1
|
Ochiai H, Elouali S, Yamamoto T, Asai H, Noguchi M, Nishiuchi Y. Chemical and Chemoenzymatic Synthesis of Peptide and Protein Therapeutics Conjugated with Human N-Glycans. ChemMedChem 2024; 19:e202300692. [PMID: 38572578 DOI: 10.1002/cmdc.202300692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/05/2024]
Abstract
Glycosylation is one of the most ubiquitous post-translational modifications. It affects the structure and function of peptides/proteins and consequently has a significant impact on various biological events. However, the structural complexity and heterogeneity of glycopeptides/proteins caused by the diversity of glycan structures and glycosylation sites complicates the detailed elucidation of glycan function and hampers their clinical applications. To address these challenges, chemical and/or enzyme-assisted synthesis methods have been developed to realize glycopeptides/proteins with well-defined glycan morphologies. In particular, N-glycans are expected to be useful for improving the solubility, in vivo half-life and aggregation of bioactive peptides/proteins that have had limited clinical applications so far due to their short duration of action in the blood and unsuitable physicochemical properties. Chemical glycosylation performed in a post-synthetic procedure can be used to facilitate the development of glycopeptide/protein analogues or mimetics that are superior to the original molecules in terms of physicochemical and pharmacokinetic properties. N-glycans are used to modify targets because they are highly biodegradable and biocompatible and have structures that already exist in the human body. On the practical side, from a quality control perspective, close attention should be paid to their structural homogeneity when they are to be applied to pharmaceuticals.
Collapse
Affiliation(s)
- Hirofumi Ochiai
- GlyTech, Inc., 134 Chudoji Minamimachi KRP #1-2F, Shimogyo-ku, Kyoto, 600-8813, Japan
| | - Sofia Elouali
- GlyTech, Inc., 134 Chudoji Minamimachi KRP #1-2F, Shimogyo-ku, Kyoto, 600-8813, Japan
| | - Takahiro Yamamoto
- GlyTech, Inc., 134 Chudoji Minamimachi KRP #1-2F, Shimogyo-ku, Kyoto, 600-8813, Japan
| | - Hiroaki Asai
- GlyTech, Inc., 134 Chudoji Minamimachi KRP #1-2F, Shimogyo-ku, Kyoto, 600-8813, Japan
| | - Masato Noguchi
- GlyTech, Inc., 134 Chudoji Minamimachi KRP #1-2F, Shimogyo-ku, Kyoto, 600-8813, Japan
| | - Yuji Nishiuchi
- GlyTech, Inc., 134 Chudoji Minamimachi KRP #1-2F, Shimogyo-ku, Kyoto, 600-8813, Japan
- Graduate School of Science, Tohoku University, 6-3, Aramaki Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
2
|
Park JS, Choi HJ, Jung KM, Lee KY, Shim JH, Park KJ, Kim YM, Han JY. Production of recombinant human IgG1 Fc with beneficial N-glycosylation pattern for anti-inflammatory activity using genome-edited chickens. Commun Biol 2023; 6:589. [PMID: 37264071 DOI: 10.1038/s42003-023-04937-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/12/2023] [Indexed: 06/03/2023] Open
Abstract
Intravenous immunoglobulin (IVIG) is a plasma-derived polyclonal IgG used for treatment of autoimmune diseases. Studies show that α-2,6 sialylation of the Fc improves anti-inflammatory activity. Also, afucosylation of the Fc efficiently blocks FcγRIIIA by increasing monovalent affinity to this receptor, which can be beneficial for treatment of refractory immune thrombocytopenia (ITP). Here, we generated genome-edited chickens that synthesize human IgG1 Fc in the liver and secrete α-2,6 sialylated and low-fucosylated human IgG1 Fc (rhIgG1 Fc) into serum and egg yolk. Also, rhIgG1 Fc has higher affinity for FcγRIIIA than commercial IVIG. Thus, rhIgG1 Fc efficiently inhibits immune complex-mediated FcγRIIIA crosslinking and subsequent ADCC response. Furthermore, rhIgG1 Fc exerts anti-inflammatory activity in a passive ITP model, demonstrating chicken liver derived rhIgG1 Fc successfully recapitulated efficacy of IVIG. These results show that genome-edited chickens can be used as a production platform for rhIgG1 Fc with beneficial N-glycosylation pattern for anti-inflammatory activities.
