1
|
Orhan F, Ceyran E. Sugar beet molasses: a sweet solution for ectoine production by Nesterenkonia sp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52198-52211. [PMID: 39143384 DOI: 10.1007/s11356-024-34674-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024]
Abstract
Ectoine, a biologically significant compound, was successfully produced by a strain of bacteria capable of utilizing sucrose. In a ground-breaking approach, we harnessed the potential of sugar beet molasses, a by-product rich in sucrose, amino acid, and vitamins, as a growth medium for this purpose. Through meticulous investigation, we identified the ideal conditions for maximizing ectoine synthesis. This remarkable milestone was reached by introducing only 1 g of (NH₄)₂SO₄ and 5 mL of molasses per liter, maintaining a pH level of 8.0, upholding a 7.5% NaCl concentration, employing agitation at 120 rpm, and sustaining a temperature of 30 °C. This study marks a pioneering endeavour as it represents the first instance where molasses has been effectively employed to produce ectoine through the cultivation of Nesterenkonia sp. We showcased the production of 75.56 g of the valuable compound ectoine utilizing 1 L of waste molasses with this specific bacterial strain. These findings hold tremendous promise, not only in terms of resource utilization but also for the potential applications of ectoine in various biological contexts.
Collapse
Affiliation(s)
- Furkan Orhan
- Art and Science Faculty, Department of Molecular Biology and Genetics, Agri Ibrahim Cecen University, 4100, Agri, Turkey.
- Central Research and Application Laboratory, Agri Ibrahim Cecen University, Agri, Turkey.
| | - Ertuğrul Ceyran
- Central Research and Application Laboratory, Agri Ibrahim Cecen University, Agri, Turkey
| |
Collapse
|
2
|
Orhan F, Akıncıoğlu A, Ceyran E. Ectoine production from a novel bacterial strain and high-purity purification with a cost-effective and single-step method. J Biotechnol 2024; 388:24-34. [PMID: 38599284 DOI: 10.1016/j.jbiotec.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/08/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
This study marks the exploration into the production of ectoine, a valuable compound with significant potential as an antioxidant, osmoprotectant, anti-inflammatory agent, and stabilizer of cell membranes, proteins, and DNA integrity. Our focus centred on investigating the presence of ectoine and optimizing its production by the novel ectoine producer bacterial strain, Piscibacillus halophilus. For the optimization of ectoine production the effects of carbon and nitrogen sources, salt, pH, agitation and incubation period were optimized by one-factor-at-a-time. We started with an initial ectoine content of 46.92 mg/L, and through a series of optimization processes, we achieved a remarkable increase, resulting in an ectoine content of 1498.2 mg/L. The bacterial species P. halophilus achieved its highest ectoine production after 48 h of incubation, with conditions set at 10 % (w/v) salinity, pH of 7.50, and an agitation speed of 160 rpm. These precise conditions were found to be the most favourable for maximizing ectoine production by this strain. Besides, we have achieved successful purification of ectoine from the crude extract through a streamlined single-step process. This purification method has delivered an exceptional level of purity, surpassing 99.15 %, and an impressive yield of over 99 %. Importantly, we accomplished this using readily available and cost-effective strong acids (HCl) and strong bases (NaOH) to arrange pH gradients. The use of acid and base in the purification process of ectoine reflects an innovative and sustainable methodology.
Collapse
Affiliation(s)
- Furkan Orhan
- Agri Ibrahim Cecen University, Art and Science Faculty, Department of Molecular Biology and Genetics, Agri 4100, Turkey; Central Research and Application Laboratory, Agri Ibrahim Cecen University, Agri, Turkey.
| | - Akın Akıncıoğlu
- Central Research and Application Laboratory, Agri Ibrahim Cecen University, Agri, Turkey; Vocational School, Agri Ibrahim Cecen University, Agri, Turkey
| | - Ertuğrul Ceyran
- Central Research and Application Laboratory, Agri Ibrahim Cecen University, Agri, Turkey
| |
Collapse
|
3
|
Chen J, Qiao D, Yuan T, Feng Y, Zhang P, Wang X, Zhang L. Biotechnological production of ectoine: current status and prospects. Folia Microbiol (Praha) 2024; 69:247-258. [PMID: 37962826 DOI: 10.1007/s12223-023-01105-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023]
Abstract
Ectoine is an important natural secondary metabolite in halophilic microorganisms. It protects cells against environmental stressors, such as salinity, freezing, drying, and high temperatures. Ectoine is widely used in medical, cosmetic, and other industries. Due to the commercial market demand of ectoine, halophilic microorganisms are the primary method for producing ectoine, which is produced using the industrial fermentation process "bacterial milking." The method has some limitations, such as the high salt concentration fermentation, which is highly corrosive to the equipment, and this also increases the difficulty of downstream purification and causes high production costs. The ectoine synthesis gene cluster has been successfully heterologously expressed in industrial microorganisms, and the yield of ectoine was significantly increased and the cost was reduced. This review aims to summarize and update microbial production of ectoine using different microorganisms, environments, and metabolic engineering and fermentation strategies and provides important reference for the development and application of ectoine.
