1
|
Raigani M, Namdar P, Barkhordari F, Seyedjavadi SS, Rahimpour A, Adeli A. Development of an attenuated glutamine synthetase (GS) selection system for the stable expression of tissue plasminogen activator in CHO-K1 cells. Prep Biochem Biotechnol 2025:1-7. [PMID: 39838843 DOI: 10.1080/10826068.2025.2454335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Chinese hamster ovary (CHO) cells represent the most common host system for the expression of high-quality recombinant proteins. The development of stable CHO cell lines used in industrial recombinant protein production often relies on dihydrofolate reductase (DHFR) and glutamine synthetase (GS) amplification systems. Conventional approaches to develop stable cell lines lead to heterogeneous cell populations. Consequently, it is desirable to adopt innovative strategies to increase the efficiency of clone selection to reduce the time and effort invested in the cell line development process. Attenuating the selection marker gene is an effective strategy for isolating high-producing cells. In this study, we evaluated the efficiency of an attenuated glutamine synthetase selection system for the expression of human tissue plasminogen activator (t-PA) in CHO cells. We introduced an AU-rich element (ARE) at the 3'UTR of the glutamine synthetase coding sequence and employed a weak promoter (mSV40) for the expression of this gene. Subsequently, we analyzed the effect of ARE on the GS RNA levels, and recombinant t-PA expression. Our results demonstrate that the use of ARE significantly enhances the detection of high expressing cells compared to the control. Additionally, the t-PA expression level in GS-ARE clones was approximately 900-fold greater than those without the ARE.
Collapse
Affiliation(s)
- Mozhgan Raigani
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Pegah Namdar
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahwaz, Iran
| | | | | | - Azam Rahimpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Adeli
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
2
|
Mlakar V, Lesne L, Vossio S, Dupanloup I, Gloor Y, Moreau D, Ansari M. Microcavity-assisted cloning (MAC) of hard-to-clone HepG2 cell lines: cloning made easy. BMC Biotechnol 2024; 24:81. [PMID: 39407195 PMCID: PMC11481743 DOI: 10.1186/s12896-024-00911-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
Cloning is a key molecular biology procedure for obtaining a genetically homogenous population of organisms or cell lines. It requires the expansion of new cell populations starting from single genetically modified cells. Despite the technical progress, cloning of many cell lines remains difficult. Cloning often fails either due to the strenuous conditions associated with manipulating cells or because many cells don't tolerate a single-cell state. Here we describe a new cloning method utilizing low adhesion microcavity plates. This new technique, named microcavity-assisted cloning (MAC) was developed to clone difficult-to-clone HepG2 cells. The clones were produced following CRISPR/Cas9 knockout of the GSTA1 gene by a random distribution of 200, 400, and 800 cells into 550 microcavities of a 24-well low adhesion plate originally designed for the culture of spheroids. The knockout of GSTA1 was verified at the protein level using Western blotting. The advantages of the MAC method are its low cost, ease of the procedure, and the possibility of scaling up the throughput and automatization.
Collapse
Affiliation(s)
- Vid Mlakar
- CANSEARCH Research Platform for Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Laurence Lesne
- CANSEARCH Research Platform for Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Stefania Vossio
- University of Geneva, School of Chemistry and Biochemistry - Sciences II, ACCESS Geneva, Quai Ernest Ansermet 30, 1211, Geneva 4, Switzerland
| | - Isabelle Dupanloup
- CANSEARCH Research Platform for Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Yvonne Gloor
- CANSEARCH Research Platform for Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dimitri Moreau
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Marc Ansari
- CANSEARCH Research Platform for Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Geneva, Switzerland
| |
Collapse
|
3
|
Zeh N, Schmidt M, Schulz P, Fischer S. The new frontier in CHO cell line development: From random to targeted transgene integration technologies. Biotechnol Adv 2024; 75:108402. [PMID: 38950872 DOI: 10.1016/j.biotechadv.2024.108402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
Cell line development represents a crucial step in the development process of a therapeutic glycoprotein. Chinese hamster ovary (CHO) cells are the most frequently employed mammalian host cell system for the industrial manufacturing of biologics. The predominant application of CHO cells for heterologous recombinant protein expression lies in the relative simplicity of stably introducing ectopic DNA into the CHO host cell genome. Since CHO cells were first used as expression host for the industrial production of biologics in the late 1980s, stable genomic transgene integration has been achieved almost exclusively by random integration. Since then, random transgene integration had become the gold standard for generating stable CHO production cell lines due to a lack of viable alternatives. However, it was eventually demonstrated that this approach poses significant challenges on the cell line development process such as an increased risk of inducing cell line instability. In recent years, significant discoveries of new and highly potent (semi)-targeted transgene integration systems have paved the way for a technological revolution in the cell line development sector. These advanced methodologies comprise the application of transposase-, recombinase- or Cas9 nuclease-mediated site-specific genomic integration techniques, which enable a scarless transfer of the transgene expression cassette into transcriptionally active loci within the host cell genome. This review summarizes recent advancements in the field of transgene integration technologies for CHO cell line development and compare them to the established random integration approach. Moreover, advantages and limitations of (semi)-targeted integration techniques are discussed, and benefits and opportunities for the biopharmaceutical industry are outlined.
