Rush Alzheimer's Disease Center and Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Hugo Hiden
- School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Emily Hume
- Department of Sport, Exercise and Rehabilitation, Northumbria University Newcastle, Newcastle upon Tyne, UK
| | - Alison Keogh
- Insight Centre for Data Analytics, University College Dublin, Dublin, Ireland
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Felix Kluge
- Machine Learning and Data Analytics Lab, Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Novartis Institutes of Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Sarah Koch
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Walter Maetzler
- Department of Neurology, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Dimitrios Megaritis
- Department of Sport, Exercise and Rehabilitation, Northumbria University Newcastle, Newcastle upon Tyne, UK
| | - Arne Mueller
- Novartis Institutes of Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | | | - Luca Palmerini
- Department of Electrical, Electronic and Information Engineering «Guglielmo Marconi», University of Bologna, Bologna, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), University of Bologna, Bologna, Italy
| | - Lars Schwickert
- Robert Bosch Gesellschaft für Medizinische Forschung, Stuttgart, Germany
| | - Kirsty Scott
- Department of Mechanical Engineering and Insigneo Institute for in Silico Medicine, The University of Sheffield, Sheffield, UK
| | - Basil Sharrack
- Department of Neuroscience and Sheffield NIHR Translational Neuroscience BRC, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | | | - David Singleton
- Insight Centre for Data Analytics, University College Dublin, Dublin, Ireland
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Beatrix Vereijken
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ioannis Vogiatzis
- Department of Sport, Exercise and Rehabilitation, Northumbria University Newcastle, Newcastle upon Tyne, UK
| | - Alison J Yarnall
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre (BRC), Newcastle University and The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Lynn Rochester
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre (BRC), Newcastle University and The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Claudia Mazzà
- Department of Mechanical Engineering and Insigneo Institute for in Silico Medicine, The University of Sheffield, Sheffield, UK
| | - Silvia Del Din
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
- National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre (BRC), Newcastle University and The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
9
|
Salis F, Bertuletti S, Bonci T, Caruso M, Scott K, Alcock L, Buckley E, Gazit E, Hansen C, Schwickert L, Aminian K, Becker C, Brown P, Carsin AE, Caulfield B, Chiari L, D’Ascanio I, Del Din S, Eskofier BM, Garcia-Aymerich J, Hausdorff JM, Hume EC, Kirk C, Kluge F, Koch S, Kuederle A, Maetzler W, Micó-Amigo EM, Mueller A, Neatrour I, Paraschiv-Ionescu A, Palmerini L, Yarnall AJ, Rochester L, Sharrack B, Singleton D, Vereijken B, Vogiatzis I, Della Croce U, Mazzà C, Cereatti A, for the Mobilise-D consortium. A multi-sensor wearable system for the assessment of diseased gait in real-world conditions. Front Bioeng Biotechnol 2023; 11:1143248. [PMID: 37214281 PMCID: PMC10194657 DOI: 10.3389/fbioe.2023.1143248] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/30/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction: Accurately assessing people's gait, especially in real-world conditions and in case of impaired mobility, is still a challenge due to intrinsic and extrinsic factors resulting in gait complexity. To improve the estimation of gait-related digital mobility outcomes (DMOs) in real-world scenarios, this study presents a wearable multi-sensor system (INDIP), integrating complementary sensing approaches (two plantar pressure insoles, three inertial units and two distance sensors). Methods: The INDIP technical validity was assessed against stereophotogrammetry during a laboratory experimental protocol comprising structured tests (including continuous curvilinear and rectilinear walking and steps) and a simulation of daily-life activities (including intermittent gait and short walking bouts). To evaluate its performance on various gait patterns, data were collected on 128 participants from seven cohorts: healthy young and older adults, patients with Parkinson's disease, multiple sclerosis, chronic obstructive pulmonary disease, congestive heart failure, and proximal femur fracture. Moreover, INDIP usability was evaluated by recording 2.5-h of real-world unsupervised activity. Results and discussion: Excellent absolute agreement (ICC >0.95) and very limited mean absolute errors were observed for all cohorts and digital mobility outcomes (cadence ≤0.61 steps/min, stride length ≤0.02 m, walking speed ≤0.02 m/s) in the structured tests. Larger, but limited, errors were observed during the daily-life simulation (cadence 2.72-4.87 steps/min, stride length 0.04-0.06 m, walking speed 0.03-0.05 m/s). Neither major technical nor usability issues were declared during the 2.5-h acquisitions. Therefore, the INDIP system can be considered a valid and feasible solution to collect reference data for analyzing gait in real-world conditions.
