1
|
Dias AHS, Cao Y, Skaf MS, de Visser SP. Machine learning-aided engineering of a cytochrome P450 for optimal bioconversion of lignin fragments. Phys Chem Chem Phys 2024; 26:17577-17587. [PMID: 38884162 DOI: 10.1039/d4cp01282h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Using machine learning, molecular dynamics simulations, and density functional theory calculations we gain insight into the selectivity patterns of substrate activation by the cytochromes P450. In nature, the reactions catalyzed by the P450s lead to the biodegradation of xenobiotics, but recent work has shown that fungi utilize P450s for the activation of lignin fragments, such as monomer and dimer units. These fragments often are the building blocks of valuable materials, including drug molecules and fragrances, hence a highly selective biocatalyst that can produce these compounds in good yield with high selectivity would be an important step in biotechnology. In this work a detailed computational study is reported on two reaction channels of two P450 isozymes, namely the O-deethylation of guaethol by CYP255A and the O-demethylation versus aromatic hydroxylation of p-anisic acid by CYP199A4. The studies show that the second-coordination sphere plays a major role in substrate binding and positioning, heme access, and in the selectivity patterns. Moreover, the local environment affects the kinetics of the reaction through lowering or raising barrier heights. Furthermore, we predict a site-selective mutation for highly specific reaction channels for CYP199A4.
Collapse
Affiliation(s)
- Artur Hermano Sampaio Dias
- Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
- Institute of Chemistry and Centre for Computing in Engineering & Sciences, University of Campinas, Campinas, SP 13083-861, Brazil
| | - Yuanxin Cao
- Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - Munir S Skaf
- Institute of Chemistry and Centre for Computing in Engineering & Sciences, University of Campinas, Campinas, SP 13083-861, Brazil
| | - Sam P de Visser
- Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
2
|
Tonegawa S, Ishii K, Kaneko H, Habe H, Furuya T. Discovery of diphenyl ether-degrading Streptomyces strains by direct screening based on ether bond-cleaving activity. J Biosci Bioeng 2023; 135:474-479. [PMID: 36973095 DOI: 10.1016/j.jbiosc.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023]
Abstract
Diphenyl ethers (DEs), which are widely used in the agricultural and chemical industries, have become hazardous contaminants in the environment. Although several DE-degrading bacteria have been reported, discovering new types of such microorganisms could enhance understanding of the degradation mechanism in the environment. In this study, we used a direct screening method based on detection of ether bond-cleaving activity to screen for microorganisms that degrade 4,4'-dihydroxydiphenyl ether (DHDE) as a model DE. Microorganisms isolated from soil samples were incubated with DHDE, and strains producing hydroquinone via ether bond cleavage were selected using hydroquinone-sensitive Rhodanine reagent. This screening procedure resulted in the isolation of 3 bacteria and 2 fungi that transform DHDE. Interestingly, all of the isolated bacteria belonged to one genus, Streptomyces. To our knowledge, these are the first microorganisms of the genus Streptomyces shown to degrade a DE. Streptomyces sp. TUS-ST3 exhibited high and stable DHDE-degrading activity. HPLC, LC-MS, and GC-MS analyses revealed that strain TUS-ST3 converts DHDE to its hydroxylated analogue and generates hydroquinone as an ether bond-cleavage product. Strain TUS-ST3 also transformed DEs other than DHDE. In addition, glucose-grown TUS-ST3 cells began to transform DHDE after incubation with this compound for 12 h, and produced 75 μM hydroquinone in 72 h. These activities of streptomycetes may play an important role in DE degradation in the environment. We also report the whole genome sequence of strain TUS-ST3.