Collapse
Affiliation(s)
- Jun Chen
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
- Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an, 23702, China
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Ministry of Natural Resources, State Oceanic Administration & Second Institute of Oceanography, Hangzhou, 310012, China
| | - Deliang Qiao
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
- Anhui Province Key Laboratory for Quality Evaluationand, Improvement of Traditional Chinese Medicine, West Anhui University, Lu, 237012, China
| | - Tao Yuan
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Yeyuan Feng
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Pengjun Zhang
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Xuejun Wang
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Li Zhang
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China.
- Anhui Province Key Laboratory for Quality Evaluationand, Improvement of Traditional Chinese Medicine, West Anhui University, Lu, 237012, China.
| |
Collapse
|
4
|
Wiszniewska A, Makowski W. Assessment of Shoot Priming Efficiency to Counteract Complex Metal Stress in Halotolerant Lobularia maritima. PLANTS (BASEL, SWITZERLAND) 2023; 12:1440. [PMID: 37050070 PMCID: PMC10096694 DOI: 10.3390/plants12071440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
The study investigated whether short-term priming supports plant defense against complex metal stress and multiple stress (metals and salinity) in halophyte Lobularia maritima (L.) Desv. Plants were pre-treated with ectoine (Ect), nitric oxide donor-sodium nitroprusside (SNP), or hydrogen sulfide donor-GYY4137 for 7 days, and were transferred onto medium containing a mixture of metal ions: Zn, Pb, and Cd. To test the effect of priming agents in multiple stress conditions, shoots were also subjected to low salinity (20 mM NaCl), applied alone, or combined with metals. Hydropriming was a control priming treatment. Stress impact was evaluated on a basis of growth parameters, whereas defense responses were on a basis of the detoxification activity of glutathione S-transferase (GST), radical scavenging activity, and accumulation of thiols and phenolic compounds. Exposure to metals reduced shoot biomass and height but had no impact on the formation of new shoots. Priming with nitric oxide annihilated the toxic effects of metals. It was related to a sharp increase in GST activity, glutathione accumulation, and boosted radical scavenging activity. In NO-treated shoots level of total phenolic compounds (TPC) and flavonoids remained unaffected, in contrast to other metal-treated shoots. Under combined metal stress and salinity, NO and H2S were capable of restoring or improving growth parameters, as they stimulated radical scavenging activity. Ect and H2S did not exert any effect on metal-treated shoots in comparison to hydropriming. The results revealed the stimulatory role of nitric oxide and low doses of NaCl in combating the toxic effects of complex metal stress in L. maritima. Both NO and NaCl interfered with thiol metabolism and antioxidant activity, whereas NaCl also contributed to the accumulation of phenolic compounds.
Collapse
|
5
|
Orhan F, Ceyran E, Akincioğlu A. Optimization of ectoine production from Nesterenkonia xinjiangensis and one-step ectoine purification. BIORESOURCE TECHNOLOGY 2023; 371:128646. [PMID: 36681344 DOI: 10.1016/j.biortech.2023.128646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
In the current study, the optimization of ectoine production byNesterenkonia xinjiangensisand purification of ectoine from the bacterial cell extract were performed for the first time. Various carbon sources (glucose, sucrose, maltose, lactose, mannitol, and xylose) and nitrogen sources (ammonium nitrate, ammonium phosphate, ammonium chloride, ammonium oxalate, ammonium sulphate, and ammonium acetate), were used to optimize ectoine production. Subsequently, the effects of salt, pH and, concentrations of carbon and nitrogen source on ectoine production were optimized by response surface methodology (RSM). Ultimately, high pure (over 99%) and yield (98%) of ectoine from bacterial cells extracted was obtained by a single-step process using cation exchange chromatography. This study provides information that higher ectoine production can be achieved from this bacterial isolate by optimizing the factors influencing ectoine production and thus can be used as a new and alternative ectoine producer.
Collapse
Affiliation(s)
- Furkan Orhan
- Agri Ibrahim Cecen University, Art and Science Faculty, Department of Molecular Biology and Genetics, 4100 Agri, Turkey; Central Research and Application Laboratory, Agri Ibrahim Cecen University, Agri, Turkey.
| | - Ertuğrul Ceyran
- Central Research and Application Laboratory, Agri Ibrahim Cecen University, Agri, Turkey
| | - Akın Akincioğlu
- Central Research and Application Laboratory, Agri Ibrahim Cecen University, Agri, Turkey; Vocational School, Agri Ibrahim Cecen University, Agri, Turkey
| |
Collapse
|
6
|
Production and Recovery of Ectoine: A Review of Current State and Future Prospects. Processes (Basel) 2023. [DOI: 10.3390/pr11020339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid) is a revolutionizing substance with vast applications in the cosmetic and food industries. Ectoine is often sourced from halobacteria. The increasing market demand for ectoine has urged the development of cost-effective and sustainable large-scale production of ectoine from microbial sources. This review describes the existing and potential microbial sources of ectoine and its derivatives, as well as microbial production and fermentation approaches for ectoine recovery. In addition, conventional methods and emerging technologies for enhanced production and recovery of ectoine from microbial fermentation with a focus on the aqueous biphasic system (ABS) are discussed. The ABS is a practically feasible approach for the integration of fermentation, cell disruption, bioconversion, and clarification of various biomolecules in a single-step operation. Nonetheless, the implementation of the ABS on an industrial-scale basis for the enhanced production and recovery of ectoine is yet to be exploited. Therefore, the feasibility of the ABS to integrate the production and direct recovery of ectoine from microbial sources is also highlighted in this review.