Collapse
Affiliation(s)
- Nikolas Zeh
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH and Co.KG, Biberach an der Riss, Germany
| | - Moritz Schmidt
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH and Co.KG, Biberach an der Riss, Germany
| | - Patrick Schulz
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH and Co.KG, Biberach an der Riss, Germany
| | - Simon Fischer
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH and Co.KG, Biberach an der Riss, Germany.
| |
Collapse
|
4
|
Zhang J, Yang W, Zhang L, Li W, Zhang X, Wang X, Wang T. Novel and effective screening system for recombinant protein production in CHO cells. Sci Rep 2024; 14:20856. [PMID: 39242806 PMCID: PMC11379927 DOI: 10.1038/s41598-024-71915-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024] Open
Abstract
At present, biopharmaceuticals have received extensive attention from the society, among which recombinant proteins have a good growth trend and a large market share. Chinese hamster ovary (CHO) cells are the preferred mammalian system to produce glycosylated recombinant protein drugs. A highly efficient and stable cell screening method needs to be developed to obtain more and useful recombinant proteins. Limited dilution method, cell sorting, and semi-solid medium screening are currently the commonly used cell cloning methods. These methods are time-consuming and labor-intensive, and they have the disadvantage of low clone survival rate. Here, a method based on semi-solid medium was developed to screen out high-yielding and stable cell line within 3 weeks to improve the screening efficiency. The semi-solid medium was combined with an expression vector containing red fluorescent protein (RFP) for early cell line development. In accordance with the fluorescence intensity of RFP, the expression of upstream target gene could be indicated, and the fluorescence intensity was in direct proportion to the expression of upstream target gene. In conclusion, semi-solid medium combined with bicistronic expression vector provides an efficient method for screening stable and highly expressed cell lines.
Collapse
Affiliation(s)
- Junhe Zhang
- Institutes of Health Central Plains, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan Province, China.
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan Province, China.
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Wenwen Yang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan Province, China
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Liao Zhang
- Institutes of Health Central Plains, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan Province, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan Province, China
| | - Wenqing Li
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xi Zhang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan Province, China
| | - Xiaoyin Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan Province, China
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Tianyun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan Province, China.
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
5
|
Rives D, Peak C, Blenner MA. RNASeq highlights ATF6 pathway regulators for CHO cell engineering with different impacts of ATF6β and WFS1 knockdown on fed-batch production of IgG 1. Sci Rep 2024; 14:14141. [PMID: 38898154 PMCID: PMC11187196 DOI: 10.1038/s41598-024-64767-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
Secretion levels required of industrial Chinese hamster ovary (CHO) cell lines can challenge endoplasmic reticulum (ER) homeostasis, and ER stress caused by accumulation of misfolded proteins can be a bottleneck in biomanufacturing. The unfolded protein response (UPR) is initiated to restore homeostasis in response to ER stress, and optimization of the UPR can improve CHO cell production of therapeutic proteins. We compared the fed-batch growth, production characteristics, and transcriptomic response of an immunoglobulin G1 (IgG1) producer to its parental, non-producing host cell line. We conducted differential gene expression analysis using high throughput RNA sequencing (RNASeq) and quantitative polymerase chain reaction (qPCR) to study the ER stress response of each cell line during fed-batch culture. The UPR was activated in the IgG1 producer compared to the host cell line and our analysis of differential expression profiles indicated transient upregulation of ATF6α target mRNAs in the IgG1 producer, suggesting two upstream regulators of the ATF6 arm of the UPR, ATF6β and WFS1, are rational engineering targets. Although both ATF6β and WFS1 have been reported to negatively regulate ATF6α, this study shows knockdown of either target elicits different effects in an IgG1-producing CHO cell line. Stable knockdown of ATF6β decreased cell growth without decreasing titer; however, knockdown of WFS1 decreased titer without affecting growth. Relative expression measured by qPCR indicated no direct relationship between ATF6β and WFS1 expression, but upregulation of WFS1 in one pool was correlated with decreased growth and upregulation of ER chaperone mRNAs. While knockdown of WFS1 had negative impacts on UPR activation and product mRNA expression, knockdown of ATF6β improved the UPR specifically later in fed-batch leading to increased overall productivity.
Collapse
Affiliation(s)
- Dyllan Rives
- Department of Chemical & Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd., Clemson, SC, 29634-0909, USA
| | - Caroline Peak
- Department of Chemical & Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd., Clemson, SC, 29634-0909, USA
| | - Mark A Blenner
- Department of Chemical & Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd., Clemson, SC, 29634-0909, USA.
