1
|
Hägele L, Pfleger BF, Takors R. Getting the Right Clones in an Automated Manner: An Alternative to Sophisticated Colony-Picking Robotics. Bioengineering (Basel) 2024; 11:892. [PMID: 39329634 PMCID: PMC11429294 DOI: 10.3390/bioengineering11090892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
In recent years, the design-build-test-learn (DBTL) cycle has become a key concept in strain engineering. Modern biofoundries enable automated DBTL cycling using robotic devices. However, both highly automated facilities and semi-automated facilities encounter bottlenecks in clone selection and screening. While fully automated biofoundries can take advantage of expensive commercially available colony pickers, semi-automated facilities have to fall back on affordable alternatives. Therefore, our clone selection method is particularly well-suited for academic settings, requiring only the basic infrastructure of a biofoundry. The automated liquid clone selection (ALCS) method represents a straightforward approach for clone selection. Similar to sophisticated colony-picking robots, the ALCS approach aims to achieve high selectivity. Investigating the time analogue of five generations, the model-based set-up reached a selectivity of 98 ± 0.2% for correctly transformed cells. Moreover, the method is robust to variations in cell numbers at the start of ALCS. Beside Escherichia coli, promising chassis organisms, such as Pseudomonas putida and Corynebacterium glutamicum, were successfully applied. In all cases, ALCS enables the immediate use of the selected strains in follow-up applications. In essence, our ALCS approach provides a 'low-tech' method to be implemented in biofoundry settings without requiring additional devices.
Collapse
Affiliation(s)
- Lorena Hägele
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
2
|
Apolinario E, Sinclair J, Choi M, Luo K, Shridhar S, Tennant SM, Simon R, Lillehoj E, Cross A. Antisera against flagellin A or B inhibits Pseudomonas aeruginosa motility as measured by novel video microscopy assay. J Immunol Methods 2024; 531:113701. [PMID: 38852836 PMCID: PMC11285035 DOI: 10.1016/j.jim.2024.113701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/03/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Flagellum-mediated motility is essential to Pseudomonas aeruginosa (P. aeruginosa) virulence. Antibody against flagellin reduces motility and inhibits the spread of the bacteria from the infection site. The standard soft-agar assay to demonstrate anti-flagella motility inhibition requires long incubation times, is difficult to interpret, and requires large amounts of antibody. We have developed a time-lapse video microscopy method to analyze anti-flagellin P. aeruginosa motility inhibition that has several advantages over the soft agar assay. Antisera from mice immunized with flagellin type A or B were incubated with Green Fluorescent Protein (GFP)-expressing P. aeruginosa strain PAO1 (FlaB+) and GFP-expressing P. aeruginosa strain PAK (FlaA+). We analyzed the motion of the bacteria in video taken in ten second time intervals. An easily measurable decrease in bacterial locomotion was observed microscopically within minutes after the addition of small volumes of flagellin antiserum. From data analysis, we were able to quantify the efficacy of anti-flagellin antibodies in the test serum that decreased P. aeruginosa motility. This new video microscopy method to assess functional activity of anti-flagellin antibodies required less serum, less time, and had more robust and reproducible endpoints than the standard soft agar motility inhibition assay.
Collapse
Affiliation(s)
- Ethel Apolinario
- University of Maryland Baltimore, School of Medicine, Center for Vaccine Development & Global Health, Baltimore, MD, USA.