Collapse
|
7
|
Harirchi S, Sar T, Ramezani M, Aliyu H, Etemadifar Z, Nojoumi SA, Yazdian F, Awasthi MK, Taherzadeh MJ. Bacillales: From Taxonomy to Biotechnological and Industrial Perspectives. Microorganisms 2022; 10:2355. [PMID: 36557608 PMCID: PMC9781867 DOI: 10.3390/microorganisms10122355] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
For a long time, the genus Bacillus has been known and considered among the most applicable genera in several fields. Recent taxonomical developments resulted in the identification of more species in Bacillus-related genera, particularly in the order Bacillales (earlier heterotypic synonym: Caryophanales), with potential application for biotechnological and industrial purposes such as biofuels, bioactive agents, biopolymers, and enzymes. Therefore, a thorough understanding of the taxonomy, growth requirements and physiology, genomics, and metabolic pathways in the highly diverse bacterial order, Bacillales, will facilitate a more robust designing and sustainable production of strain lines relevant to a circular economy. This paper is focused principally on less-known genera and their potential in the order Bacillales for promising applications in the industry and addresses the taxonomical complexities of this order. Moreover, it emphasizes the biotechnological usage of some engineered strains of the order Bacillales. The elucidation of novel taxa, their metabolic pathways, and growth conditions would make it possible to drive industrial processes toward an upgraded functionality based on the microbial nature.
Collapse
Affiliation(s)
- Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Mohaddaseh Ramezani
- Microorganisms Bank, Iranian Biological Resource Centre (IBRC), Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Habibu Aliyu
- Institute of Process Engineering in Life Science II: Technical Biology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Zahra Etemadifar
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 8174673441, Iran
| | - Seyed Ali Nojoumi
- Microbiology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439957131, Iran
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Xianyang 712100, China
| | | |
Collapse
|
8
|
Zhang T, Zhang X, Li Y, Yang N, Qiao L, Miao Z, Xing J, Zhu D. Study of osmoadaptation mechanisms of halophilic Halomonas alkaliphila XH26 under salt stress by transcriptome and ectoine analysis. Extremophiles 2022; 26:14. [PMID: 35229247 DOI: 10.1007/s00792-022-01256-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 01/04/2022] [Indexed: 11/04/2022]
Abstract
Halophilic bacteria such as the genus Halomonas are promising candidates in diverse industrial, agricultural and biomedical applications. Here, we successfully isolated a halophilic Halomonas alkaliphila strain XH26 from Xiaochaidan Salt Lake, and studied its osmoadaptation strategies using transcriptome and ectoine analysis. Divergent mechanisms were involved in osmoadaptation at different salinities in H. alkaliphila XH26. At moderate salinity (6% NaCl), increased transcriptions of ABC transporters related to iron (III), phosphate, phosphonate, monosaccharide and oligosaccharide import were observed. At high salinity (15% NaCl), transcriptions of flagellum assembly and cell motility were significantly inhibited. The transcriptional levels of ABC transporter genes related to iron (III) and iron3+-hydroxamate import, glycine betaine and putrescine uptake, and cytochrome biogenesis and assembly were significantly up-regulated. Ectoine synthesis and accumulation was significantly increased under salt stress, and the increased transcriptional expressions of ectoine synthesis genes ectB and ectC may play a key role in high salinity induced osmoadaptation. At extreme high salinity (18% NaCl), 5-hydroxyectoine and ectoine worked together to maintain cell survival. Together these results give valuable insights into the osmoadaptation mechanisms of H. alkaliphila XH26, and provide useful information for further engineering this specific strain for increased ectoine synthesis and related applications.
Collapse
Affiliation(s)
- Tiantian Zhang
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, People's Republic of China
| | - Xin Zhang
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, People's Republic of China
| | - Yongzhen Li
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, People's Republic of China
| | - Ning Yang
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, People's Republic of China
| | - Lijuan Qiao
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, People's Republic of China
| | - Zengqiang Miao
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, People's Republic of China
| | - Jiangwa Xing
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, People's Republic of China.
| | - Derui Zhu
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, People's Republic of China.
| |
Collapse
|
9
|
Chen PW, Cui ZY, Ng HS, Chi-Wei Lan J. Exploring the additive bio-agent impacts upon ectoine production by Halomonas salina DSM5928 T using corn steep liquor and soybean hydrolysate as nutrient supplement. J Biosci Bioeng 2020; 130:195-199. [PMID: 32370929 DOI: 10.1016/j.jbiosc.2020.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/27/2020] [Accepted: 03/21/2020] [Indexed: 11/20/2022]
Abstract
Ectoine production using inexpensive and renewable biomass resources has attracted great interest among the researchers due to the low yields of ectoine in current fermentation approaches that complicate the large-scale production of ectoine. In this study, ectoine was produced from corn steep liquor (CSL) and soybean hydrolysate (SH) in replacement to yeast extract as the nitrogen sources for the fermentation process. To enhance the bacterial growth and ectoine production, biotin was added to the Halomonas salina fermentation media. In addition, the effects addition of surfactants such as Tween 80 and saponin on the ectoine production were also investigated. Results showed that both the CSL and SH can be used as the nitrogen source substitutes in the fermentation media. Higher amount of ectoine (1781.9 mg L-1) was produced in shake flask culture with SH-containing media as compared to CSL-containing media. A total of 2537.0 mg L-1 of ectoine was produced at pH 7 when SH-containing media was applied in the 2 L batch fermentation. Moreover, highest amount of ectoine (1802.0 mg L-1) was recorded in the SH-containing shake flask culture with addition of 0.2 μm mL-1 biotin. This study demonstrated the efficacy of industrial waste as the nutrient supplement for the fermentation of ectoine production.