- Department of Chemical & Biomolecular Engineering, University of Delaware, 590 Avenue 1743, Newark, DE, 19713, USA.
| |
Collapse
|
6
|
Srila W, Baumann M, Riedl M, Rangnoi K, Borth N, Yamabhai M. Glutamine synthetase (GS) knockout (KO) using CRISPR/Cpf1 diversely enhances selection efficiency of CHO cells expressing therapeutic antibodies. Sci Rep 2023; 13:10473. [PMID: 37380701 DOI: 10.1038/s41598-023-37288-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/19/2023] [Indexed: 06/30/2023] Open
Abstract
The glutamine synthetase (GS)-based Chinese hamster ovary (CHO) selection system is an attractive approach to efficiently identify suitable clones in the cell line generation process for biologics manufacture, for which GS-knockout (GS-KO) CHO cell lines are commonly used. Since genome analysis indicated that there are two GS genes in CHO cells, deleting only 1 GS gene could potentially result in the activation of other GS genes, consequently reducing the selection efficiency. Therefore, in this study, both GS genes identified on chromosome 5 (GS5) and 1 (GS1) of CHO-S and CHO-K1, were deleted using CRISPR/Cpf1. Both single and double GS-KO CHO-S and K1 showed robust glutamine-dependent growth. Next, the engineered CHO cells were tested for their efficiency of selection of stable producers of two therapeutic antibodies. Analysis of pool cultures and subclones after a single round of 25 µM methionine sulfoxinime (MSX) selection indicated that for CHO-K1 the double GS5,1-KO was more efficient as in the case of a single GS5-KO the GS1 gene was upregulated. In CHO-S, on the other hand, with an autologously lower level of expression of both variants of GS, a single GS5-KO was more robust and already enabled selection of high producers. In conclusion, CRISPR/Cpf1 can be efficiently used to knock out GS genes from CHO cells. The study also indicates that for the generation of host cell lines for efficient selection, the initial characterisation of expression levels of the target gene as well as the identification of potential escape mechanisms is important.
Collapse
Affiliation(s)
- Witsanu Srila
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Martina Baumann
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, Austria
| | - Markus Riedl
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Kuntalee Rangnoi
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Nicole Borth
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, Austria.
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.
| | - Montarop Yamabhai
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
| |
Collapse
|
7
|
LAMP3/CD63 Expression in Early and Late Endosomes in Human Vaginal Epithelial Cells Is Associated with Enhancement of HSV-2 Infection. J Virol 2022; 96:e0155322. [PMID: 36350153 PMCID: PMC9749459 DOI: 10.1128/jvi.01553-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Herpes simplex virus 2 (HSV-2) is a lifelong sexually transmitted virus that disproportionately infects women through heterosexual transmission in the vaginal tract. The vaginal epithelium is known to be highly susceptible to HSV-2 infection; however, the cellular mechanism of HSV-2 uptake and replication in vaginal epithelium has not been extensively studied. Previously, we observed that lysosomal-associated membrane protein-3 (LAMP3/CD63) was among the highly upregulated genes during HSV-2 infection of human vaginal epithelial cell line VK2, leading us to posit that LAMP3/CD63 may play a role in HSV-2 infection. Consequently, we generated two gene-altered VK2-derived cell lines, a LAMP3-overexpressed (OE) line and a LAMP3 knockout (KO) line. The wild-type VK2 and the LAMP3 OE and KO cell lines were grown in air-liquid interface (ALI) cultures for 7 days and infected with HSV-2. Twenty-four hours postinfection, LAMP3 OE cells produced and released significantly higher numbers of HSV-2 virions than wild-type VK2 cells, while virus production was greatly attenuated in LAMP3 KO cells, indicating a functional association between LAMP3/CD63 expression and HSV-2 replication. Fluorescence microscopy of HSV-2-infected cells revealed that HSV-2 colocalized with LAMP3 in both early endosomes and lysosomal compartments. In addition, blocking endosomal maturation or late endosomal/lysosomal fusion using specific inhibitors resulted in reduced HSV-2 replication in VK2 cells. Similarly, LAMP3 KO cells exhibited very low viral entry and association with endosomes, while LAMP3 OE cells demonstrated large amounts of virus that colocalized with LAMP3/CD63 in endosomes and lysosomes. IMPORTANCE Collectively, these results showed that HSV-2 is taken up by human vaginal epithelial cells through an endosomal-lysosomal pathway in association with LAMP3, which plays a crucial role in the enhancement of HSV-2 replication. These findings provide the basis for the future design of antiviral agents for prophylactic measures against HSV-2 infection.