| | - James Sinclair
- University of Maryland Baltimore, School of Medicine, Center for Vaccine Development & Global Health, Baltimore, MD, USA
| | - Myeongjin Choi
- University of Maryland Baltimore, School of Medicine, Center for Vaccine Development & Global Health, Baltimore, MD, USA; 141 Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Kun Luo
- University of Maryland Baltimore, School of Medicine, Center for Vaccine Development & Global Health, Baltimore, MD, USA; Miltenyi Biotec, Inc., 1201 Clopper Road, Gaithersburg, MD, USA
| | - Surekha Shridhar
- University of Maryland Baltimore, School of Medicine, Center for Vaccine Development & Global Health, Baltimore, MD, USA
| | - Sharon M Tennant
- University of Maryland Baltimore, School of Medicine, Center for Vaccine Development & Global Health, Baltimore, MD, USA
| | - Raphael Simon
- University of Maryland Baltimore, School of Medicine, Center for Vaccine Development & Global Health, Baltimore, MD, USA; Pfizer, Saddle River, NJ, USA
| | - Erik Lillehoj
- University of Maryland Baltimore, School of Medicine, Department of Pediatrics, Baltimore, MD, USA
| | - Alan Cross
- University of Maryland Baltimore, School of Medicine, Center for Vaccine Development & Global Health, Baltimore, MD, USA
| |
Collapse
|
3
|
Hoffmann A, Pacios K, Mühlemann R, Daumke R, Frank B, Kalman F. Application of a novel chemical assay for the quantification of endotoxins in bacterial bioreactor samples. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1228:123839. [PMID: 37527605 DOI: 10.1016/j.jchromb.2023.123839] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/26/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023]
Abstract
A novel chemical assay, the so-called Kdo-DMB-liquid chromatography (LC) assay, was used for the accurate and cost-effective determination of the endotoxin content in supernatants of Gram-negative bacteria bioreactor samples. During mild acid hydrolysis, the endotoxin-specific sugar acid 3-deoxy-D-manno-oct-2-ulsonic acid (Kdo) is quantitatively released. Kdo is reacted with 1,2-diamino-4,5-methylenedioxybenzene (DMB) to obtain the highly fluorescent derivate Kdo-DMB. It is separated from the reaction mixture by reversed phase-(U)HPLC and detected by fluorescence. From the Kdo content the endotoxin content of the sample is calculated. For three batch cultivations of Escherichia coli K12 and a fed-batch cultivation of Pseudomonas putida KT2440, the evolution of the endotoxin content in dependence on the cultivation time was monitored. Under optimal, constant cultivation conditions a linear correlation between the endotoxin content and the easy-to-access bioreactor parameters optical density at 600 nm and dry cell weight was found for both endotoxin kinds. Under stress cultivation conditions the E. coli K12 cultivation showed a stronger increase of the endotoxin content at harvest in comparison to optimal conditions. Optical density and dry cell weight may be used for production reactors as an economic real-time estimation tool to determine the endotoxin content at different cultivation time points and conditions. The optical density can further be used to establish straightforward sample dilution schemes for endotoxin quantification in samples of unknown endotoxin content. The endotoxin content [ng mL-1] measured by the Kdo-DMB-LC assay and the endotoxin activity [EU mL-1] obtained by the compendial Limulus Amoebocyte Lysate assay show a high correlation for the bacterial bioreactor samples tested.
Collapse
Affiliation(s)
- Anika Hoffmann
- University of Applied Sciences and Arts Western Switzerland Valais, Institute of Life Technology, Rue de l'Industrie 23, 1950 Sion, Switzerland
| | - Kevin Pacios
- University of Applied Sciences and Arts Western Switzerland Valais, Institute of Life Technology, Rue de l'Industrie 23, 1950 Sion, Switzerland
| | - Reto Mühlemann
- FILTROX AG, Moosmühlestr. 6, 9000 St. Gallen, Switzerland
| | - Ralph Daumke
- FILTROX AG, Moosmühlestr. 6, 9000 St. Gallen, Switzerland
| | - Brian Frank
- FILTROX AG, Moosmühlestr. 6, 9000 St. Gallen, Switzerland
| | - Franka Kalman
- University of Applied Sciences and Arts Western Switzerland Valais, Institute of Life Technology, Rue de l'Industrie 23, 1950 Sion, Switzerland.
