1
|
Booth M, Spicer A, Kiparissides A. Shedding light on phototrophic biomass production of Chlorella variabilis: The importance of dissolved CO2, light intensity and duty cycle. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
2
|
Chitin synthesis by Chlorella cells infected by chloroviruses: Enhancement by adopting a slow-growing virus and treatment with aphidicolin. J Biosci Bioeng 2018; 125:311-315. [DOI: 10.1016/j.jbiosc.2017.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/26/2017] [Accepted: 10/01/2017] [Indexed: 11/22/2022]
|
3
|
Van Etten JL, Agarkova I, Dunigan DD, Tonetti M, De Castro C, Duncan GA. Chloroviruses Have a Sweet Tooth. Viruses 2017; 9:E88. [PMID: 28441734 PMCID: PMC5408694 DOI: 10.3390/v9040088] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/13/2017] [Accepted: 04/14/2017] [Indexed: 01/16/2023] Open
Abstract
Chloroviruses are large double-stranded DNA (dsDNA) viruses that infect certain isolates of chlorella-like green algae. They contain up to approximately 400 protein-encoding genes and 16 transfer RNA (tRNA) genes. This review summarizes the unexpected finding that many of the chlorovirus genes encode proteins involved in manipulating carbohydrates. These include enzymes involved in making extracellular polysaccharides, such as hyaluronan and chitin, enzymes that make nucleotide sugars, such as GDP-L-fucose and GDP-D-rhamnose and enzymes involved in the synthesis of glycans attached to the virus major capsid proteins. This latter process differs from that of all other glycoprotein containing viruses that traditionally use the host endoplasmic reticulum and Golgi machinery to synthesize and transfer the glycans.
Collapse
Affiliation(s)
- James L Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900, USA.
| | - Irina Agarkova
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900, USA.
| | - David D Dunigan
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900, USA.
| | - Michela Tonetti
- Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova Viale Benedetto XV/1, 16132 Genova, Italy.
| | - Christina De Castro
- Department of Agricultural Sciences, University of Napoli, Via Università 100, 80055 Portici, NA, Italy.
| | - Garry A Duncan
- Department of Biology, Nebraska Wesleyan University, Lincoln, NE 68504-2796, USA.
| |
Collapse
|
4
|
de Oliveira JD, Carvalho LS, Gomes AMV, Queiroz LR, Magalhães BS, Parachin NS. Genetic basis for hyper production of hyaluronic acid in natural and engineered microorganisms. Microb Cell Fact 2016; 15:119. [PMID: 27370777 PMCID: PMC4930576 DOI: 10.1186/s12934-016-0517-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/22/2016] [Indexed: 11/10/2022] Open
Abstract
Hyaluronic acid, or HA, is a rigid and linear biopolymer belonging to the class of the glycosaminoglycans, and composed of repeating units of the monosaccharides glucuronic acid and N-acetylglucosamine. HA has multiple important functions in the human body, due to its properties such as bio-compatibility, lubricity and hydrophilicity, it is widely applied in the biomedical, food, health and cosmetic fields. The growing interest in this molecule has motivated the discovery of new ways of obtaining it. Traditionally, HA has been extracted from rooster comb-like animal tissues. However, due to legislation laws HA is now being produced by bacterial fermentation using Streptococcus zooepidemicus, a natural producer of HA, despite it being a pathogenic microorganism. With the expansion of new genetic engineering technologies, the use of organisms that are non-natural producers of HA has also made it possible to obtain such a polymer. Most of the published reviews have focused on HA formulation and its effects on different body tissues, whereas very few of them describe the microbial basis of HA production. Therefore, for the first time this review has compiled the molecular and genetic bases for natural HA production in microorganisms together with the main strategies employed for heterologous production of HA.
Collapse
Affiliation(s)
- Juliana Davies de Oliveira
- Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, CEP 70.790-160, Brazil
| | - Lucas Silva Carvalho
- Integra Bioprocessos e Análises, Campus Universitário Darcy Ribeiro, Edifício CDT, Sala AT-36/37, Brasília, DF, CEP 70.904-970, Brazil
| | - Antônio Milton Vieira Gomes
- Grupo de Engenharia Metabólica Aplicada a Bioprocessos, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, CEP 70.790-900, Brazil
| | - Lúcio Rezende Queiroz
- Grupo de Engenharia Metabólica Aplicada a Bioprocessos, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, CEP 70.790-900, Brazil
| | - Beatriz Simas Magalhães
- Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, CEP 70.790-160, Brazil.,Integra Bioprocessos e Análises, Campus Universitário Darcy Ribeiro, Edifício CDT, Sala AT-36/37, Brasília, DF, CEP 70.904-970, Brazil
| | - Nádia Skorupa Parachin
- Grupo de Engenharia Metabólica Aplicada a Bioprocessos, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, CEP 70.790-900, Brazil.
| |
Collapse
|