Collapse
Affiliation(s)
- Po-Wei Chen
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Zi-Yu Cui
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Hui Suan Ng
- Faculty of Applied Sciences, UCSI University, UCSI Heights, Cheras, Kuala Lumpur 56000, Malaysia
| | - John Chi-Wei Lan
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 32003, Taiwan; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 32003, Taiwan.
| |
Collapse
|
10
|
Primary purification of intracellular Halomonas salina ectoine using ionic liquids-based aqueous biphasic system. J Biosci Bioeng 2020; 130:200-204. [DOI: 10.1016/j.jbiosc.2020.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/24/2020] [Accepted: 04/10/2020] [Indexed: 12/22/2022]
|
11
|
Bownik A. Effects of ectoine on behavioral, physiological and biochemical parameters of Daphnia magna exposed to dimethyl sulfoxide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 683:193-201. [PMID: 31129327 DOI: 10.1016/j.scitotenv.2019.05.257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
DMSO is a very common solvent for hydrophobic chemicals that may pose a threat to aquatic organisms. Ectoine (ECT) is a protective amino acid produced by various strains of halophilic bacteria with high potential to alleviate detrimental effects induced by environmental stressors. This amino acid is used in many cosmetics and pharmaceuticals may enter aquatic ecosystems interacting with ions and macromolecules. Little is known on the effects of DMSO and its interaction with ECT on behavioral, physiological and biochemical endpoints of aquatic invertebrates. Therefore, the purpose of the present study was to determine protective effects of DMSO alone and in the combination with ECT on hopping frequency, swimming speed, heart rate, thoracic limb activity, catalase activity and NOx level in an animal model, Daphnia magna subjected to 0.1% and 1% DMSO alone and during combinatorial exposure to ECT (0-25 mg/L) and DMSO for 24 h and 48 h. The results showed that swimming speed, heart rate and thoracic limb activity were inhibited by both 0.1% and 1% DMSO alone however alleviating effects were observed in the combination DMSO + ECT. Thoracic limb activity was higher in the animals exposed to both solutions of DMSO alone, however the parameter was more stimulated at DMSO + ECT. The results suggest that DMSO alone may alter Daphnia behavior and physiological parameters, therefore use of the control group of non-treated animals with DMSO alone would be recommended to avoid data misinterpretation.
Collapse
Affiliation(s)
- Adam Bownik
- Institute of Biological Basis of Animal Production, University of Life Sciences, 20-950 Lublin, Poland.
| |
Collapse
|
12
|
Chen WC, Yuan FW, Wang LF, Chien CC, Wei YH. Ectoine production with indigenous Marinococcus sp. MAR2 isolated from the marine environment. Prep Biochem Biotechnol 2019; 50:74-81. [PMID: 31517565 DOI: 10.1080/10826068.2019.1663534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Ectoine has fostered the development of products for skin care and cosmetics. In this study, we employed the marine bacterial strain Marinococcus sp. MAR2 to increase ectoine production by optimizing medium constituents using Response Surface Methodology (RSM) and a fed-batch strategy. The results from the steepest ascent and central composite design indicated that 54 g/L of yeast extract, 14.0 g/L of ammonium acetate, 74.4 g/L of sodium glutamate, and 6.2 g/L of sodium citrate constituted the optimal medium with maximum ectoine production (3.5 g/L). In addition, we performed fed-batch culture in the bioreactor, combining pH and dissolved oxygen to produce ectoine by Marinococcus sp. MAR2. The ectoine production, content, and productivity of 5.6 g/L, 10%, and 3.9 g/L/day were further reached by a fed-batch culture. Thus, the ectoine production by Marinococcus sp. MAR2 using RSM and fed-batch strategy shows its potential for industrial production.
Collapse
Affiliation(s)
- Wei-Chuan Chen
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan (R.O.C.)
| | - Fang-Wei Yuan
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan (R.O.C.)
| | - Li-Fen Wang
- Department of Applied Chemistry and Materials Science, Fooyin University, Kaohsiung, Taiwan (R.O.C.)
| | - Chih-Ching Chien
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan (R.O.C.)
| | - Yu-Hong Wei
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan (R.O.C.)