| |
Collapse
|
4
|
Liu L, Law COK, Nie Q, Pham HQ, Ma H, Zhang L, Ho PL, Lau TCK. Comparative analysis of outer membrane vesicles from uropathogenic Escherichia coli reveal the role of aromatic amino acids synthesis proteins in motility. Int J Med Microbiol 2023; 313:151573. [PMID: 36634604 DOI: 10.1016/j.ijmm.2023.151573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/15/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Uropathogenic Escherichia coli (UPEC) are causative agent that causes urinary tract infections (UTIs) and the recent emergence of multidrug resistance (MDR) of UPEC increases the burden on the community. Recent studies of bacterial outer membrane vesicles (OMV) identified various factors including proteins, nucleic acids, and small molecules which provided inter-cellular communication within the bacterial population. However, the components of UPEC-specific OMVs and their functional role remain unclear. Here, we systematically determined the proteomes of UPEC-OMVs and identified the specific components that provide functions to the recipient bacteria. Based on the functional network of OMVs' proteomes, a group of signaling peptides was found in all OMVs which provide communication among bacteria. Moreover, we demonstrated that treatment with UPEC-OMVs affected the motility and biofilm formation of the recipient bacteria, and further identified aromatic amino acid (AAA) biosynthesis proteins as the key factors to provide their movement.
Collapse
Affiliation(s)
- LiangZhe Liu
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518000, China; Center for Clinical Precision Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China; School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Carmen Oi Kwan Law
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518000, China
| | - Qichang Nie
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518000, China
| | - Hoa Quynh Pham
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518000, China
| | - Haiying Ma
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - Liang Zhang
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - Pak Leung Ho
- Department of Microbiology, Queen Mary Hospital, University of Hong Kong, Hong Kong Special Administrative Region
| | - Terrence Chi-Kong Lau
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518000, China.
| |
Collapse
|
5
|
Fathiah Mohamed Zuki, Pourzolfaghar H, Edyvean RGJ, Hernandez JE. Interpretation of Initial Adhesion of Pseudomonas putida on Hematite and Quartz Using Surface Thermodynamics, DLVO, and XDLVO Theories. SURFACE ENGINEERING AND APPLIED ELECTROCHEMISTRY 2022. [DOI: 10.3103/s1068375522050131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Abstract
A huge number of bacterial species are motile by flagella, which allow them to actively move toward favorable environments and away from hazardous areas and to conquer new habitats. The general perception of flagellum-mediated movement and chemotaxis is dominated by the Escherichia coli paradigm, with its peritrichous flagellation and its famous run-and-tumble navigation pattern, which has shaped the view on how bacteria swim and navigate in chemical gradients. However, a significant amount-more likely the majority-of bacterial species exhibit a (bi)polar flagellar localization pattern instead of lateral flagella. Accordingly, these species have evolved very different mechanisms for navigation and chemotaxis. Here, we review the earlier and recent findings on the various modes of motility mediated by polar flagella. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kai M Thormann
- Institute of Microbiology and Molecular Biology, Justus Liebig University Gießen, Gießen, Germany;
| | - Carsten Beta
- Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany;
| | - Marco J Kühn
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland;
| |
Collapse
|
7
|
Manglass L, Wintenberg M, Blenner M, Martinez N. Pu-239 Accumulation in E. Coli and P. Putida Grown in Liquid Cultures. HEALTH PHYSICS 2021; 121:484-493. [PMID: 34392252 DOI: 10.1097/hp.0000000000001455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
ABSTRACT Understanding of the behavior and effects of plutonium (Pu) in the environment is an important aspect of developing responsible and effective strategies for remediation and environmental stewardship. This work studies the sorption and uptake of 239Pu by common environmental bacteria, Escherichia coli DH10β and Pseudomonas putida KT-2440. Plutonium was directly incorporated into growth media prior to inoculation (0.12 kBq mL-1), and samples from the liquid cultures of E. coli and P. putida were analyzed over a 15-d growth period through liquid scintillation counting (LSC) of plutonium in cell pellets and cell culture media following centrifugation. To improve its solubility in the liquid cultures, Pu was complexed with citrate prior to inoculation. P. putida cultures were also grown without citrate to examine potential impact of P. putida's ability to use citrate as a food source. The accumulation of Pu in P. putida cells was found to increase both with and without citrate complexation for the first 5 d and then plateau until the end of the study period (15 d). A higher activity concentration of Pu was found in P. putida cells grown with citrate complexation than without. The activity concentration of plutonium in E. coli cells was greater than that in P. putida cells, which may be the result of a stronger complexing agent made by E. coli for the purpose of iron uptake. There are a variety of factors that influence Pu behavior in bacterial systems, and results confirm that even in a simple system, multiple mechanisms are at play.