Collapse
|
8
|
Yanaka S, Yagi H, Yogo R, Onitsuka M, Kato K. Glutamine-free mammalian expression of recombinant glycoproteins with uniform isotope labeling: an application for NMR analysis of pharmaceutically relevant Fc glycoforms of human immunoglobulin G1. JOURNAL OF BIOMOLECULAR NMR 2022; 76:17-22. [PMID: 34978013 DOI: 10.1007/s10858-021-00387-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Mammalian cells are widely used for producing recombinant glycoproteins of pharmaceutical interest. However, a major drawback of using mammalian cells is the high production costs associated with uniformly isotope-labeled glycoproteins due to the large quantity of labeled L-glutamine required for their growth. To address this problem, we developed a cost-saving method for uniform isotope labeling by cultivating the mammalian cells under glutamine-free conditions, which was achieved by co-expression of glutamine synthase. We demonstrate the utility of this approach using fucosylated and non-fucosylated Fc glycoforms of human immunoglobulin G1.
Collapse
Affiliation(s)
- Saeko Yanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Rina Yogo
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Masayoshi Onitsuka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, 770-8513, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, 444-8787, Japan.
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.
| |
Collapse
|
9
|
Del Core L, Cesana D, Gallina P, Secanechia YNS, Rudilosso L, Montini E, Wit EC, Calabria A, Grzegorczyk MA. Normalization of clonal diversity in gene therapy studies using shape constrained splines. Sci Rep 2022; 12:3836. [PMID: 35264585 PMCID: PMC8907296 DOI: 10.1038/s41598-022-05837-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 12/09/2021] [Indexed: 12/27/2022] Open
Abstract
Viral vectors are used to insert genetic material into semirandom genomic positions of hematopoietic stem cells which, after reinfusion into patients, regenerate the entire hematopoietic system. Hematopoietic cells originating from genetically modified stem cells will harbor insertions in specific genomic positions called integration sites, which represent unique genetic marks of clonal identity. Therefore, the analysis of vector integration sites present in the genomic DNA of circulating cells allows to determine the number of clones in the blood ecosystem. Shannon diversity index is adopted to evaluate the heterogeneity of the transduced population of gene corrected cells. However, this measure can be affected by several technical variables such as the DNA amount used and the sequencing depth of the library analyzed and therefore the comparison across samples may be affected by these confounding factors. We developed an advanced spline-regression approach that leverages on confounding effects to provide a normalized entropy index. Our proposed method was first validated and compared with two state of the art approaches in a specifically designed in vitro assay. Subsequently our approach allowed to observe the expected impact of vector genotoxicity on entropy level decay in an in vivo model of hematopoietic stem cell gene therapy based on tumor prone mice.
Collapse
Affiliation(s)
- L Del Core
- University of Groningen - Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, Groningen, Netherlands. .,IRCCS Ospedale San Raffaele, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Milan, Italy.
| | - D Cesana
- IRCCS Ospedale San Raffaele, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Milan, Italy
| | - P Gallina
- IRCCS Ospedale San Raffaele, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Milan, Italy
| | - Y N Serina Secanechia
- IRCCS Ospedale San Raffaele, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Milan, Italy
| | - L Rudilosso
- IRCCS Ospedale San Raffaele, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Milan, Italy
| | - E Montini
- IRCCS Ospedale San Raffaele, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Milan, Italy
| | - E C Wit
- Università della Svizzera italiana - Institute of Computing, Lugano, Switzerland.
| | - A Calabria
- IRCCS Ospedale San Raffaele, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Milan, Italy.
| | - M A Grzegorczyk
- University of Groningen - Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, Groningen, Netherlands.
| |
Collapse
|
10
|
Tejwani V, Chaudhari M, Rai T, Sharfstein ST. High-throughput and automation advances for accelerating single-cell cloning, monoclonality and early phase clone screening steps in mammalian cell line development for biologics production. Biotechnol Prog 2021; 37:e3208. [PMID: 34478248 DOI: 10.1002/btpr.3208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022]
Abstract
Mammalian cell line development is a multistep process wherein timelines for developing clonal cells to be used as manufacturing cell lines for biologics production can commonly extend to 9 months when no automation or modern molecular technologies are involved in the workflow. Steps in the cell line development workflow involving single-cell cloning, monoclonality assurance, productivity and stability screening are labor, time and resource intensive when performed manually. Introduction of automation and miniaturization in these steps has reduced the required manual labor, shortened timelines from months to weeks, and decreased the resources needed to develop manufacturing cell lines. This review summarizes the advances, benefits, comparisons and shortcomings of different automation platforms available in the market for rapid isolation of desired clonal cell lines for biologics production.