Collapse
Affiliation(s)
- Francesca Salis
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System (IuC BoHNes), Sassari, Italy
| | - Stefano Bertuletti
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System (IuC BoHNes), Sassari, Italy
| | - Tecla Bonci
- Department of Mechanical Engineering, Insigneo Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Marco Caruso
- Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System (IuC BoHNes), Sassari, Italy
- Department of Electronics and Telecommunications, Politecnico Di Torino, Torino, Italy
| | - Kirsty Scott
- Department of Mechanical Engineering, Insigneo Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Lisa Alcock
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
- National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre (BRC), Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Ellen Buckley
- Department of Mechanical Engineering, Insigneo Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Eran Gazit
- Centre for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Centre, Tel Aviv, Israel
| | - Clint Hansen
- Department of Neurology, University Medical Centre Schleswig-Holstein Campus Kiel and Kiel University, Kiel, Germany
| | - Lars Schwickert
- Department for Geriatric Rehabilitation, Robert-Bosch-Hospital, Stuttgart, Germany
| | - Kamiar Aminian
- Laboratory of Movement Analysis and Measurement, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Clemens Becker
- Department for Geriatric Rehabilitation, Robert-Bosch-Hospital, Stuttgart, Germany
| | - Philip Brown
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
| | - Anne-Elie Carsin
- Instituto de Salud Global Barcelona, Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Faculty of Health and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Brian Caulfield
- Insight Centre for Data Analytics, University College Dublin, Dublin, Ireland
| | - Lorenzo Chiari
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University of Bologna, Bologna, Italy
- Health Sciences and Technologies-Interdepartmental Centre for Industrial Research (CIRI-SDV), University of Bologna, Bologna, Italy
| | - Ilaria D’Ascanio
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University of Bologna, Bologna, Italy
| | - Silvia Del Din
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
- National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre (BRC), Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Bjoern M. Eskofier
- Machine Learning and Data Analytics Lab, Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Judith Garcia-Aymerich
- Instituto de Salud Global Barcelona, Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Faculty of Health and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Jeffrey M. Hausdorff
- Centre for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Centre, Tel Aviv, Israel
| | - Emily C. Hume
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Northumbia, United Kingdom
| | - Cameron Kirk
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Felix Kluge
- Machine Learning and Data Analytics Lab, Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Novartis Institutes of Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Sarah Koch
- Instituto de Salud Global Barcelona, Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Faculty of Health and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Arne Kuederle
- Machine Learning and Data Analytics Lab, Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Walter Maetzler
- Department of Neurology, University Medical Centre Schleswig-Holstein Campus Kiel and Kiel University, Kiel, Germany
| | - Encarna M. Micó-Amigo
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Arne Mueller
- Novartis Institutes of Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Isabel Neatrour
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Anisoara Paraschiv-Ionescu
- Laboratory of Movement Analysis and Measurement, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Luca Palmerini
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University of Bologna, Bologna, Italy
- Health Sciences and Technologies-Interdepartmental Centre for Industrial Research (CIRI-SDV), University of Bologna, Bologna, Italy
| | - Alison J. Yarnall
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
- National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre (BRC), Newcastle University, Newcastle Upon Tyne, United Kingdom
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
| | - Lynn Rochester
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