| |
Collapse
|
13
|
Gießelmann G, Dietrich D, Jungmann L, Kohlstedt M, Jeon EJ, Yim SS, Sommer F, Zimmer D, Mühlhaus T, Schroda M, Jeong KJ, Becker J, Wittmann C. Metabolic Engineering of
Corynebacterium glutamicum
for High‐Level Ectoine Production: Design, Combinatorial Assembly, and Implementation of a Transcriptionally Balanced Heterologous Ectoine Pathway. Biotechnol J 2019; 14:e1800417. [DOI: 10.1002/biot.201800417] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 05/03/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Gideon Gießelmann
- Institute of Systems BiotechnologySaarland University 66123 Saarbrücken Germany
| | - Demian Dietrich
- Institute of Systems BiotechnologySaarland University 66123 Saarbrücken Germany
| | - Lukas Jungmann
- Institute of Systems BiotechnologySaarland University 66123 Saarbrücken Germany
| | - Michael Kohlstedt
- Institute of Systems BiotechnologySaarland University 66123 Saarbrücken Germany
| | - Eun J. Jeon
- Department of Chemical and Biomolecular EngineeringKAIST 335 Gwahagno Yuseong‐gu Daejeon 305‐701 Republic of Korea
| | - Sung S. Yim
- Department of Chemical and Biomolecular EngineeringKAIST 335 Gwahagno Yuseong‐gu Daejeon 305‐701 Republic of Korea
| | - Frederik Sommer
- Department of Molecular Biotechnology and Systems BiologyTU Kaiserslautern Kaiserslautern 67663 Germany
| | - David Zimmer
- Department of Molecular Biotechnology and Systems BiologyTU Kaiserslautern Kaiserslautern 67663 Germany
| | - Timo Mühlhaus
- Department of Molecular Biotechnology and Systems BiologyTU Kaiserslautern Kaiserslautern 67663 Germany
| | - Michael Schroda
- Department of Molecular Biotechnology and Systems BiologyTU Kaiserslautern Kaiserslautern 67663 Germany
| | - Ki J. Jeong
- Department of Chemical and Biomolecular EngineeringKAIST 335 Gwahagno Yuseong‐gu Daejeon 305‐701 Republic of Korea
| | - Judith Becker
- Institute of Systems BiotechnologySaarland University 66123 Saarbrücken Germany
| | - Christoph Wittmann
- Institute of Systems BiotechnologySaarland University 66123 Saarbrücken Germany
| |
Collapse
|
14
|
Chen WC, Hsu CC, Wang LF, Lan JCW, Chang YK, Wei YH. Exploring useful fermentation strategies for the production of hydroxyectoine with a halophilic strain, Halomonas salina BCRC 17875. J Biosci Bioeng 2019; 128:332-336. [PMID: 30935782 DOI: 10.1016/j.jbiosc.2019.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/15/2019] [Accepted: 02/26/2019] [Indexed: 01/22/2023]
Abstract
Hydroxyectoine, an ectoine derivative, is the most common compatible solute in halophilic microorganisms for resisting harsh environments. Compatible solutes can be utilized in fields such as cosmetics, medicine, and biochemistry. Moderately halophilic microorganisms produce much less hydroxyectoine as compared with ectoine. In this study, we first evaluate the effect of medium formulation (i.e., yeast extract (YE) medium and high yeast extract (HYE) medium) on hydroxyectoine production. In addition, an investigation of hydroxyectoine production by Halomonas salina under optimal conditions for vital factors (i.e., iron and α-ketoglutarate) and hydroxylase activity was also carried out. As a result, hydroxyectoine production was obviously elevated (0.9 g/L to 1.8 g/L) when the HYE medium was utilized. Furthermore, hydroxyectoine production further increased to 2.4 g/L when both the α-ketoglutarate and iron factors were added to the HYE medium in the early stationary phase. In addition, we found that ectoine hydroxylase activity increased more when a combination of iron and α-ketoglutarate was used than when either was used alone. The results showed that the alteration of iron and α-ketoglutarate clearly stimulated the expression of ectoine hydroxylase, which in turn affected hydroxyectoine synthesis. This study also showed that hydroxyectoine production was further raised from 2.4 g/L to 2.9 g/L when 50 mM of α-ketoglutarate and 1 mM of iron were added to the HYE medium. Ultimately, the experimental results showed using the optimal conditions further elevated the hydroxyectoine production yield to 2.90 g/L, which was over 3-fold higher than the best results obtained from the original medium.
Collapse
Affiliation(s)
- Wei-Chuan Chen
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, No. 135 Yuan-Tung Rd., Chung-Li Dist., Taoyuan City 32003, Taiwan, ROC
| | - Ching-Cha Hsu
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, No. 135 Yuan-Tung Rd., Chung-Li Dist., Taoyuan City 32003, Taiwan, ROC
| | - Li-Fen Wang
- Department of Applied Chemistry and Materials Science, Fooyin University, No. 151 Jinxue Rd., Daliao Dist., Kaohsiung City 83102, Taiwan, ROC
| | - John Chi-Wei Lan
- Department of Chemical Engineering and Materials Science, Yuan Ze University, No. 135 Yuan-Tung Rd., Chung-Li Dist., Taoyuan City 32003, Taiwan, ROC
| | - Yu-Kaung Chang
- Department & Graduate Institute of Chemical Engineering, Ming Chi University of Technology, No. 84 Gungjuan Rd., Taishan Dist., New Taipei City 24301, Taiwan, ROC
| | - Yu-Hong Wei
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, No. 135 Yuan-Tung Rd., Chung-Li Dist., Taoyuan City 32003, Taiwan, ROC.