Collapse
Affiliation(s)
- Vijay Tejwani
- Biotechnology R&D, Clone Development Team, Lupin Limited, Pune, India
| | - Minal Chaudhari
- Biotechnology R&D, Clone Development Team, Lupin Limited, Pune, India
| | - Toyaj Rai
- Biotechnology R&D, Clone Development Team, Lupin Limited, Pune, India
| | - Susan T Sharfstein
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York, USA
| |
Collapse
|
11
|
A proline metabolism selection system and its application to the engineering of lipid biosynthesis in Chinese hamster ovary cells. Metab Eng Commun 2021; 13:e00179. [PMID: 34386349 PMCID: PMC8346673 DOI: 10.1016/j.mec.2021.e00179] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/07/2021] [Accepted: 07/23/2021] [Indexed: 01/25/2023] Open
Abstract
Chinese hamster ovary (CHO) cells are the leading mammalian cell host employed to produce complex secreted recombinant biotherapeutics such as monoclonal antibodies (mAbs). Metabolic selection marker technologies (e.g. glutamine synthetase (GS) or dihydrofolate reductase (DHFR)) are routinely employed to generate such recombinant mammalian cell lines. Here we describe the development of a selection marker system based on the metabolic requirement of CHO cells to produce proline, and that uses pyrroline-5-carboxylase synthetase (P5CS) to complement this auxotrophy. Firstly, we showed the system can be used to generate cells that have growth kinetics in proline-free medium similar to those of the parent CHO cell line, CHOK1SV GS-KO™ grown in proline-containing medium. As we have previously described how engineering lipid metabolism can be harnessed to enhance recombinant protein productivity in CHO cells, we then used the P5CS selection system to re-engineer lipid metabolism by over-expression of either sterol regulatory element binding protein 1 (SREBF1) or stearoyl CoA desaturase 1 (SCD1). The cells with re-engineered proline and lipid metabolism showed consistent growth and P5CS, SCD1 and SREBF1 expression across 100 cell generations. Finally, we show that the P5CS and GS selection systems can be used together. A GS vector containing the light and heavy chains for a mAb was super-transfected into a CHOK1SV GS-KO™ host over-expressing SCD1 from a P5CS vector. The resulting stable transfectant pools achieved a higher concentration at harvest for a model difficult to express mAb than the CHOK1SV GS-KO™ host. This demonstrates that the P5CS and GS selection systems can be used concomitantly to enable CHO cell line genetic engineering and recombinant protein expression. We have engineered a proline P5CS metabolism selection system in CHO cells P5CS proline selection was used to engineer lipid metabolism in CHO cells P5CS selection was stable for at least 100 generations P5CS and GS selection systems were used together to engineer lipid and mAb expression Lipid metabolism P5CS engineered CHO cells give enhanced recombinant protein expression
Collapse
|
12
|
Nmagu D, Singh SK, Lee KH. Creation of monoclonal antibody expressing CHO cell lines grown with sodium butyrate and characterization of resulting antibody glycosylation. Methods Enzymol 2021; 660:267-295. [PMID: 34742393 DOI: 10.1016/bs.mie.2021.06.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chinese hamster ovary (CHO) cells are the primary mammalian cell lines utilized to produce monoclonal antibodies (mAbs). The upsurge in biosimilar development and the proven health benefits of mAb treatments reinforces the need for innovative methods to generate robust CHO clones and enhance production, while maintaining desired product quality attributes. Among various product titer-enhancing approaches, the use of histone deacetylase inhibitors (HDACis) such as sodium butyrate (NaBu) has yielded promising results. The titer-enhancing effect of HDACi treatment has generally been observed in lower producer cell lines but those studies are typically done on individual clones. Here, we describe a cell line development (CLD) platform approach for creating clones with varying productivities. We then describe a method for selecting an optimal NaBu concentration to evaluate potential titer-enhancing capabilities in a fed-batch study. Finally, a method for purifying the mAb using protein A chromatography, followed by glycosylation analysis using mass spectrometry, is described. The proposed workflow can be applied for a robust CLD process optimization to generate robust clones, enhance product expression, and improve product quality attributes.
Collapse
Affiliation(s)
- Douglas Nmagu
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
| | - Sumit K Singh
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
| | - Kelvin H Lee
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States.
| |
Collapse
|
13
|
Vitelli M, Budman H, Pritzker M, Tamer M. Applications of flow cytometry sorting in the pharmaceutical industry: A review. Biotechnol Prog 2021; 37:e3146. [PMID: 33749147 DOI: 10.1002/btpr.3146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022]
Abstract
The article reviews applications of flow cytometry sorting in manufacturing of pharmaceuticals. Flow cytometry sorting is an extremely powerful tool for monitoring, screening and separating single cells based on any property that can be measured by flow cytometry. Different applications of flow cytometry sorting are classified into groups and discussed in separate sections as follows: (a) isolation of cell types, (b) high throughput screening, (c) cell surface display, (d) droplet fluorescent-activated cell sorting (FACS). Future opportunities are identified including: (a) sorting of particular fractions of the cell population based on a property of interest for generating inoculum that will result in improved outcomes of cell cultures and (b) the use of population balance models in combination with FACS to design and optimize cell cultures.