- National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre (BRC), Newcastle University, Newcastle Upon Tyne, United Kingdom
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
| | - Basil Sharrack
- Department of Neuroscience and Sheffield NIHR Translational Neuroscience BRC, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - David Singleton
- Insight Centre for Data Analytics, University College Dublin, Dublin, Ireland
| | - Beatrix Vereijken
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ioannis Vogiatzis
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Northumbia, United Kingdom
| | - Ugo Della Croce
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System (IuC BoHNes), Sassari, Italy
| | - Claudia Mazzà
- Department of Mechanical Engineering, Insigneo Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Andrea Cereatti
- Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System (IuC BoHNes), Sassari, Italy
- Department of Electronics and Telecommunications, Politecnico Di Torino, Torino, Italy
| | | |
Collapse
|
10
|
Palmerini L, Reggi L, Bonci T, Del Din S, Micó-Amigo ME, Salis F, Bertuletti S, Caruso M, Cereatti A, Gazit E, Paraschiv-Ionescu A, Soltani A, Kluge F, Küderle A, Ullrich M, Kirk C, Hiden H, D’Ascanio I, Hansen C, Rochester L, Mazzà C, Chiari L. Mobility recorded by wearable devices and gold standards: the Mobilise-D procedure for data standardization. Sci Data 2023; 10:38. [PMID: 36658136 PMCID: PMC9852581 DOI: 10.1038/s41597-023-01930-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
Wearable devices are used in movement analysis and physical activity research to extract clinically relevant information about an individual's mobility. Still, heterogeneity in protocols, sensor characteristics, data formats, and gold standards represent a barrier for data sharing, reproducibility, and external validation. In this study, we aim at providing an example of how movement data (from the real-world and the laboratory) recorded from different wearables and gold standard technologies can be organized, integrated, and stored. We leveraged on our experience from a large multi-centric study (Mobilise-D) to provide guidelines that can prove useful to access, understand, and re-use the data that will be made available from the study. These guidelines highlight the encountered challenges and the adopted solutions with the final aim of supporting standardization and integration of data in other studies and, in turn, to increase and facilitate comparison of data recorded in the scientific community. We also provide samples of standardized data, so that both the structure of the data and the procedure can be easily understood and reproduced.
Collapse
Affiliation(s)
- Luca Palmerini
- grid.6292.f0000 0004 1757 1758University of Bologna, Department of Electrical, Electronic and Information Engineering ‘Guglielmo Marconi’, Bologna, Italy ,grid.6292.f0000 0004 1757 1758University of Bologna, Health Sciences and Technologies—Interdepartmental Center for Industrial Research (CIRI-SDV), Bologna, Italy
| | - Luca Reggi
- grid.6292.f0000 0004 1757 1758University of Bologna, Health Sciences and Technologies—Interdepartmental Center for Industrial Research (CIRI-SDV), Bologna, Italy
| | - Tecla Bonci
- grid.11835.3e0000 0004 1936 9262The University of Sheffield, INSIGNEO Institute for in silico Medicine, Sheffield, UK ,grid.11835.3e0000 0004 1936 9262The University of Sheffield, Department of Mechanical Engineering, Sheffield, UK
| | - Silvia Del Din
- grid.1006.70000 0001 0462 7212Newcastle University, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle, UK
| | - M. Encarna Micó-Amigo
- grid.1006.70000 0001 0462 7212Newcastle University, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle, UK
| | - Francesca Salis
- grid.11450.310000 0001 2097 9138University of Sassari, Department of Biomedical Sciences, Sassari, Italy
| | - Stefano Bertuletti
- grid.11450.310000 0001 2097 9138University of Sassari, Department of Biomedical Sciences, Sassari, Italy
| | - Marco Caruso
- grid.4800.c0000 0004 1937 0343Politecnico di Torino, Department of Electronics and Telecommunications, Torino, Italy ,grid.4800.c0000 0004 1937 0343Politecnico di Torino, PolitoBIOMed Lab – Biomedical Engineering Lab, Torino, Italy
| | - Andrea Cereatti
- grid.4800.c0000 0004 1937 0343Politecnico di Torino, Department of Electronics and Telecommunications, Torino, Italy
| | - Eran Gazit
- grid.413449.f0000 0001 0518 6922Tel Aviv Sourasky Medical Center, Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv-Yafo, Israel
| | - Anisoara Paraschiv-Ionescu