| |
Collapse
|
15
|
Bownik A, Ślaska B, Szabelak A. Protective effects of compatible solute ectoine against ethanol-induced toxic alterations in Daphnia magna. J Comp Physiol B 2018; 188:779-791. [PMID: 29948158 PMCID: PMC6132719 DOI: 10.1007/s00360-018-1165-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/11/2018] [Accepted: 05/22/2018] [Indexed: 11/30/2022]
Abstract
Ectoine (ECT) is a compatible solute synthesized mostly by halophilic microorganisms subjected to various stressful factors. Its protective properties in bacteria and some populations of isolated cells subjected to different stressors are reported; however, little is known on its effects against a commonly used compound, ethanol (ETH). The purpose of our study was to determine the effects of ETH alone (at 20 and 60 g/L) and in the combination with various concentrations of ECT (5, 10, and 25 mg/L) at various times of exposure on behavioural, physiological, and biochemical parameters of a model invertebrate Daphnia magna. In the present study, we determined the following parameters: immobilisation, heart rate, thoracic limb movement, catalase (CAT) activity, and nitric oxide species (NOx) level. Our study revealed that both concentrations of ETH alone induced immobilisation and decrease of swimming velocity, heart rate, and thoracic limb activity; however, catalase activity and NOx levels were increased. On the other hand, the animals exposed to the combinations of ETH + ECT showed a reduced immobilisation and alleviated inhibition of heart rate and thoracic limb activity, lower increase of CAT activity, and NOx level when compared to the crustaceans subjected to ETH alone. The most distinct alleviation of toxic effects was noted in the combinations in which the highest concentration of ECT were used. The results suggest that ETH may induce oxidative stress in daphnids and attenuating effects of ECT probably result from its antioxidative properties.
Collapse
Affiliation(s)
- Adam Bownik
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, 20-950, Lublin, Poland.
| | - Brygida Ślaska
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, 20-950, Lublin, Poland
| | - Aleksandra Szabelak
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, 20-950, Lublin, Poland
| |
Collapse
|
16
|
Production and characterization of ectoine using a moderately halophilic strain Halomonas salina BCRC17875. J Biosci Bioeng 2018; 125:578-584. [PMID: 29331525 DOI: 10.1016/j.jbiosc.2017.12.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 11/28/2017] [Accepted: 12/13/2017] [Indexed: 11/22/2022]
Abstract
This study attempted to utilize Halomonas salina BCRC17875 to produce ectoine by optimizing the agitation speed and medium composition. In addition, the chemical structure of ectoine produced by H. salina BCRC17875 was determined. The results indicate that ectoine production reached 3.65 g/L at 38 h of cultivation when the agitation rate and NaCl concentration were fixed at 200 rpm and 2.0 M, respectively. It reached 9.20 g/L at 44 h of cultivation when the major medium components were yeast extract (56 g/L), glutamate (74.40 g/L), and ammonium sulfate (14 g/L). After the nitrogen concentration had been evaluated, evaluation of the nitrogen concentration revealed that the ectoine production reached 11.80 g/L at 44 h of cultivation when 56 g/L of yeast extract and 28 g/L of ammonium sulfate were used. Ectoine production reached 13.96 g/L at 44 h of cultivation when the carbon/nitrogen ratio was fixed at 3/1 using 84 g/L of yeast extract and 28 g/L of ammonium sulfate. Furthermore, the identification of ectoine were identified and characterized by fast atom bombardment mass spectrometry (FAB-MS) and 1H NMR. The results demonstrated a fermentation strategy was successful in increasing ectoine production, and that the fermentation medium of ectoine had commercialization potential.
Collapse
|
17
|
Bownik A, Stępniewska Z. Ectoine alleviates behavioural, physiological and biochemical changes in Daphnia magna subjected to formaldehyde. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:15549-62. [PMID: 26006078 DOI: 10.1007/s11356-015-4747-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/18/2015] [Indexed: 05/07/2023]
Abstract
Ectoine (ECT) is produced by halophilic microorganisms in response to various stressful factors. Its protective properties in bacteria and some populations of isolated cells are known; however, no data are available on its protective influence on aquatic invertebrates subjected to a common pollutant, formaldehyde (FA). The purpose of this study was to determine the effects of FA alone (at 20 and 60 mg/L) and in the combination with various concentrations of ECT (5, 10 and 25 mg/L) at various times of exposure on behavioural, physiological and biochemical parameters of Daphnia magna. Specifically, mortality, heart rate, thoracic limb movement, reduced glutathione (GSH)/oxidised glutathione (GSSG) ratio, catalase (CAT) activity and nitric oxide (NOx) levels were determined. The results showed that both concentrations of FA when administered alone induced significant alterations of the determined parameters. On the other hand, animals treated with the combinations of FA + ECT showed decreased mortalities, attenuated inhibition of heart rates and thoracic limb activities, less decreased GSH/GSSG ratios, lower stimulation of CAT activities and NOx levels when compared to the crustaceans subjected to FA alone. The most distinct attenuation of toxic effects was observed in the combinations in which the highest concentrations of ECT were used. The results suggest that oxidative stress induced by FA in daphnids is likely to be alleviated by the antioxidative action of ECT.
