1
|
Chen J, Huang B, Liu Y, Sun X, Xiong L, Zhu T, Yao X, Hu H, Liu H. Characterization of a novel cold-active β-Xylosidase from Parabacteroides distasonis and its synergistic hydrolysis of beechwood xylan. Int J Biol Macromol 2025; 284:137895. [PMID: 39571862 DOI: 10.1016/j.ijbiomac.2024.137895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/04/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
Although β-xylosidases have broad applications in fields such as food and medicine, there is limited research on cold-active β-xylosidases. This study cloned a novel cold-active β-xylosidase XYL13 from Parabacteroides distasonis. The purified XYL13 exhibited the highest activity at 40 °C, with 42 % and 25 % of its maximum activity at 4 °C and 0 °C, respectively. Meanwhile, XYL13 predominantly produces X1 while degrading X2-X6. Additionally, XYL13 showed a significant synergistic effect (18.5-fold) with endo-xylanase for degrading beechwood xylan at low temperatures. Moreover, the site-directed mutagenesis assay indicated that Ile269 and Glu621 are essential catalytic sites of XYL13. Finally, molecular docking showed that XYL13 has an excellent binding effect with X2-X6, verifying that XYL13 can effectively cut X2-X6 to produce xylose. These results highlight the potential of cold-adapted XYL13 from P. distasonis for application in the food industry.
Collapse
Affiliation(s)
- Jin Chen
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, No.16, Huangjiahu West Road, Hongshan district, Wuhan, Hubei 430065, China; Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Bisheng Huang
- School of Pharmacy, Hubei University of Chinese Medicine, No.16, Huangjiahu West Road, Hongshan district, Wuhan, Hubei 430065, China; Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Ye Liu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, No.16, Huangjiahu West Road, Hongshan district, Wuhan, Hubei 430065, China; Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xiongjie Sun
- School of Pharmacy, Hubei University of Chinese Medicine, No.16, Huangjiahu West Road, Hongshan district, Wuhan, Hubei 430065, China; Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Lei Xiong
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, No.16, Huangjiahu West Road, Hongshan district, Wuhan, Hubei 430065, China; Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Tianxiang Zhu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, No.16, Huangjiahu West Road, Hongshan district, Wuhan, Hubei 430065, China; Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xiaowei Yao
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, No.16, Huangjiahu West Road, Hongshan district, Wuhan, Hubei 430065, China; Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Haiming Hu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, No.16, Huangjiahu West Road, Hongshan district, Wuhan, Hubei 430065, China; Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China.
| | - Hongtao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, No.16, Huangjiahu West Road, Hongshan district, Wuhan, Hubei 430065, China; Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China.
| |
Collapse
|
2
|
Salzano F, Aulitto M, Fiorentino G, Cannella D, Peeters E, Limauro D. A novel endo-1,4-β-xylanase from Alicyclobacillus mali FL18: Biochemical characterization and its synergistic action with β-xylosidase in hemicellulose deconstruction. Int J Biol Macromol 2024; 264:130550. [PMID: 38432267 DOI: 10.1016/j.ijbiomac.2024.130550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
A novel endo-1,4-β-xylanase-encoding gene was identified in Alicyclobacillus mali FL18 and the recombinant protein, named AmXyn, was purified and biochemically characterized. The monomeric enzyme worked optimally at pH 6.6 and 80 °C on beechwood xylan with a specific activity of 440.00 ± 0.02 U/mg and a good catalytic efficiency (kcat/KM = 91.89 s-1mLmg-1). In addition, the enzyme did not display any activity on cellulose, suggesting a possible application in paper biobleaching processes. To develop an enzymatic mixture for xylan degradation, the association between AmXyn and the previously characterized β-xylosidase AmβXyl, deriving from the same microorganism, was assessed. The two enzymes had similar temperature and pH optima and showed the highest degree of synergy when AmXyn and AmβXyl were added sequentially to beechwood xylan, making this mixture cost-competitive and suitable for industrial use. Therefore, this enzymatic cocktail was also employed for the hydrolysis of wheat bran residue. TLC and HPAEC-PAD analyses revealed a high conversion rate to xylose (91.56 %), placing AmXyn and AmβXyl among the most promising biocatalysts for the saccharification of agricultural waste.