Collapse
Affiliation(s)
- Satoshi Tonegawa
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kanako Ishii
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hiroki Kaneko
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hiroshi Habe
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Toshiki Furuya
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
3
|
Kawana H, Miwa T, Honda Y, Furuya T. Sustainable Approach for Peroxygenase-Catalyzed Oxidation Reactions Using Hydrogen Peroxide Generated from Spent Coffee Grounds and Tea Leaf Residues. ACS OMEGA 2022; 7:20259-20266. [PMID: 35721909 PMCID: PMC9201881 DOI: 10.1021/acsomega.2c02186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/24/2022] [Indexed: 05/05/2023]
Abstract
Peroxygenases are promising catalysts for use in the oxidation of chemicals as they catalyze the direct oxidation of a variety of compounds under ambient conditions using hydrogen peroxide (H2O2) as an oxidant. Although the use of peroxygenases provides a simple method for oxidation of chemicals, the anthraquinone process currently used to produce H2O2 requires significant energy input and generates considerable waste, which negatively affects process sustainability and production costs. Thus, generating H2O2 for peroxygenases on site using an environmentally benign method would be advantageous. Here, we utilized spent coffee grounds (SCGs) and tea leaf residues (TLRs) for the production of H2O2. These waste biomass products reacted with molecular oxygen and effectively generated H2O2 in sodium phosphate buffer. The resulting H2O2 was utilized by the bacterial P450 peroxygenase, CYP152A1. Both SCG-derived and TLR-derived H2O2 promoted the CYP152A1-catalyzed oxidation of 4-methoxy-1-naphthol to Russig's blue as a model reaction. In addition, when CYP152A1 was incubated with styrene, the SCG and TLR solutions enabled the synthesis of styrene oxide and phenylacetaldehyde. This new approach using waste biomass provides a simple, cost-effective, and sustainable oxidation method that should be readily applicable to other peroxygenases for the synthesis of a variety of valuable chemicals.
Collapse
Affiliation(s)
- Hideaki Kawana
- Faculty
of Science and Technology, Tokyo University
of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
| | - Toru Miwa
- Faculty
of Science and Technology, Tokyo University
of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
| | - Yuki Honda
- Department
of Chemistry, Biology, and Environmental Science, Faculty of Science, Nara Women’s University, Kitauoyanishi-machi, Nara 630-8506, Japan
| | - Toshiki Furuya
- Faculty
of Science and Technology, Tokyo University
of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
| |
Collapse
|
4
|
Oya S, Tonegawa S, Nakagawa H, Habe H, Furuya T. Isolation and characterization of microorganisms capable of cleaving the ether bond of 2-phenoxyacetophenone. Sci Rep 2022; 12:2874. [PMID: 35190591 PMCID: PMC8861056 DOI: 10.1038/s41598-022-06816-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/07/2022] [Indexed: 11/08/2022] Open
Abstract
Lignin is a heterogeneous aromatic polymer and major component of plant cell walls. The β-O-4 alkyl aryl ether is the most abundant linkage within lignin. Given that lignin is effectively degraded on earth, as yet unknown ether bond-cleaving microorganisms could still exist in nature. In this study, we searched for microorganisms that transform 2-phenoxyacetophenone (2-PAP), a model compound for the β-O-4 linkage in lignin, by monitoring ether bond cleavage. We first isolated microorganisms that grew on medium including humic acid (soil-derived organic compound) as a carbon source. The isolated microorganisms were subsequently subjected to colorimetric assay for 2-PAP ether bond-cleaving activity; cells of the isolated strains were incubated with 2-PAP, and strains producing phenol via ether bond cleavage were selected using phenol-sensitive Gibbs reagent. This screening procedure enabled the isolation of various 2-PAP-transforming microorganisms, including 7 bacteria (genera: Acinetobacter, Cupriavidus, Nocardioides, or Streptomyces) and 1 fungus (genus: Penicillium). To our knowledge, these are the first microorganisms demonstrated to cleave the ether bond of 2-PAP. One Gram-negative bacterium, Acinetobacter sp. TUS-SO1, was characterized in detail. HPLC and GC-MS analyses revealed that strain TUS-SO1 oxidatively and selectively cleaves the ether bond of 2-PAP to produce phenol and benzoate. These results indicate that the transformation mechanism differs from that involved in reductive β-etherase, which has been well studied. Furthermore, strain TUS-SO1 efficiently transformed 2-PAP; glucose-grown TUS-SO1 cells converted 1 mM 2-PAP within only 12 h. These microorganisms might play important roles in the degradation of lignin-related compounds in nature.