Collapse
Affiliation(s)
- Michael Vitelli
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Hector Budman
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Mark Pritzker
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Melih Tamer
- Department of Manufacturing Technology, Sanofi Pasteur, Toronto, Canada
| |
Collapse
|
14
|
Weinguny M, Klanert G, Eisenhut P, Lee I, Timp W, Borth N. Subcloning induces changes in the DNA-methylation pattern of outgrowing Chinese hamster ovary cell colonies. Biotechnol J 2021; 16:e2000350. [PMID: 33484505 DOI: 10.1002/biot.202000350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022]
Abstract
Chinese hamster ovary (CHO) cells are the most extensively used mammalian production system for biologics intended for use in humans. A critical step in the establishment of production cell lines is single cell cloning, with the objective of achieving high productivity and product quality. Despite general use, knowledge of the effects of this process is limited. Importantly, single cell cloned cells display a wide array of observed phenotypes, which so far was attributed to the instability and variability of the CHO genome. In this study we present data indicating that the emergence of diverse phenotypes during single cell cloning is associated with changes in DNA methylation patterns and transcriptomes that occur during the subcloning process. The DNA methylation pattern of each analyzed subclone, randomly picked from all outgrowing clones of the experiment, had unique changes preferentially found in regulatory regions of the genome such as enhancers, and de-enriched in actively transcribed sequences (not including the respective promoters), indicating that these changes resulted in adaptations of the relative gene expression pattern. The transcriptome of each subclone also had a significant number of individual changes. These results indicate that epigenetic regulation is a hidden, but important player in cell line development with a major role in the establishment of high performing clones with improved characteristics for bioprocessing.
Collapse
Affiliation(s)
- Marcus Weinguny
- ACIB Gmbh, Austrian Centre of Industrial Biotechnology, Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Gerald Klanert
- ACIB Gmbh, Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Peter Eisenhut
- ACIB Gmbh, Austrian Centre of Industrial Biotechnology, Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Isac Lee
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, USA
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, USA
| | - Nicole Borth
- ACIB Gmbh, Austrian Centre of Industrial Biotechnology, Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| |
Collapse
|
15
|
TRIM26 Facilitates HSV-2 Infection by Downregulating Antiviral Responses through the IRF3 Pathway. Viruses 2021; 13:v13010070. [PMID: 33419081 PMCID: PMC7825454 DOI: 10.3390/v13010070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/28/2020] [Accepted: 01/01/2021] [Indexed: 01/05/2023] Open
Abstract
Herpes simplex virus type 2 (HSV-2) is the primary cause of genital herpes which results in significant morbidity and mortality, especially in women, worldwide. HSV-2 is transmitted primarily through infection of epithelial cells at skin and mucosal surfaces. Our earlier work to examine interactions between HSV-2 and vaginal epithelial cells demonstrated that infection of the human vaginal epithelial cell line (VK2) with HSV-2 resulted in increased expression of TRIM26, a negative regulator of the Type I interferon pathway. Given that upregulation of TRIM26 could negatively affect anti-viral pathways, we decided to further study the role of TRIM26 in HSV-2 infection and replication. To do this, we designed and generated two cell lines derived from VK2s with TRIM26 overexpressed (OE) and knocked out (KO). Both, along with wildtype (WT) VK2, were infected with HSV-2 and viral titres were measured in supernatants 24 h later. Our results showed significantly enhanced virus production by TRIM26 OE cells, but very little replication in TRIM26 KO cells. We next examined interferon-β production and expression of two distinct interferon stimulated genes (ISGs), MX1 and ISG15, in all three cell lines, prior to and following HSV-2 infection. The absence of TRIM26 (KO) significantly upregulated interferon-β production at baseline and even further after HSV-2 infection. TRIM26 KO cells also showed significant increase in the expression of MX1 and ISG15 before and after HSV-2 infection. Immunofluorescent staining indicated that overexpression of TRIM26 substantially decreased the nuclear localization of IRF3, the primary mediator of ISG activation, before and after HSV-2 infection. Taken together, our data indicate that HSV-2 utilizes host factor TRIM26 to evade anti-viral response and thereby increase its replication in vaginal epithelial cells.