Collapse
Affiliation(s)
- Flora Salzano
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia, 80126 Naples, Italy
| | - Martina Aulitto
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia, 80126 Naples, Italy
| | - Gabriella Fiorentino
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia, 80126 Naples, Italy
| | - David Cannella
- PhotoBiocatalysis Unit, Biomass Transformation lab - BTL, and Crop production and Biostimulation Lab - CPBL, Universitè libre de Brussels, ULB, Belgium
| | - Eveline Peeters
- Department of Bioengineering Sciences Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Danila Limauro
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia, 80126 Naples, Italy.
| |
Collapse
|
3
|
Ravn JL, Ristinmaa AS, Coleman T, Larsbrink J, Geijer C. Yeasts Have Evolved Divergent Enzyme Strategies To Deconstruct and Metabolize Xylan. Microbiol Spectr 2023; 11:e0024523. [PMID: 37098941 PMCID: PMC10269524 DOI: 10.1128/spectrum.00245-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/08/2023] [Indexed: 04/27/2023] Open
Abstract
Together with bacteria and filamentous fungi, yeasts actively take part in the global carbon cycle. Over 100 yeast species have been shown to grow on the major plant polysaccharide xylan, which requires an arsenal of carbohydrate active enzymes. However, which enzymatic strategies yeasts use to deconstruct xylan and what specific biological roles they play in its conversion remain unclear. In fact, genome analyses reveal that many xylan-metabolizing yeasts lack expected xylanolytic enzymes. Guided by bioinformatics, we have here selected three xylan-metabolizing ascomycetous yeasts for in-depth characterization of growth behavior and xylanolytic enzymes. The savanna soil yeast Blastobotrys mokoenaii displays superior growth on xylan thanks to an efficient secreted glycoside hydrolase family 11 (GH11) xylanase; solving its crystal structure revealed a high similarity to xylanases from filamentous fungi. The termite gut-associated Scheffersomyces lignosus, in contrast grows more slowly, and its xylanase activity was found to be mainly cell surface-associated. The wood-isolated Wickerhamomyces canadensis, surprisingly, could not utilize xylan as the sole carbon source without the addition of xylooligosaccharides or exogenous xylanases or even co-culturing with B. mokoenaii, suggesting that W. canadensis relies on initial xylan hydrolysis by neighboring cells. Furthermore, our characterization of a novel W. canadensis GH5 subfamily 49 (GH5_49) xylanase represents the first demonstrated activity in this subfamily. Our collective results provide new information on the variable xylanolytic systems evolved by yeasts and their potential roles in natural carbohydrate conversion. IMPORTANCE Microbes that take part in the degradation of the polysaccharide xylan, the major hemicellulose component in plant biomass, are equipped with specialized enzyme machineries to hydrolyze the polymer into monosaccharides for further metabolism. However, despite being found in virtually every habitat, little is known of how yeasts break down and metabolize xylan and what biological role they may play in its turnover in nature. Here, we have explored the enzymatic xylan deconstruction strategies of three underexplored yeasts from diverse environments, Blastobotrys mokoenaii from soil, Scheffersomyces lignosus from insect guts, and Wickerhamomyces canadensis from trees, and we show that each species has a distinct behavior regarding xylan conversion. These findings may be of high relevance for future design and development of microbial cell factories and biorefineries utilizing renewable plant biomass.
Collapse
Affiliation(s)
- Jonas L. Ravn
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | | | - Tom Coleman
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Johan Larsbrink
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Wallenberg Wood Science Center, Chalmers University of Technology, Gothenburg, Sweden
| | - Cecilia Geijer
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
4
|
Li N, Zhang R, Zhou J, Huang Z. Structures, Biochemical Characteristics, and Functions of β-Xylosidases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7961-7976. [PMID: 37192316 DOI: 10.1021/acs.jafc.3c01425] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The complete degradation of abundant xylan derived from plants requires the participation of β-xylosidases to produce the xylose which can be converted to xylitol, ethanol, and other valuable chemicals. Some phytochemicals can also be hydrolyzed by β-xylosidases into bioactive substances, such as ginsenosides, 10-deacetyltaxol, cycloastragenol, and anthocyanidins. On the contrary, some hydroxyl-containing substances such as alcohols, sugars, and phenols can be xylosylated by β-xylosidases into new chemicals such as alkyl xylosides, oligosaccharides, and xylosylated phenols. Thus, β-xylosidases shows great application prospects in food, brewing, and pharmaceutical industries. This review focuses on the molecular structures, biochemical properties, and bioactive substance transformation function of β-xylosidases derived from bacteria, fungi, actinomycetes, and metagenomes. The molecular mechanisms of β-xylosidases related to the properties and functions are also discussed. This review will serve as a reference for the engineering and application of β-xylosidases in food, brewing, and pharmaceutical industries.