Collapse
Affiliation(s)
- Saki Oya
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Satoshi Tonegawa
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Hirari Nakagawa
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Hiroshi Habe
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Toshiki Furuya
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
5
|
Chao RR, Lau ICK, Coleman T, Churchman LR, Child SA, Lee JHZ, Bruning JB, De Voss JJ, Bell SG. The stereoselective oxidation of para-substituted benzenes by a cytochrome P450 biocatalyst. Chemistry 2021; 27:14765-14777. [PMID: 34350662 DOI: 10.1002/chem.202102757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Indexed: 11/10/2022]
Abstract
The serine 244 to aspartate (S244D) variant of the cytochrome P450 enzyme CYP199A4 was used to expand its substrate range beyond benzoic acids. Substrates, in which the carboxylate group of the benzoic acid moiety is replaced, were oxidised with high activity by the S244D mutant (product formation rates > 60 nmol.(nmol-CYP) -1 .min -1 ) and with total turnover numbers of up to 20,000. Ethyl α-hydroxylation was more rapid than methyl oxidation, styrene epoxidation and S -oxidation. The S244D mutant catalysed the ethyl hydroxylation, epoxidation and sulfoxidation reactions with an excess of one stereoisomer (in some instances up to >98%). The crystal structure of 4-methoxybenzoic acid-bound CYP199A4 S244D showed that the active site architecture and the substrate orientation were similar to that of the WT enzyme. Overall, this work demonstrates that CYP199A4 can catalyse the stereospecific hydroxylation, epoxidation or sulfoxidation of substituted benzene substrates under mild conditions resulting in more sustainable transformations using this heme monooxygenase enzyme.
Collapse
Affiliation(s)
- Rebecca R Chao
- The University of Adelaide, Department of Chemistry, AUSTRALIA
| | - Ian C-K Lau
- The University of Adelaide, Department of Chemistry, AUSTRALIA
| | - Tom Coleman
- The University of Adelaide, Department of Chemistry, AUSTRALIA
| | - Luke R Churchman
- The University of Queensland, School of Chemistry and Molecular Biosciences, AUSTRALIA
| | - Stella A Child
- The University of Adelaide, Department of Chemistry, AUSTRALIA
| | - Joel H Z Lee
- The University of Adelaide, The Department of Chemistry, AUSTRALIA
| | - John B Bruning
- The University of Adelaide, School of Biological Sciences, AUSTRALIA
| | - James J De Voss
- The University of Queensland, School of Chemistry and Molecular Biosciences, AUSTRALIA
| | - Stephen Graham Bell
- University of Adelaide, School of Chemistry & Physics, North Terrace, 5005, Adelaide, AUSTRALIA
| |
Collapse
|
6
|
Li C, Zhang R, Wang J, Wilson LM, Yan Y. Protein Engineering for Improving and Diversifying Natural Product Biosynthesis. Trends Biotechnol 2020; 38:729-744. [PMID: 31954530 PMCID: PMC7274900 DOI: 10.1016/j.tibtech.2019.12.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/26/2019] [Accepted: 12/06/2019] [Indexed: 01/26/2023]
Abstract
Proteins found in nature have traditionally been the most frequently used biocatalysts to produce numerous natural products ranging from commodity chemicals to pharmaceuticals. Protein engineering has emerged as a powerful biotechnological toolbox in the development of metabolic engineering, particularly for the biosynthesis of natural products. Recently, protein engineering has become a favored method to improve enzymatic activity, increase enzyme stability, and expand product spectra in natural product biosynthesis. This review summarizes recent advances and typical strategies in protein engineering, highlighting the paramount role of protein engineering in improving and diversifying the biosynthesis of natural products. Future prospects and research directions are also discussed.