Collapse
|
16
|
Sampaio de Oliveira KB, Leite ML, Rodrigues GR, Duque HM, da Costa RA, Cunha VA, de Loiola Costa LS, da Cunha NB, Franco OL, Dias SC. Strategies for recombinant production of antimicrobial peptides with pharmacological potential. Expert Rev Clin Pharmacol 2020; 13:367-390. [PMID: 32357080 DOI: 10.1080/17512433.2020.1764347] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION The need to develop new drugs for the control of pathogenic microorganisms has redoubled efforts to prospect for antimicrobial peptides (AMPs) from natural sources and to characterize its structure and function. These molecules present a broad spectrum of action against different microorganisms and frequently present promiscuous action, with anticancer and immunomodulatory activities. Furthermore, AMPs can be used as biopharmaceuticals in the treatment of hospital-acquired infections and other serious diseases with relevant social and economic impacts.Areas covered: The low yield and the therefore difficult extraction and purification process in AMPs are problems that limit their industrial application and scientific research. Thus, optimized heterologous expression systems were developed to significantly boost AMP yields, allow high efficiency in purification and structural optimization for the increase of therapeutic activity.Expert opinion: This review provides an update on recent developments in the recombinant production of ribosomal and non-ribosomal synthesis of AMPs and on strategies to increase the expression of genes encoding AMPs at the transcriptional and translational levels and regulation of the post-translational modifications. Moreover, there are detailed reports of AMPs that have already reached marketable status or are in the pipeline under advanced stages of preclinical testing.
Collapse
Affiliation(s)
- Kamila Botelho Sampaio de Oliveira
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Michel Lopes Leite
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Gisele Regina Rodrigues
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Harry Morales Duque
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Rosiane Andrade da Costa
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Victor Albuquerque Cunha
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Lorena Sousa de Loiola Costa
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Nicolau Brito da Cunha
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Octavio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil.,Universidade de Brasília, Pós-graduação em Patologia Molecular, Campus Darcy Ribeiro , Brasília, Brazil.,S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco , Campo Grande, Mato Grosso do Sul, Brazil
| | - Simoni Campos Dias
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil.,Universidade de Brasília, Pós-graduação em Biologia Animal, Campus Darcy Ribeiro , Brasília, Brazil
| |
Collapse
|
17
|
Li X, Zhang Y, Jing L, Fu Z, Ma O, Ganguly J, Vaidya N, Sisson R, Naginskaya J, Chinthala A, Cui M, Yamagata R, Wilson M, Sanders M, Wang Z, Lo Surdo P, Bugno M. Integration of high-throughput analytics and cell imaging enables direct early productivity and product quality assessment during Chinese Hamster ovary cell line development for a complex multi-subunit vaccine antigen. Biotechnol Prog 2019; 36:e2914. [PMID: 31568688 DOI: 10.1002/btpr.2914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/14/2019] [Accepted: 09/11/2019] [Indexed: 12/19/2022]
Abstract
Mammalian cell line generation typically includes stable pool generation, single cell cloning and several rounds of clone selection based on cell growth, productivity and product quality criteria. Individual clone expansion and phenotype-based ranking is performed initially for hundreds or thousands of mini-scale cultures, representing the major operational challenge during cell line development. Automated cell culture and analytics systems have been developed to enable high complexity clone selection workflows; while ensuring traceability, safety, and quality of cell lines intended for biopharmaceutical applications. Here we show that comprehensive and quantitative assessment of cell growth, productivity, and product quality attributes are feasible at the 200-1,200 cell colony stage, within 14 days of the single cell cloning in static 96-well plate culture. The early cell line characterization performed prior to the clone expansion in suspension culture can be used for a single-step, direct selection of high quality clones. Such clones were comparable, both in terms of productivity and critical quality attributes (CQAs), to the top-ranked clones identified using an established iterative clone screening approach. Using a complex, multi-subunit antigen as a model protein, we observed stable CQA profiles independently of the cell culture format during the clonal expansion as well as in the batch and fed-batch processes. In conclusion, we propose an accelerated clone selection approach that can be readily incorporated into various cell line development workstreams, leading to significant reduction of the project timelines and resource requirements.