Collapse
Affiliation(s)
- Na Li
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Kunming 650500, People's Republic of China
| | - Rui Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Kunming 650500, People's Republic of China
| | - Junpei Zhou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Kunming 650500, People's Republic of China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Kunming 650500, People's Republic of China
| |
Collapse
|
5
|
Sohail M, Barzkar N, Michaud P, Tamadoni Jahromi S, Babich O, Sukhikh S, Das R, Nahavandi R. Cellulolytic and Xylanolytic Enzymes from Yeasts: Properties and Industrial Applications. Molecules 2022; 27:3783. [PMID: 35744909 PMCID: PMC9229053 DOI: 10.3390/molecules27123783] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022] Open
Abstract
Lignocellulose, the main component of plant cell walls, comprises polyaromatic lignin and fermentable materials, cellulose and hemicellulose. It is a plentiful and renewable feedstock for chemicals and energy. It can serve as a raw material for the production of various value-added products, including cellulase and xylanase. Cellulase is essentially required in lignocellulose-based biorefineries and is applied in many commercial processes. Likewise, xylanases are industrially important enzymes applied in papermaking and in the manufacture of prebiotics and pharmaceuticals. Owing to the widespread application of these enzymes, many prokaryotes and eukaryotes have been exploited to produce cellulase and xylanases in good yields, yet yeasts have rarely been explored for their plant-cell-wall-degrading activities. This review is focused on summarizing reports about cellulolytic and xylanolytic yeasts, their properties, and their biotechnological applications.
Collapse
Affiliation(s)
- Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan;
| | - Noora Barzkar
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas 3995, Iran
| | - Philippe Michaud
- Institute Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000 Clermont-Ferrand, France;
| | - Saeid Tamadoni Jahromi
- Persian Gulf and Oman Sea Ecology Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas 3995, Iran
| | - Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia; (O.B.); (S.S.)
| | - Stanislav Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia; (O.B.); (S.S.)
| | - Rakesh Das
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), 1433 Aas, Norway;
| | - Reza Nahavandi
- Animal Science Research Institute of Iran (ASRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj 8361, Iran;
| |
Collapse
|
6
|
Huy ND, My Le NT, Chew KW, Park SM, Show PL. Characterization of a recombinant laccase from Fusarium oxysporum HUIB02 for biochemical application on dyes removal. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107958] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Zhao B, Al Rasheed H, Ali I, Hu S. Efficient enzymatic saccharification of alkaline and ionic liquid-pretreated bamboo by highly active extremozymes produced by the co-culture of two halophilic fungi. BIORESOURCE TECHNOLOGY 2021; 319:124115. [PMID: 32949831 DOI: 10.1016/j.biortech.2020.124115] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Herein, we studied two strains of halophilic fungi (Aspergillus flavus and Aspergillus penicillioides) as potential potent sources of hydrolases under solid-state fermentation conditions. We found that the co-culture of these two fungal species was associated with maximal CMCase, FPase, xylanase, and β-xylosidase activity under optimized fermentation conditions. These enzymes functioned optimally at pH values from 9.0 to 10.0, at temperatures from 50 °C to 60 °C, and in the presence of 15-20% NaCl. These enzymes were also stable in metal salt solutions and the presence of ionic liquids. Reducing sugar yields following the cellulase-hemicellulase co-treatment of untreated, alkaline-pretreated, and ionic liquid-pretreated bamboo were higher than those associated with separate cellulase and hemicellulase treatments, thus confirming the synergistic activity of cellulase-hemicellulase co-treatment in the context of bamboo saccharification. These results indicate that these two fungi are promising hydrolase producers that can facilitate the bioconversion of bamboo biomass.
Collapse
Affiliation(s)
- Bo Zhao
- School of Life Science and Engineering, Bamboo Research Institute, Southwest University of Science and Technology, Mianyang 621010, China
| | - Haroon Al Rasheed
- School of Life Science and Engineering, Bamboo Research Institute, Southwest University of Science and Technology, Mianyang 621010, China
| | - Imran Ali
- School of Life Science and Engineering, Bamboo Research Institute, Southwest University of Science and Technology, Mianyang 621010, China; Institute of Biochemistry, University of Balochistan, Quetta 87300, Pakistan
| | - Shanglian Hu
- School of Life Science and Engineering, Bamboo Research Institute, Southwest University of Science and Technology, Mianyang 621010, China.