Collapse
Affiliation(s)
- Jin Se Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Avinnogen Co., Ltd, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Hee Jung Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kyung Min Jung
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kyung Youn Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ji Hyeon Shim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kyung Je Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young Min Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Avinnogen Co., Ltd, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Establishment and Characterization of a Novel Tissue-specific DNA Construct and Culture System with Potential for Avian Bioreactor Generation. Mol Biotechnol 2019; 61:400-409. [PMID: 30945164 DOI: 10.1007/s12033-019-00170-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Transgenic chickens are of great interest for the production of recombinant proteins in their eggs. However, the use of constitutive strong promoters or the tissue-specific ovalbumin promoter for the generation of the transgenic chickens have different drawbacks that have to be overcome in order to make chicken bioreactor an efficient production system. This prompted us to investigate the use of an alternative tissue-specific promoter, the vitellogenin promoter, which could overcome the difficulties currently found in the generation of chicken bioreactors. In the present work we establish and characterize a DNA construct consisting of a fragment of the 5´-flanking region of the chicken vitellogenin II gene cloned in a reporter vector. This construct is capable of showing the ability of the promoter to drive expression of a reporting gene in a tissue-specific manner and in a way that closely resembles physiologic regulation of vitellogenin, making it an ideal candidate to be used in the future for generation of avian bioreactors. Besides, we validate an in vitro culture system to test the performance of the DNA construct under study that could be used as a practical tool before generating any transgenic chicken. These results are important since they provide the proof of concept for the use of the vitellogenin promoter for future genetic modification of chickens bioreactors with improved characteristics in terms of quality of the recombinant protein produced.
Collapse
|
4
|
Phylogenetic-Derived Insights into the Evolution of Sialylation in Eukaryotes: Comprehensive Analysis of Vertebrate β-Galactoside α2,3/6-Sialyltransferases (ST3Gal and ST6Gal). Int J Mol Sci 2016; 17:ijms17081286. [PMID: 27517905 PMCID: PMC5000683 DOI: 10.3390/ijms17081286] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 12/21/2022] Open
Abstract
Cell surface of eukaryotic cells is covered with a wide variety of sialylated molecules involved in diverse biological processes and taking part in cell–cell interactions. Although the physiological relevance of these sialylated glycoconjugates in vertebrates begins to be deciphered, the origin and evolution of the genetic machinery implicated in their biosynthetic pathway are poorly understood. Among the variety of actors involved in the sialylation machinery, sialyltransferases are key enzymes for the biosynthesis of sialylated molecules. This review focus on β-galactoside α2,3/6-sialyltransferases belonging to the ST3Gal and ST6Gal families. We propose here an outline of the evolutionary history of these two major ST families. Comparative genomics, molecular phylogeny and structural bioinformatics provided insights into the functional innovations in sialic acid metabolism and enabled to explore how ST-gene function evolved in vertebrates.
Collapse
|
5
|
Kidani S, Kaneoka H, Okuzaki Y, Asai S, Kojima Y, Nishijima KI, Iijima S. Analyses of chicken sialyltransferases related to O-glycosylation. J Biosci Bioeng 2016; 122:379-84. [PMID: 27150510 DOI: 10.1016/j.jbiosc.2016.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 01/20/2023]
Abstract
The chicken β-galactoside α2,3-sialyltransferase 1, 2, and 5 (ST3Gal1, 2, and 5) genes were cloned, and their enzymes were expressed in 293FT cells. ST3Gal1 and 2 exhibited enzymatic activities toward galactose-β1,3-N-acetylgalactosamine and galactose-β1,3-N-acetylglucosamine. ST3Gal5 only exhibited activity toward lactosylceramide. ST3Gal1 and 2 and previously cloned ST3Gal3 and 6 transferred CMP-sialic acid to asialofetuin. Reverse-transcription-quantitative PCR indicated that ST3Gal1 was expressed at higher levels in the trachea, lung, spleen, and magnum, and the strong expression of ST3Gal5 was observed in the spleen, magnum, and small and large intestines. ST3Gal1, 5, and 6 were also expressed in the tubular gland cells of the magnum, which secretes egg-white proteins. ST3Gal1, 5, and 6 were expressed in the egg chorioallantoic membrane, in which influenza viruses are propagated for the production of vaccines.
Collapse
Affiliation(s)
- Shunsuke Kidani
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Hidenori Kaneoka
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Yuya Okuzaki
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Seiya Asai
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yusuke Kojima
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Ken-Ichi Nishijima
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Shinji Iijima
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|