Collapse
Affiliation(s)
- Chenyi Li
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Ruihua Zhang
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Jian Wang
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Lauren Marie Wilson
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Yajun Yan
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
7
|
Li X, Cong Y, Ma M, You ZN, Gao B, Zhang JZH, Zhang L. An Energy Optimization Strategy Based on the Perfect Conformation of Prolyl Endopeptidase for Improving Catalytic Efficiency. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5129-5137. [PMID: 32297517 DOI: 10.1021/acs.jafc.0c00731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Prolyl endopeptidases (PEPs) hydrolyze proteins to yield bioactive peptides and are effective in the treatment of celiac disease. However, the catalytic efficiency of PEPs still has the potential to be improved, which could further strengthen their industrial and therapeutic applications. Herein, a novel rational design strategy based on a "near-attack conformation" of the catalytic state of PEP was adopted. Constrained dynamic simulations were applied, followed by the virtual screening of potentially favorable mutants according to their binding free energy. We redesigned Sphaerobacter thermophiles PEP with high-temperature activity/stability, a wide range of pH stabilities, and high proline specificity. As a result, the kcat value of two PEP mutants (I462W and Q560Y) increased by 208.2 and 150.1%, respectively, and the kcat/KM increased by 32.7 and 6.3%, respectively. These data revealed that the PEP mutants had improved catalytic efficiency and that our strategy can be applied for enzyme engineering.
Collapse
Affiliation(s)
- Xiaolin Li
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yalong Cong
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Mingzhe Ma
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Zhi-Neng You
- School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Bei Gao
- School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - John Z H Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Lujia Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| |
Collapse
|
8
|
Klenk JM, Ertl J, Rapp L, Fischer MP, Hauer B. Expression and characterization of the benzoic acid hydroxylase CYP199A25 from Arthrobacter sp. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Klenk JM, Fischer MP, Dubiel P, Sharma M, Rowlinson B, Grogan G, Hauer B. Identification and characterization of cytochrome P450 1232A24 and 1232F1 from Arthrobacter sp. and their role in the metabolic pathway of papaverine. J Biochem 2019; 166:51-66. [DOI: 10.1093/jb/mvz010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/12/2019] [Indexed: 11/13/2022] Open
Abstract
AbstractCytochrome P450 monooxygenases (P450s) play crucial roles in the cell metabolism and provide an unsurpassed diversity of catalysed reactions. Here, we report the identification and biochemical characterization of two P450s from Arthrobacter sp., a Gram-positive organism known to degrade the opium alkaloid papaverine. Combining phylogenetic and genomic analysis suggested physiological roles for P450s in metabolism and revealed potential gene clusters with redox partners facilitating the reconstitution of the P450 activities in vitro. CYP1232F1 catalyses the para demethylation of 3,4-dimethoxyphenylacetic acid to homovanillic acid while CYP1232A24 continues demethylation to 3,4-dihydroxyphenylacetic acid. Interestingly, the latter enzyme is also able to perform both demethylation steps with preference for the meta position. The crystal structure of CYP1232A24, which shares only 29% identity to previous published structures of P450s helped to rationalize the preferred demethylation specificity for the meta position and also the broader substrate specificity profile. In addition to the detailed characterization of the two P450s using their physiological redox partners, we report the construction of a highly active whole-cell Escherichia coli biocatalyst expressing CYP1232A24, which formed up to 1.77 g l−1 3,4-dihydroxyphenylacetic acid. Our results revealed the P450s’ role in the metabolic pathway of papaverine enabling further investigation and application of these biocatalysts.