| |
Collapse
|
8
|
Zhang R, Li N, Liu Y, Han X, Tu T, Shen J, Xu S, Wu Q, Zhou J, Huang Z. Biochemical and structural properties of a low-temperature-active glycoside hydrolase family 43 β-xylosidase: Activity and instability at high neutral salt concentrations. Food Chem 2019; 301:125266. [DOI: 10.1016/j.foodchem.2019.125266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 06/24/2019] [Accepted: 07/26/2019] [Indexed: 10/26/2022]
|
9
|
Malgas S, Mafa MS, Mkabayi L, Pletschke BI. A mini review of xylanolytic enzymes with regards to their synergistic interactions during hetero-xylan degradation. World J Microbiol Biotechnol 2019; 35:187. [PMID: 31728656 DOI: 10.1007/s11274-019-2765-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/06/2019] [Indexed: 10/25/2022]
Abstract
This review examines the recent models describing the mode of action of various xylanolytic enzymes and how these enzymes can be applied (sequentially or simultaneously) with their distinctive roles in mind to achieve efficient xylan degradation. With respect to homeosynergy, synergism appears to be as a result of β-xylanase and/or oligosaccharide reducing-end β-xylanase liberating xylo-oligomers (XOS) that are preferred substrates of the processive β-xylosidase. With regards to hetero-synergism, two cross relationships appear to exist and seem to be the reason for synergism between the enzymes during xylan degradation. These cross relations are the debranching enzymes such as α-glucuronidase or side-chain cleaving enzymes such as carbohydrate esterases (CE) removing decorations that would have hindered back-bone-cleaving enzymes, while backbone-cleaving-enzymes liberate XOS that are preferred substrates of the debranching and side-chain-cleaving enzymes. This interaction is demonstrated by high yields in co-production of xylan substituents such as arabinose, glucuronic acid and ferulic acid, and XOS. Finally, lytic polysaccharide monooxygenases (LPMO) have also been implicated in boosting whole lignocellulosic biomass or insoluble xylan degradation by glycoside hydrolases (GH) by possibly disrupting entangled xylan residues. Since it has been observed that the same enzyme (same Enzyme Commission, EC, classification) from different GH or CE and/or AA families can display different synergistic interactions with other enzymes due to different substrate specificities and properties, in this review, we propose an approach of enzyme selection (and mode of application thereof) during xylan degradation, as this can improve the economic viability of the degradation of xylan for producing precursors of value added products.
Collapse
Affiliation(s)
- Samkelo Malgas
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, Eastern Cape, 6140, South Africa
| | - Mpho S Mafa
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, Eastern Cape, 6140, South Africa.,Protein Structure-Function Research Unit (PSFRU), School of Molecular and Cell Biology, Wits University, Johannesburg, Gauteng, 2000, South Africa
| | - Lithalethu Mkabayi
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, Eastern Cape, 6140, South Africa
| | - Brett I Pletschke
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, Eastern Cape, 6140, South Africa.
| |
Collapse
|
10
|
Tomazini A, Higasi P, Manzine LR, Stott M, Sparling R, Levin DB, Polikarpov I. A novel thermostable GH5 β-xylosidase from Thermogemmatispora sp. T81. N Biotechnol 2019; 53:57-64. [DOI: 10.1016/j.nbt.2019.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/09/2019] [Accepted: 07/06/2019] [Indexed: 10/26/2022]
|
11
|
Liu X, Jiang Z, Liu Y, You X, Yang S, Yan Q. Biochemical characterization of a novel exo-oligoxylanase from Paenibacillus barengoltzii suitable for monosaccharification from corncobs. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:190. [PMID: 31384297 PMCID: PMC6661730 DOI: 10.1186/s13068-019-1532-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Xylan is the major component of hemicelluloses, which are the second most abundant polysaccharides in nature, accounting for approximately one-third of all renewable organic carbon resources on earth. Efficient degradation of xylan is the prerequisite for biofuel production. Enzymatic degradation has been demonstrated to be more attractive due to low energy consumption and environmental friendliness, when compared with chemical degradation. Exo-xylanases, as a rate-limiting factor, play an important role in the xylose production. It is of great value to identify novel exo-xylanases for efficient bioconversion of xylan in biorefinery industry. RESULTS A novel glycoside hydrolase (GH) family 8 reducing-end xylose-releasing exo-oligoxylanase (Rex)-encoding gene (PbRex8) was cloned from Paenibacillus barengoltzii and heterogeneously expressed in Escherichia coli. The deduced amino acid sequence of PbRex8 shared the highest identity of 74% with a Rex from Bacillus halodurans. The recombinant enzyme (PbRex8) was purified and biochemically characterized. The optimal pH and temperature of PbRex8 were 5.5 and 55 °C, respectively. PbRex8 showed prominent activity on xylooligosaccharides (XOSs), and trace activity on xylan. It also exhibited β-1,3-1,4-glucanase and xylobiase activities. The enzyme efficiently converted corncob xylan to xylose coupled with a GH family 10 endo-xylanase, with a xylose yield of 83%. The crystal structure of PbRex8 was resolved at 1.88 Å. Structural comparison suggests that Arg67 can hydrogen-bond to xylose moieties in the -1 subsite, and Asn122 and Arg253 are close to xylose moieties in the -3 subsite, the hypotheses of which were further verified by mutation analysis. In addition, Trp205, Trp132, Tyr372, Tyr277 and Tyr369 in the grove of PbRex8 were found to involve in glucooligosaccharides interactions. This is the first report on a GH family 8 Rex from P. barengoltzii. CONCLUSIONS A novel reducing-end xylose-releasing exo-oligoxylanase suitable for xylose production from corncobs was identified, biochemically characterized and structurally elucidated. The properties of PbRex8 may make it an excellent candidate in biorefinery industries.