- grid.5333.60000000121839049Laboratory of Movement Analysis and Measurement, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Abolfazl Soltani
- grid.5333.60000000121839049Laboratory of Movement Analysis and Measurement, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Felix Kluge
- grid.5330.50000 0001 2107 3311Machine Learning and Data Analytics Lab, Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Arne Küderle
- grid.5330.50000 0001 2107 3311Machine Learning and Data Analytics Lab, Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Ullrich
- grid.5330.50000 0001 2107 3311Machine Learning and Data Analytics Lab, Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Cameron Kirk
- grid.1006.70000 0001 0462 7212Newcastle University, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle, UK
| | - Hugo Hiden
- grid.1006.70000 0001 0462 7212Newcastle University, School of Computing, Newcastle, UK
| | - Ilaria D’Ascanio
- grid.6292.f0000 0004 1757 1758University of Bologna, Department of Electrical, Electronic and Information Engineering ‘Guglielmo Marconi’, Bologna, Italy
| | - Clint Hansen
- grid.412468.d0000 0004 0646 2097Neurogeriatrics Kiel, Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Lynn Rochester
- grid.1006.70000 0001 0462 7212Newcastle University, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle, UK ,The Newcastle upon Tyne NHS Foundation Trust, Newcastle, UK
| | - Claudia Mazzà
- grid.11835.3e0000 0004 1936 9262The University of Sheffield, INSIGNEO Institute for in silico Medicine, Sheffield, UK ,grid.11835.3e0000 0004 1936 9262The University of Sheffield, Department of Mechanical Engineering, Sheffield, UK
| | - Lorenzo Chiari
- grid.6292.f0000 0004 1757 1758University of Bologna, Department of Electrical, Electronic and Information Engineering ‘Guglielmo Marconi’, Bologna, Italy ,grid.6292.f0000 0004 1757 1758University of Bologna, Health Sciences and Technologies—Interdepartmental Center for Industrial Research (CIRI-SDV), Bologna, Italy
| |
Collapse
|
11
|
Scott K, Bonci T, Salis F, Alcock L, Buckley E, Gazit E, Hansen C, Schwickert L, Aminian K, Bertuletti S, Caruso M, Chiari L, Sharrack B, Maetzler W, Becker C, Hausdorff JM, Vogiatzis I, Brown P, Del Din S, Eskofier B, Paraschiv-Ionescu A, Keogh A, Kirk C, Kluge F, Micó-Amigo EM, Mueller A, Neatrour I, Niessen M, Palmerini L, Sillen H, Singleton D, Ullrich M, Vereijken B, Froehlich M, Brittain G, Caulfield B, Koch S, Carsin AE, Garcia-Aymerich J, Kuederle A, Yarnall A, Rochester L, Cereatti A, Mazzà C. Design and validation of a multi-task, multi-context protocol for real-world gait simulation. J Neuroeng Rehabil 2022; 19:141. [PMID: 36522646 PMCID: PMC9754996 DOI: 10.1186/s12984-022-01116-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Measuring mobility in daily life entails dealing with confounding factors arising from multiple sources, including pathological characteristics, patient specific walking strategies, environment/context, and purpose of the task. The primary aim of this study is to propose and validate a protocol for simulating real-world gait accounting for all these factors within a single set of observations, while ensuring minimisation of participant burden and safety. METHODS The protocol included eight motor tasks at varying speed, incline/steps, surface, path shape, cognitive demand, and included postures that may abruptly alter the participants' strategy of walking. It was deployed in a convenience sample of 108 participants recruited from six cohorts that included older healthy adults (HA) and participants with potentially altered mobility due to Parkinson's disease (PD), multiple sclerosis (MS), proximal femoral fracture (PFF), chronic obstructive pulmonary disease (COPD) or congestive heart failure (CHF). A novelty introduced in the protocol was the tiered approach to increase difficulty both within the same task (e.g., by allowing use of aids or armrests) and across tasks. RESULTS The protocol proved to be safe and feasible (all participants could complete it and no adverse events were recorded) and the addition of the more complex tasks allowed a much greater spread in walking speeds to be achieved compared to standard straight walking trials. Furthermore, it allowed a representation of a variety of daily life relevant mobility aspects and can therefore be used for the validation of monitoring devices used in real life. CONCLUSIONS The protocol allowed for measuring gait in a variety of pathological conditions suggests that it can also be used to detect changes in gait due to, for example, the onset or progression of a disease, or due to therapy. TRIAL REGISTRATION ISRCTN-12246987.