Collapse
Affiliation(s)
- Adam Bownik
- Department of Physiology and Ecotoxicology, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, Kontstantynów 1 "I", 20-708, Lublin, Poland.
| | - Zofia Stępniewska
- Department of Biochemistry and Environmental Chemistry, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, Kontstantynów 1 "I", 20-708, Lublin, Poland
| |
Collapse
|
18
|
GlnR-Mediated Regulation of ectABCD Transcription Expands the Role of the GlnR Regulon to Osmotic Stress Management. J Bacteriol 2015; 197:3041-7. [PMID: 26170409 DOI: 10.1128/jb.00185-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 07/03/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Ectoine and hydroxyectoine are excellent compatible solutes for bacteria to deal with environmental osmotic stress and temperature damages. The biosynthesis cluster of ectoine and hydroxyectoine is widespread among microorganisms, and its expression is activated by high salinity and temperature changes. So far, little is known about the mechanism of the regulation of the transcription of ect genes and only two MarR family regulators (EctR1 in methylobacteria and the EctR1-related regulator CosR in Vibrio cholerae) have been found to negatively regulate the expression of ect genes. Here, we characterize GlnR, the global regulator for nitrogen metabolism in actinomycetes, as a negative regulator for the transcription of ectoine/hydroxyectoine biosynthetic genes (ect operon) in Streptomyces coelicolor. The physiological role of this transcriptional repression by GlnR is proposed to protect the intracellular glutamate pool, which acts as a key nitrogen donor for both the nitrogen metabolism and the ectoine/hydroxyectoine biosynthesis. IMPORTANCE High salinity is deleterious, and cells must evolve sophisticated mechanisms to cope with this osmotic stress. Although production of ectoine and hydroxyectoine is one of the most frequently adopted strategies, the in-depth mechanism of regulation of their biosynthesis is less understood. So far, only two MarR family negative regulators, EctR1 and CosR, have been identified in methylobacteria and Vibrio, respectively. Here, our work demonstrates that GlnR, the global regulator for nitrogen metabolism, is a negative transcriptional regulator for ect genes in Streptomyces coelicolor. Moreover, a close relationship is found between nitrogen metabolism and osmotic resistance, and GlnR-mediated regulation of ect transcription is proposed to protect the intracellular glutamate pool. Meanwhile, the work reveals the multiple roles of GlnR in bacterial physiology.
Collapse
|
19
|
Bownik A, Stępniewska Z. Protective effects of bacterial osmoprotectant ectoine on bovine erythrocytes subjected to staphylococcal alpha-haemolysin. Toxicon 2015; 99:130-5. [PMID: 25841345 DOI: 10.1016/j.toxicon.2015.03.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/27/2015] [Accepted: 03/31/2015] [Indexed: 10/23/2022]
Abstract
Ectoine (ECT) is a bacterial compatible solute with documented protective action however no data are available on its effects on various cells against bacterial toxins. Therefore, we determined the in vitro influence of ECT on bovine erythrocytes subjected to staphylococcal α-haemolysin (HlyA). The cells exposed to HlyA alone showed a distinct haemolysis and reduced glutathione (GSH)/oxidised glutathione (GSSG) level, however the toxic effects were attenuated in the combinations of HlyA + ECT suggesting ECT-induced protection of erythrocytes from HlyA.
Collapse
Affiliation(s)
- Adam Bownik
- Department of Animal Physiology and Toxicology, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, Kontstantynów 1 "I", 20-708 Lublin, Poland.
| | - Zofia Stępniewska
- Department of Biochemistry and Environmental Chemistry, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, Kontstantynów 1 "I", 20-708 Lublin, Poland
| |
Collapse
|
20
|
Bownik A, Stępniewska Z. Protective effects of ectoine on behavioral, physiological and biochemical parameters of Daphnia magna subjected to hydrogen peroxide. Comp Biochem Physiol C Toxicol Pharmacol 2015; 170:38-49. [PMID: 25704915 DOI: 10.1016/j.cbpc.2015.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 02/10/2015] [Accepted: 02/12/2015] [Indexed: 12/24/2022]
Abstract
Ectoine (ECT) is an osmoprotectant produced by halophilic microorganisms inducing protective effects against various stressful factors. However, little is known about its influence on aquatic invertebrates subjected to hydrogen peroxide (H2O2)-a commonly used oxidative disinfectant. Therefore, the aim of our study was to determine the effects of H2O2 alone (at 5 and 10 mg/L) and in the combination with various concentrations of ECT (5, 10 and 25 mg/L) on behavioral, physiological and biochemical parameters of Daphnia magna. The following endpoints were determined: mortality, heart rate, thoracic limb movement, total glutathione (GSH)/oxidized glutathione (GSSG) ratio, catalase (CAT) activity and nitric oxide (NOx) level. The study showed that daphnids exposed to the combination of H2O2+ECT showed decreased mortality, attenuated inhibition of heart rate and thoracic limb activity, less decreased GSH/GSSG ratio, lower stimulation of CAT activity and NOx level when compared to the crustaceans exposed to H2O2 alone. The most pronounced alleviation of toxic effects was observed in the combination of 5 mg/L H2O2+25 mg/L ECT. The results suggest that protective effects of ECT in D. magna subjected to H2O2 may be related to antioxidative properties of the osmoprotectant.