Collapse
Affiliation(s)
- Xueqiang Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Engineering, China Agricultural University, Beijing, 100083 China
| | - Zhengqiang Jiang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083 China
| | - Yu Liu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083 China
| | - Xin You
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083 China
| | - Shaoqing Yang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083 China
| | - Qiaojuan Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Engineering, China Agricultural University, Beijing, 100083 China
| |
Collapse
|
12
|
Mäkinen M, Kuuskeri J, Laine P, Smolander OP, Kovalchuk A, Zeng Z, Asiegbu FO, Paulin L, Auvinen P, Lundell T. Genome description of Phlebia radiata 79 with comparative genomics analysis on lignocellulose decomposition machinery of phlebioid fungi. BMC Genomics 2019; 20:430. [PMID: 31138126 PMCID: PMC6540522 DOI: 10.1186/s12864-019-5817-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/21/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The white rot fungus Phlebia radiata, a type species of the genus Phlebia, is an efficient decomposer of plant cell wall polysaccharides, modifier of softwood and hardwood lignin, and is able to produce ethanol from various waste lignocellulose substrates. Thus, P. radiata is a promising organism for biotechnological applications aiming at sustainable utilization of plant biomass. Here we report the genome sequence of P. radiata isolate 79 originally isolated from decayed alder wood in South Finland. To better understand the evolution of wood decay mechanisms in this fungus and the Polyporales phlebioid clade, gene content and clustering of genes encoding specific carbohydrate-active enzymes (CAZymes) in seven closely related fungal species was investigated. In addition, other genes encoding proteins reflecting the fungal lifestyle including peptidases, transporters, small secreted proteins and genes involved in secondary metabolism were identified in the genome assembly of P. radiata. RESULTS The PACBio sequenced nuclear genome of P. radiata was assembled to 93 contigs with 72X sequencing coverage and annotated, revealing a dense genome of 40.4 Mbp with approximately 14 082 predicted protein-coding genes. According to functional annotation, the genome harbors 209 glycoside hydrolase, 27 carbohydrate esterase, 8 polysaccharide lyase, and over 70 auxiliary redox enzyme-encoding genes. Comparisons with the genomes of other phlebioid fungi revealed shared and specific properties among the species with seemingly similar saprobic wood-decay lifestyles. Clustering of especially GH10 and AA9 enzyme-encoding genes according to genomic localization was discovered to be conserved among the phlebioid species. In P. radiata genome, a rich repertoire of genes involved in the production of secondary metabolites was recognized. In addition, 49 genes encoding predicted ABC proteins were identified in P. radiata genome together with 336 genes encoding peptidases, and 430 genes encoding small secreted proteins. CONCLUSIONS The genome assembly of P. radiata contains wide array of carbohydrate polymer attacking CAZyme and oxidoreductase genes in a composition identifiable for phlebioid white rot lifestyle in wood decomposition, and may thus serve as reference for further studies. Comparative genomics also contributed to enlightening fungal decay mechanisms in conversion and cycling of recalcitrant organic carbon in the forest ecosystems.
Collapse
Affiliation(s)
- Mari Mäkinen
- Department of Microbiology, Faculty of Agriculture and Forestry, Viikki Campus, University of Helsinki, FI-00014, Helsinki, Finland.,Present address: VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | - Jaana Kuuskeri
- Department of Microbiology, Faculty of Agriculture and Forestry, Viikki Campus, University of Helsinki, FI-00014, Helsinki, Finland
| | - Pia Laine
- DNA Sequencing and Genomics Laboratory, Institute of Biotechnology, Viikki Campus, FI-00014, Helsinki, Finland
| | - Olli-Pekka Smolander
- DNA Sequencing and Genomics Laboratory, Institute of Biotechnology, Viikki Campus, FI-00014, Helsinki, Finland.,Present address: Department of Chemistry and Biotechnology, Division of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Andriy Kovalchuk
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Viikki Campus, FI-00014, Helsinki, Finland
| | - Zhen Zeng
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Viikki Campus, FI-00014, Helsinki, Finland
| | - Fred O Asiegbu
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Viikki Campus, FI-00014, Helsinki, Finland
| | - Lars Paulin
- DNA Sequencing and Genomics Laboratory, Institute of Biotechnology, Viikki Campus, FI-00014, Helsinki, Finland
| | - Petri Auvinen
- DNA Sequencing and Genomics Laboratory, Institute of Biotechnology, Viikki Campus, FI-00014, Helsinki, Finland
| | - Taina Lundell
- Department of Microbiology, Faculty of Agriculture and Forestry, Viikki Campus, University of Helsinki, FI-00014, Helsinki, Finland.