Collapse
Affiliation(s)
- Kirsty Scott
- Department of Mechanical Engineering and Insigneo Institute for in Silico Medicine, The University of Sheffield, Sheffield, UK. .,Department of Mechanical Engineering, The University of Sheffield, Sheffield, UK.
| | - Tecla Bonci
- Department of Mechanical Engineering and Insigneo Institute for in Silico Medicine, The University of Sheffield, Sheffield, UK.,Department of Mechanical Engineering, The University of Sheffield, Sheffield, UK
| | - Francesca Salis
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Lisa Alcock
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Ellen Buckley
- Department of Mechanical Engineering and Insigneo Institute for in Silico Medicine, The University of Sheffield, Sheffield, UK.,Department of Mechanical Engineering, The University of Sheffield, Sheffield, UK
| | - Eran Gazit
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Clint Hansen
- Department of Neurology, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Lars Schwickert
- Robert Bosch Gesellschaft für Medizinische Forschung, Stuttgart, Germany
| | - Kamiar Aminian
- Laboratory of Movement Analysis and Measurement, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Stefano Bertuletti
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Marco Caruso
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.,Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy.,PolitoBIOMed Lab, Biomedical Engineering Lab, Politecnico di Torino, Turin, Italy
| | - Lorenzo Chiari
- Department of Electrical, Electronic and Information Engineering «Guglielmo Marconi», University of Bologna, Bologna, Italy.,Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), University of Bologna, Bologna, Italy
| | - Basil Sharrack
- Department of Neuroscience and Sheffield NIHR Translational Neuroscience BRC, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Walter Maetzler
- Department of Neurology, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Clemens Becker
- Robert Bosch Gesellschaft für Medizinische Forschung, Stuttgart, Germany
| | - Jeffrey M Hausdorff
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ioannis Vogiatzis
- Department of Sport, Exercise and Rehabilitation, Northumbria University Newcastle, Newcastle upon Tyne, UK
| | - Philip Brown
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Silvia Del Din
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Björn Eskofier
- Machine Learning and Data Analytics Lab, Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anisoara Paraschiv-Ionescu
- Laboratory of Movement Analysis and Measurement, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Alison Keogh
- Insight Centre for Data Analytics, University College Dublin, Dublin, Ireland.,School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Cameron Kirk
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Felix Kluge
- Machine Learning and Data Analytics Lab, Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Novartis Institutes of Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Encarna M Micó-Amigo
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Arne Mueller
- Novartis Institutes of Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Isabel Neatrour
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | - Luca Palmerini
- Department of Electrical, Electronic and Information Engineering «Guglielmo Marconi», University of Bologna, Bologna, Italy.,Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), University of Bologna, Bologna, Italy
| | | | - David Singleton
- Insight Centre for Data Analytics, University College Dublin, Dublin, Ireland.,School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Martin Ullrich
- Machine Learning and Data Analytics Lab, Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Beatrix Vereijken
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Gavin Brittain
- Department of Neuroscience and Sheffield NIHR Translational Neuroscience BRC, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Brian Caulfield
- Insight Centre for Data Analytics, University College Dublin, Dublin, Ireland.,School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Sarah Koch
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Anne-Elie Carsin
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Judith Garcia-Aymerich
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Arne Kuederle
- Machine Learning and Data Analytics Lab, Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Alison Yarnall
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Lynn Rochester
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Andrea Cereatti
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.,Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy.,PolitoBIOMed Lab, Biomedical Engineering Lab, Politecnico di Torino, Turin, Italy
| | - Claudia Mazzà
- Department of Mechanical Engineering and Insigneo Institute for in Silico Medicine, The University of Sheffield, Sheffield, UK.,Department of Mechanical Engineering, The University of Sheffield, Sheffield, UK