Collapse
Affiliation(s)
- Adam Bownik
- Department of Physiology and Ecotoxicology, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, Kontstantynów 1 "I", 20-708 Lublin, Poland
| | - Zofia Stępniewska
- Department of Biochemistry and Enironmental Chemistry, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, Kontstantynów 1 "I", 20-708 Lublin, Poland.
| |
Collapse
|
21
|
Bownik A, Stępniewska Z, Skowroński T. Effects of ectoine on behavioural, physiological and biochemical parameters of Daphnia magna. Comp Biochem Physiol C Toxicol Pharmacol 2015; 168:2-10. [PMID: 25460046 DOI: 10.1016/j.cbpc.2014.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/05/2014] [Accepted: 11/07/2014] [Indexed: 11/20/2022]
Abstract
Ectoine (ECT) is a compatible solute produced by soil, marine and freshwater bacteria in response to stressful factors. The purpose of our study was to determine the possible toxic influence of ECT on Daphnia magna. We determined the following endpoints: survival rate during exposure and recovery, swimming performance, heart rate, thoracic limb movement determined by image analysis, haemoglobin level by ELISA assay, catalase and nitric oxide species (NOx) by spectrophotometric methods. The results showed 80% survival of daphnids exposed to 50mg/L of ECT after 24h and 10% after 90h, however lower concentrations of ECT were well tolerated. A concentration-dependent reduction of swimming velocity was noted at 24 and 48h of the exposure. ECT (at 2.5 and 4mg/L) induced an increase of heart rate and thoracic limb movement (at 2.5, 4 and 20mg/L) after 24h. After 10h of the exposure to ECT daphnids showed a concentration-dependent increase of haemoglobin level synthesized and accumulated in the epipodite epithelia. After 24h we noted a concentration-dependent decrease of haemoglobin level and its lowest value was found after 48h of the exposure. ECT at a concentration of 20 and 25mg/L slightly stimulated catalase activity after 24h. NOx level was also increased after 10h of the exposure to 20 and 25mg/L of ECT reaching maximal activity after 24h. Our results suggest that ECT possesses some modulatory potential on the behaviour, physiology and biochemical parameters in daphnids.
Collapse
Affiliation(s)
- Adam Bownik
- Department of Physiology and Ecotoxicology, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, Kontstantynow 1 "I", 20-708 Lublin, Poland.
| | - Zofia Stępniewska
- Department of Biochemistry Environmental Chemistry, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, Kontstantynow 1 "I", 20-708 Lublin, Poland
| | - Tadeusz Skowroński
- Department of Physiology and Ecotoxicology, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, Kontstantynow 1 "I", 20-708 Lublin, Poland
| |
Collapse
|
22
|
Adam B, Zofia S, Tadeusz S. Protective effects of ectoine on heat-stressed Daphnia magna. J Comp Physiol B 2014; 184:961-76. [PMID: 25223383 PMCID: PMC4234998 DOI: 10.1007/s00360-014-0860-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/27/2014] [Accepted: 09/02/2014] [Indexed: 11/30/2022]
Abstract
Ectoine (ECT) is an amino acid produced and accumulated by halophilic bacteria in stressful conditions in order to prevent the loss of water from the cell. There is a lack of knowledge on the effects of ECT in heat-stressed aquatic animals. The purpose of our study was to determine the influence of ECT on Daphnia magna subjected to heat stress with two temperature gradients: 1 and 0.1 °C/min in the range of 23–42 °C. Time to immobilisation, survival during recovery, swimming performance, heart rate, thoracic limb movement and the levels of heat shock protein 70 kDa 1A (HSP70 1A), catalase (CAT) and nitric oxide species (NOx) were determined in ECT-exposed and unexposed daphnids; we showed protective effects of ECT on Daphnia magna subjected to heat stress. Time to immobilisation of daphnids exposed to ECT was longer when compared to the unexposed animals. Also, survival rate during the recovery of daphnids previously treated with ECT was higher. ECT significantly attenuated a rapid increase of mean swimming velocity which was elevated in the unexposed daphnids. Moreover, we observed elevation of thoracic limb movement and modulation of heart rate in ECT-exposed animals. HSP70 1A and CAT levels were reduced in the presence of ECT. On the other hand, NOx level was slightly elevated in both ECT-treated and unexposed daphnids, however slightly higher NOx level was found in ECT-treated animals. We conclude that the exposure to ectoine has thermoprotective effects on Daphnia magna, however their mechanisms are not associated with the induction of HSP70 1A.
Collapse
Affiliation(s)
- Bownik Adam
- Department of Physiology and Ecotoxicology, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, Kontstantynów 1 "I", 20-708, Lublin, Poland,
| | | | | |
Collapse
|
23
|
Zhu D, Liu J, Han R, Shen G, Long Q, Wei X, Liu D. Identification and characterization of ectoine biosynthesis genes and heterologous expression of the ectABC gene cluster from Halomonas sp. QHL1, a moderately halophilic bacterium isolated from Qinghai Lake. J Microbiol 2014; 52:139-47. [DOI: 10.1007/s12275-014-3389-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/07/2013] [Accepted: 10/11/2013] [Indexed: 11/24/2022]
|
24
|
|