| |
Collapse
|
13
|
Zhang R, Li N, Xu S, Han X, Li C, Wei X, Liu Y, Tu T, Tang X, Zhou J, Huang Z. Glycoside Hydrolase Family 39 β-Xylosidases Exhibit β-1,2-Xylosidase Activity for Transformation of Notoginsenosides: A New EC Subsubclass. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3220-3228. [PMID: 30834749 DOI: 10.1021/acs.jafc.9b00027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
β-1,2-Xylosidase activity has not been recorded as an EC subsubclass. In this study, phylogenetic analysis and multiple sequence alignments revealed that characterized β-xylosidases of glycoside hydrolase family (GH) 39 were classified into the same subgroup with conserved amino acid residue positions participating in substrate recognition. Protein-ligand docking revealed that seven of these positions were probably essential to bind xylose-glucose, which is linked by a β-1,2-glycosidic bond. Amino acid residues in five of the seven positions are invariant, while those in two of the seven positions are variable with low frequency. Both the wild-type β-xylosidase rJB13GH39 and its mutants with mutation at the two positions exhibited β-1,2-xylosidase activity, as they hydrolyzed o-nitrophenyl-β-d-xylopyranoside and transformed notoginsenosides R1 and R2 to ginsenosides Rg1 and Rh1, respectively. The results suggest that all of these characterized GH 39 β-xylosidases probably show β-1,2-xylosidase activity, which should be assigned an EC number with these β-xylosidases as representatives.
Collapse
Affiliation(s)
- Rui Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming 650500 , People's Republic of China
- College of Life Sciences , Yunnan Normal University , No. 768 Juxian Street , Kunming 650500 , People's Republic of China
| | - Na Li
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming 650500 , People's Republic of China
- College of Life Sciences , Yunnan Normal University , No. 768 Juxian Street , Kunming 650500 , People's Republic of China
| | - Shujing Xu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming 650500 , People's Republic of China
- College of Life Sciences , Yunnan Normal University , No. 768 Juxian Street , Kunming 650500 , People's Republic of China
| | - Xiaowei Han
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming 650500 , People's Republic of China
- College of Life Sciences , Yunnan Normal University , No. 768 Juxian Street , Kunming 650500 , People's Republic of China
| | - Chunyan Li
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming 650500 , People's Republic of China
- College of Life Sciences , Yunnan Normal University , No. 768 Juxian Street , Kunming 650500 , People's Republic of China
| | - Xin Wei
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany , Chinese Academy of Sciences , Kunming 650201 , People's Republic of China
| | - Yu Liu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming 650500 , People's Republic of China
- College of Life Sciences , Yunnan Normal University , No. 768 Juxian Street , Kunming 650500 , People's Republic of China
| | - Tao Tu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute , Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Xianghua Tang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming 650500 , People's Republic of China
- College of Life Sciences , Yunnan Normal University , No. 768 Juxian Street , Kunming 650500 , People's Republic of China
| | - Junpei Zhou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming 650500 , People's Republic of China
- College of Life Sciences , Yunnan Normal University , No. 768 Juxian Street , Kunming 650500 , People's Republic of China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming 650500 , People's Republic of China
- College of Life Sciences , Yunnan Normal University , No. 768 Juxian Street , Kunming 650500 , People's Republic of China
| |
Collapse
|
14
|
Zhuo R, Yu H, Qin X, Ni H, Jiang Z, Ma F, Zhang X. Heterologous expression and characterization of a xylanase and xylosidase from white rot fungi and their application in synergistic hydrolysis of lignocellulose. CHEMOSPHERE 2018; 212:24-33. [PMID: 30138852 DOI: 10.1016/j.chemosphere.2018.08.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 08/04/2018] [Accepted: 08/13/2018] [Indexed: 05/10/2023]
Abstract
Endo-xylanase and β-xylosidase are the major enzymes for hemicellulose hydrolysis, which play a significant role in biomass conversion. In our previous work, the white-rot fungi Pleurotus ostreatus HAUCC 162 and Irpex lacteus CD2 were demonstrated to have strong ability in lignocellulose degradation, and the related lignin degradation enzymes were characterized. However, little was known about their hemicellulases. In this work, a novel endo-1, 4-xylanase and a β-xylosidase from Pleurotus ostreatus HAUCC 162 and Irpex lacteus CD2 were heterologously expressed and characterized. The optima of pH and temperature were 5.0 and 55 °C for rXyn162, and 6.5 and 30 °C for rXylCD2. rXyn162 showed high tolerance to metal ions such as Ca2+, Cr3+, Zn2+, Na+, and Al3+. The recombinant rXyn162 and rXylCD2 exhibited synergistic hydrolysis of oat spelts xylan and sodium hydroxide pretreated cornstalk (SHPC), where the degree of synergy (DS) was 2.26 for SHPC hydrolysis. MALDI-TOF-MS and HPLC analysis showed that xylooligosaccharides (XOS) with small degrees of polymerization (DP2-DP4) were the major XOS hydrolyzate during SHPC degradation by rXyn162 and rXylCD2. In addition, rXyn162 and rXylCD2 could efficiently improve the hydrolysis of SHPC by commercial cellulase. The present study suggested the potential application of rXyn162 and rXylCD2 in the field of biomass pretreatment and biofuel production.