Collapse
Affiliation(s)
- Jan M Klenk
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, Stuttgart, Germany
| | - Max-Philipp Fischer
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, Stuttgart, Germany
| | - Paulina Dubiel
- Department of Chemistry, University of York, Heslington, York, UK
| | - Mahima Sharma
- Department of Chemistry, University of York, Heslington, York, UK
| | | | - Gideon Grogan
- Department of Chemistry, University of York, Heslington, York, UK
| | - Bernhard Hauer
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, Stuttgart, Germany
| |
Collapse
|
10
|
Iizaka Y, Takeda R, Senzaki Y, Fukumoto A, Anzai Y. Cytochrome P450 enzyme RosC catalyzes a multistep oxidation reaction to form the non-active compound 20-carboxyrosamicin. FEMS Microbiol Lett 2017; 364:3861254. [DOI: 10.1093/femsle/fnx110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 06/01/2017] [Indexed: 11/14/2022] Open
|
11
|
Mrázková J, Malinovská L, Wimmerová M. Step-By-Step In Vitro Mutagenesis: Lessons From Fucose-Binding Lectin PA-IIL. Methods Mol Biol 2017; 1498:399-419. [PMID: 27709592 DOI: 10.1007/978-1-4939-6472-7_28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Site-directed mutagenesis is a powerful technique which is used to understand the basis of interactions between proteins and their binding partners, as well as to modify these interactions. Methods of rational design that are based on detailed knowledge of the structure of a protein of interest are often used for preliminary investigations of the possible outcomes which can result from the practical application of site-directed mutagenesis. Also, random mutagenesis can be used in tandem with site-directed mutagenesis for an examination of amino acid "hotspots."Lectins are sugar-binding proteins which, among other functions, mediate the recognition of host cells by a pathogen and its adhesion to the host cell surface. Hence, lectins and their binding properties are studied and engineered using site-directed mutagenesis.In this chapter, we describe a site-directed mutagenesis method used for investigating the sugar binding pattern of the PA-IIL lectin from the pathogenic bacterium Pseudomonas aeruginosa. Moreover, procedures for the production and purification of PA-IIL mutants are described, and several basic methods for characterizing the mutants are discussed.
Collapse
Affiliation(s)
- Jana Mrázková
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37, Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská, 611 37, Brno, Czech Republic
| | - Lenka Malinovská
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Michaela Wimmerová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37, Brno, Czech Republic. .,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská, 611 37, Brno, Czech Republic. .,Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
| |
Collapse
|
12
|
Chao RR, Lau ICK, De Voss JJ, Bell SG. Modification of an Enzyme Biocatalyst for the Efficient and Selective Oxidative Demethylation ofpara-Substituted Benzene Derivatives. ChemCatChem 2016. [DOI: 10.1002/cctc.201600951] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rebecca R. Chao
- Department of Chemistry; University Adelaide; Adelaide SA 5005 Australia
| | - Ian C.-K. Lau
- Department of Chemistry; University Adelaide; Adelaide SA 5005 Australia
| | - James J. De Voss
- School of Chemistry and Molecular Bioscience; University of Queensland; St Lucia Qld 4072 Australia
| | - Stephen G. Bell
- Department of Chemistry; University Adelaide; Adelaide SA 5005 Australia
| |
Collapse
|
13
|
Coleman T, Chao RR, De Voss JJ, Bell SG. The importance of the benzoic acid carboxylate moiety for substrate recognition by CYP199A4 from Rhodopseudomonas palustris HaA2. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:667-675. [DOI: 10.1016/j.bbapap.2016.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 11/25/2022]
|
14
|
Chao RR, De Voss JJ, Bell SG. The efficient and selective catalytic oxidation of para-substituted cinnamic acid derivatives by the cytochrome P450 monooxygenase, CYP199A4. RSC Adv 2016. [DOI: 10.1039/c6ra11025h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cytochrome P450 enzyme, CYP199A4 oxidised para substituted alkyloxy- and alkyl-cinnamic acids, with high product formation activity.
Collapse
Affiliation(s)
| | - James J. De Voss
- School of Chemistry and Molecular Biosciences
- University of Queensland
- Brisbane
- Australia
| | | |
Collapse
|
15
|
Coleman T, Chao RR, Bruning JB, De Voss JJ, Bell SG. CYP199A4 catalyses the efficient demethylation and demethenylation of para-substituted benzoic acid derivatives. RSC Adv 2015. [DOI: 10.1039/c5ra08730a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
CYP199A4, a cytochrome P450 enzyme from Rhodopseudomonas palustris HaA2, is able to efficiently demethylate a range of benzoic acids at the para-position. It can also catalyse demethenylation reactions.
Collapse
Affiliation(s)
- Tom Coleman
- Department of Chemistry
- University of Adelaide
- Australia
| | | | - John B. Bruning
- Department of Molecular and Cellular Biology
- University of Adelaide
- Adelaide
- Australia
| | - James J. De Voss
- School of Chemistry and Molecular Biosciences
- University of Queensland
- Brisbane
- Australia
| | | |
Collapse
|