Collapse
Affiliation(s)
| | - Molly Wintenberg
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC
| | - Mark Blenner
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC
| | - Nicole Martinez
- Center for Nuclear Environmental Engineering Sciences and Radioactive Waste Management (NEESRWM), Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC
| |
Collapse
|
8
|
Velho Rodrigues MF, Lisicki M, Lauga E. The bank of swimming organisms at the micron scale (BOSO-Micro). PLoS One 2021; 16:e0252291. [PMID: 34111118 PMCID: PMC8191957 DOI: 10.1371/journal.pone.0252291] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 05/13/2021] [Indexed: 12/24/2022] Open
Abstract
Unicellular microscopic organisms living in aqueous environments outnumber all other creatures on Earth. A large proportion of them are able to self-propel in fluids with a vast diversity of swimming gaits and motility patterns. In this paper we present a biophysical survey of the available experimental data produced to date on the characteristics of motile behaviour in unicellular microswimmers. We assemble from the available literature empirical data on the motility of four broad categories of organisms: bacteria (and archaea), flagellated eukaryotes, spermatozoa and ciliates. Whenever possible, we gather the following biological, morphological, kinematic and dynamical parameters: species, geometry and size of the organisms, swimming speeds, actuation frequencies, actuation amplitudes, number of flagella and properties of the surrounding fluid. We then organise the data using the established fluid mechanics principles for propulsion at low Reynolds number. Specifically, we use theoretical biophysical models for the locomotion of cells within the same taxonomic groups of organisms as a means of rationalising the raw material we have assembled, while demonstrating the variability for organisms of different species within the same group. The material gathered in our work is an attempt to summarise the available experimental data in the field, providing a convenient and practical reference point for future studies.
Collapse
Affiliation(s)
- Marcos F. Velho Rodrigues
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Maciej Lisicki
- Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Eric Lauga
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Yang X, Parashar R, Sund NL, Plymale AE, Scheibe TD, Hu D, Kelly RT. On Modeling Ensemble Transport of Metal Reducing Motile Bacteria. Sci Rep 2019; 9:14638. [PMID: 31601954 PMCID: PMC6787022 DOI: 10.1038/s41598-019-51271-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/28/2019] [Indexed: 01/13/2023] Open
Abstract
Many metal reducing bacteria are motile with their run-and-tumble behavior exhibiting series of flights and waiting-time spanning multiple orders of magnitude. While several models of bacterial processes do not consider their ensemble motion, some models treat motility using an advection diffusion equation (ADE). In this study, Geobacter and Pelosinus, two metal reducing species, are used in micromodel experiments for study of their motility characteristics. Trajectories of individual cells on the order of several seconds to few minutes in duration are analyzed to provide information on (1) the length of runs, and (2) time needed to complete a run (waiting or residence time). A Continuous Time Random Walk (CTRW) model to predict ensemble breakthrough plots is developed based on the motility statistics. The results of the CTRW model and an ADE model are compared with the real breakthrough plots obtained directly from the trajectories. The ADE model is shown to be insufficient, whereas a coupled CTRW model is found to be good at predicting breakthroughs at short distances and at early times, but not at late time and long distances. The inadequacies of the simple CTRW model can possibly be improved by accounting for correlation in run length and waiting time.