Collapse
Affiliation(s)
- Rui Zhuo
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; College of Biology, Hunan University, Changsha 410082, PR China
| | - Hongbo Yu
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Xing Qin
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Haoxiang Ni
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zhen Jiang
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Fuying Ma
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Xiaoyu Zhang
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
15
|
Li N, Han X, Xu S, Li C, Wei X, Liu Y, Zhang R, Tang X, Zhou J, Huang Z. Glycoside Hydrolase Family 39 β-Xylosidase of Sphingomonas Showing Salt/Ethanol/Trypsin Tolerance, Low-pH/Low-Temperature Activity, and Transxylosylation Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9465-9472. [PMID: 30132665 DOI: 10.1021/acs.jafc.8b03327] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Mining for novel enzymes from new microorganisms is a way to obtain β-xylosidases with promising applications. A Sphingomonas β-xylosidase was expressed in Escherichia coli. The purified recombinant enzyme (rJB13GH39) was most active at pH 4.5 and 50 °C, retaining 10%-50% of its maximum activity at 0-20 °C. Most salts and chemical reagents including 3.0%-20.0% (w/v) NaCl showed little or no effect on the enzymatic activity. rJB13GH39 exhibited 71.9% and 55.2% activity in 10.0% and 15.0% (v/v) ethanol, respectively. rJB13GH39 was stable below 60 °C in 3.0%-30.0% (w/v) NaCl, 3.0%-20.0% (v/v) ethanol, and 2.2-87.0 mg/mL trypsin. The enzyme transferred one xylosyl moiety to certain sugars and alcohols. The salt/ethanol tolerance and low-temperature activity of the enzyme may be attributed to its high structural flexibility caused by high proportions of small amino acids ACDGNSTV and random coils.
Collapse
Affiliation(s)
- Na Li
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming , 650500 , People's Republic of China
- College of Life Sciences , Yunnan Normal University , Kunming , 650500 , People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming , 650500 , People's Republic of China
| | - Xiaowei Han
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming , 650500 , People's Republic of China
- College of Life Sciences , Yunnan Normal University , Kunming , 650500 , People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming , 650500 , People's Republic of China
| | - Shujing Xu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming , 650500 , People's Republic of China
- College of Life Sciences , Yunnan Normal University , Kunming , 650500 , People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming , 650500 , People's Republic of China
| | - Chunyan Li
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming , 650500 , People's Republic of China
- College of Life Sciences , Yunnan Normal University , Kunming , 650500 , People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming , 650500 , People's Republic of China
| | - Xin Wei
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201 , People's Republic of China
| | - Yu Liu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming , 650500 , People's Republic of China
- College of Life Sciences , Yunnan Normal University , Kunming , 650500 , People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming , 650500 , People's Republic of China
| | - Rui Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming , 650500 , People's Republic of China
- College of Life Sciences , Yunnan Normal University , Kunming , 650500 , People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming , 650500 , People's Republic of China
| | - Xianghua Tang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming , 650500 , People's Republic of China
- College of Life Sciences , Yunnan Normal University , Kunming , 650500 , People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming , 650500 , People's Republic of China
| | - Junpei Zhou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming , 650500 , People's Republic of China
- College of Life Sciences , Yunnan Normal University , Kunming , 650500 , People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming , 650500 , People's Republic of China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming , 650500 , People's Republic of China
- College of Life Sciences , Yunnan Normal University , Kunming , 650500 , People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming , 650500 , People's Republic of China
| |
Collapse
|
16
|
Carvalho DRD, Carli S, Meleiro LP, Rosa JC, Oliveira AHCD, Jorge JA, Furriel RPM. A halotolerant bifunctional β-xylosidase/α-l-arabinofuranosidase from Colletotrichum graminicola: Purification and biochemical characterization. Int J Biol Macromol 2018; 114:741-750. [DOI: 10.1016/j.ijbiomac.2018.03.111] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 01/09/2023]
|
17
|
Daas MJA, Nijsse B, van de Weijer AHP, Groenendaal BWAJ, Janssen F, van der Oost J, van Kranenburg R. Engineering Geobacillus thermodenitrificans to introduce cellulolytic activity; expression of native and heterologous cellulase genes. BMC Biotechnol 2018; 18:42. [PMID: 29945583 PMCID: PMC6020330 DOI: 10.1186/s12896-018-0453-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 06/14/2018] [Indexed: 11/28/2022] Open
Abstract