| | | |
Collapse
|
12
|
Bonci T, Salis F, Scott K, Alcock L, Becker C, Bertuletti S, Buckley E, Caruso M, Cereatti A, Del Din S, Gazit E, Hansen C, Hausdorff JM, Maetzler W, Palmerini L, Rochester L, Schwickert L, Sharrack B, Vogiatzis I, Mazzà C. An Algorithm for Accurate Marker-Based Gait Event Detection in Healthy and Pathological Populations During Complex Motor Tasks. Front Bioeng Biotechnol 2022; 10:868928. [PMID: 35721859 PMCID: PMC9201978 DOI: 10.3389/fbioe.2022.868928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
There is growing interest in the quantification of gait as part of complex motor tasks. This requires gait events (GEs) to be detected under conditions different from straight walking. This study aimed to propose and validate a new marker-based GE detection method, which is also suitable for curvilinear walking and step negotiation. The method was first tested against existing algorithms using data from healthy young adults (YA, n = 20) and then assessed in data from 10 individuals from the following five cohorts: older adults, chronic obstructive pulmonary disease, multiple sclerosis, Parkinson’s disease, and proximal femur fracture. The propagation of the errors associated with GE detection on the calculation of stride length, duration, speed, and stance/swing durations was investigated. All participants performed a variety of motor tasks including curvilinear walking and step negotiation, while reference GEs were identified using a validated methodology exploiting pressure insole signals. Sensitivity, positive predictive values (PPV), F1-score, bias, precision, and accuracy were calculated. Absolute agreement [intraclass correlation coefficient (ICC2,1)] between marker-based and pressure insole stride parameters was also tested. In the YA cohort, the proposed method outperformed the existing ones, with sensitivity, PPV, and F1 scores ≥ 99% for both GEs and conditions, with a virtually null bias (<10 ms). Overall, temporal inaccuracies minimally impacted stride duration, length, and speed (median absolute errors ≤1%). Similar algorithm performances were obtained for all the other five cohorts in GE detection and propagation to the stride parameters, where an excellent absolute agreement with the pressure insoles was also found (ICC2,1=0.817− 0.999). In conclusion, the proposed method accurately detects GE from marker data under different walking conditions and for a variety of gait impairments.
Collapse
Affiliation(s)
- Tecla Bonci
- Department of Mechanical Engineering, Insigno Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
- *Correspondence: Tecla Bonci,
| | - Francesca Salis
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Kirsty Scott
- Department of Mechanical Engineering, Insigno Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Lisa Alcock
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Clemens Becker
- Department for Geriatric Rehabilitation, Robert-Bosch-Hospital, Stuttgart, Germany
| | - Stefano Bertuletti
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Ellen Buckley
- Department of Mechanical Engineering, Insigno Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Marco Caruso
- Department of Electronics and Telecommunications, Politecnico Di Torino, Torino, Italy
| | - Andrea Cereatti
- Department of Electronics and Telecommunications, Politecnico Di Torino, Torino, Italy
| | - Silvia Del Din
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Eran Gazit
- Centre for the Study of Movement, Cognition and Mobility, Tel Aviv Sourasky Medical Centre, Tel Aviv, Israel
| | - Clint Hansen
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel University, Kiel, Germany
| | - Jeffrey M. Hausdorff
- Centre for the Study of Movement, Cognition and Mobility, Tel Aviv Sourasky Medical Centre, Tel Aviv, Israel
- Department of Physical Therapy, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Orthopaedic Surgery, Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, United States
| | - Walter Maetzler
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel University, Kiel, Germany
| | - Luca Palmerini
- Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi”, University of Bologna, Bologna, Italy
- Health Sciences and Technologies–Interdepartmental Center for Industrial Research (CIRI-SDV), University of Bologna, Bologna, Italy
| | - Lynn Rochester
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
- The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
| | - Lars Schwickert
- Department for Geriatric Rehabilitation, Robert-Bosch-Hospital, Stuttgart, Germany
| | - Basil Sharrack
- Department of Neuroscience, Sheffield NIHR Translational Neuroscience BRC, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Ioannis Vogiatzis
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle Upon Tyne, United Kingdom
| | - Claudia Mazzà
- Department of Mechanical Engineering, Insigno Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|