Collapse
Affiliation(s)
- Xueke Yang
- Division of Hydrologic Sciences, Desert Research Institute, Reno, NV, 89512, USA
| | - Rishi Parashar
- Division of Hydrologic Sciences, Desert Research Institute, Reno, NV, 89512, USA.
| | - Nicole L Sund
- Division of Hydrologic Sciences, Desert Research Institute, Reno, NV, 89512, USA
| | - Andrew E Plymale
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Timothy D Scheibe
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Dehong Hu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| |
Collapse
|
10
|
Role of ionic strength in the retention and initial attachment ofPseudomonas putidato quartz sand. Biointerphases 2018; 13:041005. [DOI: 10.1116/1.5027735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
11
|
Ackermann M, Prill P, Ruess L. Disentangling nematode-bacteria interactions using a modular soil model system and biochemical markers. NEMATOLOGY 2016. [DOI: 10.1163/15685411-00002965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Interactions between bacteria and nematode grazers are an important component of soil food webs yet, due to the cryptic habitat, they are almost exclusively investigated in artificial agar substrate. Transport, food choice and foraging experiments were performed in a modular microcosm system with the nematode Acrobeloides buetschlii and bacterial diets (Escherichia coli, Pseudomonas putida and Bacillus subtilis) in gamma-irradiated soil. Bacterial biomass was assessed by soil phospholipid fatty acids (PLFAs). Continuous random foraging of nematodes was affected by soil type. Food choice experiments revealed diet switch and time lag preference responses, suggesting that nematode population fluctuations are driven by multiple factors such as bacterial attractants, defence strategies or food quality. Application of PLFA markers revealed a strong nematode predation pressure, as biomass in P. putida declined by 50%, whereas no transport of bacteria through soil was indicated. Overall, semi-natural experimental systems are an essential prerequisite to gain a realistic picture in microbial-microfaunal interactions.
Collapse
Affiliation(s)
- Michael Ackermann
- Humboldt-Universität zu Berlin, Institute of Biology, Ecology Group, Philippstraße 13, 10115 Berlin, Germany
| | - Paul Prill
- Humboldt-Universität zu Berlin, Institute of Biology, Ecology Group, Philippstraße 13, 10115 Berlin, Germany
| | - Liliane Ruess
- Humboldt-Universität zu Berlin, Institute of Biology, Ecology Group, Philippstraße 13, 10115 Berlin, Germany
| |
Collapse
|
12
|
Chanakya HN, Khuntia HK, Mukherjee N, Aniruddha R, Mudakavi JR, Thimmaraju P. The physicochemical characteristics and anaerobic degradability of desiccated coconut industry waste water. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:772. [PMID: 26612563 DOI: 10.1007/s10661-015-4991-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/22/2015] [Indexed: 06/05/2023]
Abstract
Desiccated coconut industries (DCI) create various intermediates from fresh coconut kernel for cosmetic, pharmaceutical and food industries. The mechanized and non-mechanized DCI process between 10,000 and 100,000 nuts/day to discharge 6-150 m(3) of malodorous waste water leading to a discharge of 264-6642 kg chemical oxygen demand (COD) daily. In these units, three main types of waste water streams are coconut kernel water, kernel wash water and virgin oil waste water. The effluent streams contain lipids (1-55 g/l), suspended solids (6-80 g/l) and volatile fatty acids (VFA) at concentrations that are inhibitory to anaerobic bacteria. Coconut water contributes to 20-50% of the total volume and 50-60% of the total organic loads and causes higher inhibition of anaerobic bacteria with an initial lag phase of 30 days. The lagooning method of treatment widely adopted failed to appreciably treat the waste water and often led to the accumulation of volatile fatty acids (propionic acid) along with long-chain unsaturated free fatty acids. Biogas generation during biological methane potential (BMP) assay required a 15-day adaptation time, and gas production occurred at low concentrations of coconut water while the other two streams did not appear to be inhibitory. The anaerobic bacteria can mineralize coconut lipids at concentrations of 175 mg/l; however; they are severely inhibited at a lipid level of ≥350 mg/g bacterial inoculum. The modified Gompertz model showed a good fit with the BMP data with a simple sigmoid pattern. However, it failed to fit experimental BMP data either possessing a longer lag phase and/or diauxic biogas production suggesting inhibition of anaerobic bacteria.