Background Consolidated bioprocessing (CBP) is a cost-effective approach for the conversion of lignocellulosic biomass to biofuels and biochemicals. The enzymatic conversion of cellulose to glucose requires the synergistic action of three types of enzymes: exoglucanases, endoglucanases and β-glucosidases. The thermophilic, hemicellulolytic Geobacillus thermodenitrificans T12 was shown to harbor desired features for CBP, although it lacks the desired endo and exoglucanases required for the conversion of cellulose. Here, we report the expression of both endoglucanase and exoglucanase encoding genes by G. thermodenitrificans T12, in an initial attempt to express cellulolytic enzymes that complement the enzymatic machinery of this strain. Results A metagenome screen was performed on 73 G. thermodenitrificans strains using HMM profiles of all known CAZy families that contain endo and/or exoglucanases. Two putative endoglucanases, GE39 and GE40, belonging to glucoside hydrolase family 5 (GH5) were isolated and expressed in both E. coli and G. thermodenitrificans T12. Structure modeling of GE39 revealed a folding similar to a GH5 exo-1,3-β-glucanase from S. cerevisiae. However, we determined GE39 to be a β-xylosidase having pronounced activity towards p-nitrophenyl-β-d-xylopyranoside. Structure modelling of GE40 revealed its protein architecture to be similar to a GH5 endoglucanase from B. halodurans, and its endoglucanase activity was confirmed by enzymatic activity against 2-hydroxyethylcellulose, carboxymethylcellulose and barley β-glucan. Additionally, we introduced expression constructs into T12 containing Geobacillus sp. 70PC53 endoglucanase gene celA and both endoglucanase genes (M1 and M2) from Geobacillus sp. WSUCF1. Finally, we introduced expression constructs into T12 containing the C. thermocellum exoglucanases celK and celS genes and the endoglucanase celC gene. Conclusions We identified a novel G. thermodenitrificans β-xylosidase (GE39) and a novel endoglucanase (GE40) using a metagenome screen based on multiple HMM profiles. We successfully expressed both genes in E. coli and functionally expressed the GE40 endoglucanase in G. thermodenitrificans T12. Additionally, the heterologous production of active CelK, a C. thermocellum derived exoglucanase, and CelA, a Geobacillus derived endoglucanase, was demonstrated with strain T12. The native hemicellulolytic activity and the heterologous cellulolytic activity described in this research provide a good basis for the further development of G. thermodenitrificans T12 as a host for consolidated bioprocessing. Electronic supplementary material The online version of this article (10.1186/s12896-018-0453-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martinus J A Daas
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708, WE, Wageningen, The Netherlands
| | - Bart Nijsse
- Laboratory of Systems and Synthetic Biology, Wageningen University, Stippeneng 4, 6708, WE, Wageningen, The Netherlands
| | | | - Bart W A J Groenendaal
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708, WE, Wageningen, The Netherlands
| | - Fons Janssen
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708, WE, Wageningen, The Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708, WE, Wageningen, The Netherlands
| | - Richard van Kranenburg
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708, WE, Wageningen, The Netherlands. .,Corbion, Arkelsedijk 46, 4206, AC, Gorinchem, The Netherlands.
| |
Collapse
|
18
|
Production and Characteristics of a Novel Xylose- and Alkali-tolerant GH 43 β-xylosidase from Penicillium oxalicum for Promoting Hemicellulose Degradation. Sci Rep 2017; 7:11600. [PMID: 28912429 PMCID: PMC5599605 DOI: 10.1038/s41598-017-11573-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/23/2017] [Indexed: 11/09/2022] Open
Abstract
β-xylosidase is a pivotal enzyme for complete degradation of xylan in hemicelluloses of lignocelluloses, and the xylose- and alkali-tolerant β-xylosidase with high catalytic activity is very attractive for promoting enzymatic hydrolysis of alkaline-pretreated lignocellulose. In this study, a novel intracellular glycoside hydrolase family 43 β-xylosidase gene (xyl43) from Penicillium oxalicum 114-2 was successfully high-level overexpressed in Pichia pastoris, and the secreted enzyme was characterized. The β-xylosidase Xyl43 exhibited great pH stability and high catalytic activity in the range of pH 6.0 to 8.0, and high tolerance to xylose with the Ki value of 28.09 mM. The Xyl43 could effectively promote enzymatic degradation of different source of xylan and hemicellulose contained in alkaline-pretreated corn stover, and high conversion of xylan to xylose could be obtained.
Collapse
|
19
|
Zhang L, Ma Y, Zhao C, He B, Zhu X, Yang W. Entrapment of Xylanase within a Polyethylene Glycol Net-Cloth Grafted on Polypropylene Nonwoven Fabrics with Exceptional Operational Stability and Its Application for Hydrolysis of Corncob Hemicelluloses. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b00254] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lihua Zhang
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing
Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuhong Ma
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Changwen Zhao
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing
Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bin He
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing
Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xing Zhu
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing
Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wantai Yang
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing
Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
20
|
Research Progress Concerning Fungal and Bacterial β-Xylosidases. Appl Biochem Biotechnol 2015; 178:766-95. [DOI: 10.1007/s12010-015-1908-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/22/2015] [Indexed: 01/08/2023]
|