Collapse
Affiliation(s)
- H N Chanakya
- Center for Sustainable Technologies, Indian Institute of Science, Bangalore, 560012, India
| | - Himanshu Kumar Khuntia
- Center for Sustainable Technologies, Indian Institute of Science, Bangalore, 560012, India.
| | - Niranjan Mukherjee
- Center for Sustainable Technologies, Indian Institute of Science, Bangalore, 560012, India
| | - R Aniruddha
- Center for Sustainable Technologies, Indian Institute of Science, Bangalore, 560012, India
| | - J R Mudakavi
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Preeti Thimmaraju
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
13
|
Theves M, Taktikos J, Zaburdaev V, Stark H, Beta C. A bacterial swimmer with two alternating speeds of propagation. Biophys J 2014; 105:1915-24. [PMID: 24138867 DOI: 10.1016/j.bpj.2013.08.047] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 08/18/2013] [Accepted: 08/22/2013] [Indexed: 11/29/2022] Open
Abstract
We recorded large data sets of swimming trajectories of the soil bacterium Pseudomonas putida. Like other prokaryotic swimmers, P. putida exhibits a motion pattern dominated by persistent runs that are interrupted by turning events. An in-depth analysis of their swimming trajectories revealed that the majority of the turning events is characterized by an angle of ϕ1 = 180° (reversals). To a lesser extent, turning angles of ϕ2 = 0° are also found. Remarkably, we observed that, upon a reversal, the swimming speed changes by a factor of two on average-a prominent feature of the motion pattern that, to our knowledge, has not been reported before. A theoretical model, based on the experimental values for the average run time and the rotational diffusion, recovers the mean-square displacement of P. putida if the two distinct swimming speeds are taken into account. Compared to a swimmer that moves with a constant intermediate speed, the mean-square displacement is strongly enhanced. We furthermore observed a negative dip in the directional autocorrelation at intermediate times, a feature that is only recovered in an extended model, where the nonexponential shape of the run-time distribution is taken into account.
Collapse
Affiliation(s)
- Matthias Theves
- Institut für Physik und Astronomie, Universität Potsdam, Potsdam, Germany
| | | | | | | | | |
Collapse
|
14
|
Ping L, Birkenbeil J, Monajembashi S. Swimming behavior of the monotrichous bacterium Pseudomonas fluorescens SBW25. FEMS Microbiol Ecol 2013; 86:36-44. [PMID: 23346905 DOI: 10.1111/1574-6941.12076] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/20/2013] [Accepted: 01/21/2013] [Indexed: 11/26/2022] Open
Abstract
Motility is an important trait for some bacteria living in nature and the analyses of it can provide important information on bacterial ecology. While the swimming behavior of peritrichous bacteria such as Escherichia coli has been extensively studied, the monotrichous bacteria such as the soil inhabiting and plant growth promoting bacterium Pseudmonas fluorescens is not very well characterized. Unlike E. coli that is propelled by a left-handed flagella bundle, P. fluorescens SBW25 swims several times faster by rotating a right-handed flagellum. Its swimming pattern is the most sophisticated known so far: it swims forward (run) and backward (backup); it can swiftly 'turn' the run directions or 'reorient' at run-backup transitions; it can 'flip' the cell body continuously or 'hover' in the milieu without translocation. The bacteria swam in circles near flat surfaces with reduced velocity and increased turn frequency. The viscous drag load due to wall effect potentially accounts for the circular motion and velocity change, but not the turn frequency. The flagellation and swimming behavior of P. fluorescens SBW25 show some similarity to Caulobacter, a fresh-water inhabitant, while the complex swimming pattern might be an adaptation to the geometrically restricted rhizo- and phyllospheres.
Collapse
Affiliation(s)
- Liyan Ping
- Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | | | | |
Collapse
|