Collapse
Affiliation(s)
- Xiangming Li
- GSK, US Technical R&D, Drug Substance, Rockville, Maryland
| | - Yujian Zhang
- GSK, US Technical R&D, Drug Substance, Rockville, Maryland
| | - Li Jing
- GSK, US Technical R&D, Drug Substance, Rockville, Maryland
| | - Zongming Fu
- GSK, US Technical R&D, Analytical Research and Development, Rockville, Maryland
| | - Ou Ma
- GSK, US Technical R&D, Drug Substance, Rockville, Maryland
| | - Jishna Ganguly
- GSK, US Technical R&D, Drug Substance, Rockville, Maryland
| | - Nilesh Vaidya
- GSK, US Technical R&D, Drug Substance, Rockville, Maryland
| | - Richard Sisson
- GSK, US Technical R&D, Drug Substance, Rockville, Maryland
| | | | | | - Minggang Cui
- GSK, US Technical R&D, CMC Statistical Sciences, Rockville, Maryland
| | - Ryan Yamagata
- GSK, US Technical R&D, CMC Statistical Sciences, Rockville, Maryland
| | - Mark Wilson
- GSK, US Technical R&D, Drug Substance, Rockville, Maryland
| | | | - Zihao Wang
- GSK, US Technical R&D, Analytical Research and Development, Rockville, Maryland
| | - Paola Lo Surdo
- GSK, US Technical R&D, Drug Substance, Rockville, Maryland
| | - Marcin Bugno
- GSK, US Technical R&D, Drug Substance, Rockville, Maryland
| |
Collapse
|
18
|
Lin PC, Chan KF, Kiess IA, Tan J, Shahreel W, Wong SY, Song Z. Attenuated glutamine synthetase as a selection marker in CHO cells to efficiently isolate highly productive stable cells for the production of antibodies and other biologics. MAbs 2019; 11:965-976. [PMID: 31043114 PMCID: PMC6601560 DOI: 10.1080/19420862.2019.1612690] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Chinese hamster ovary (CHO) cells are the biopharmaceutical industry’s primary means of manufacturing therapeutic proteins, including monoclonal antibodies. The major challenge in cell line development for the production of recombinant biopharmaceuticals lies in generating and isolating rare high-producing stable clones, amongst thousands of low-producing or unstable clones, in a short period of time. One approach to accomplish this is to use the glutamine synthetase (GS) selection system, together with the GS inhibitor, methionine sulfoximine (MSX). However, MSX can only increase protein productivity to a limited extent. Often productivity will drop when MSX is removed from the system. We evaluated a congenital GS mutation, R324C, which causes glutamine deficiency in human as an attenuated selection marker for CHO cell line generation. We also created a panel of GS mutants with diminished GS activity. Our results demonstrated that using attenuated GS mutants as selection markers significantly increased antibody production of stably transfected pools. Furthermore, these stably transfected pools sustained high productivity levels for an extended period of time, whereas cells transfected with wild-type GS lost considerable protein productivity over time, particularly after MSX was removed. In summary, the use of attenuated GS as a selection marker in CHO cell line development bypasses the need for MSX, and generates stable clones with significantly higher antibody productivity.Abbreviations: CHO: Chinese hamster ovary; CMV: Cytomegalovirus; DHFR: Dihydrofolate reductase; GFP: Green fluorescent protein; GOI: gene-of-interest; GS: Glutamine synthetase; IRES: internal ribosomal entry site; MSX: Methionine sulfoximine; MTX: Methotrexate; psGS: pseudoGS; RVDs: Repeated variable di-residues; TALENs: transcription activator-like effector nucleases; VCD: Viable cell density; ZFNs: zinc finger nucleases.
Collapse
Affiliation(s)
- Pao-Chun Lin
- a Bioprocessing Technology Institute, Agency for Science , Technology and Research (A*STAR) , Singapore
| | - Kah Fai Chan
- a Bioprocessing Technology Institute, Agency for Science , Technology and Research (A*STAR) , Singapore
| | - Irene A Kiess
- a Bioprocessing Technology Institute, Agency for Science , Technology and Research (A*STAR) , Singapore
| | - Joselyn Tan
- a Bioprocessing Technology Institute, Agency for Science , Technology and Research (A*STAR) , Singapore
| | - Wahyu Shahreel
- a Bioprocessing Technology Institute, Agency for Science , Technology and Research (A*STAR) , Singapore
| | - Sze-Yue Wong
- a Bioprocessing Technology Institute, Agency for Science , Technology and Research (A*STAR) , Singapore
| | - Zhiwei Song
- a Bioprocessing Technology Institute, Agency for Science , Technology and Research (A*STAR) , Singapore.,b Department of Biochemistry , Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| |
Collapse
|
19
|
Sifniotis V, Cruz E, Eroglu B, Kayser V. Current Advancements in Addressing Key Challenges of Therapeutic Antibody Design, Manufacture, and Formulation. Antibodies (Basel) 2019; 8:E36. [PMID: 31544842 PMCID: PMC6640721 DOI: 10.3390/antib8020036] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 12/17/2022] Open
Abstract
Therapeutic antibody technology heavily dominates the biologics market and continues to present as a significant industrial interest in developing novel and improved antibody treatment strategies. Many noteworthy advancements in the last decades have propelled the success of antibody development; however, there are still opportunities for improvement. In considering such interest to develop antibody therapies, this review summarizes the array of challenges and considerations faced in the design, manufacture, and formulation of therapeutic antibodies, such as stability, bioavailability and immunological engagement. We discuss the advancement of technologies that address these challenges, highlighting key antibody engineered formats that have been adapted. Furthermore, we examine the implication of novel formulation technologies such as nanocarrier delivery systems for the potential to formulate for pulmonary delivery. Finally, we comprehensively discuss developments in computational approaches for the strategic design of antibodies with modulated functions.
Collapse
Affiliation(s)
- Vicki Sifniotis
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia.
| | - Esteban Cruz
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia.
| | - Barbaros Eroglu
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia.
| | - Veysel Kayser
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia.
| |
Collapse
|
20
|
Zhu J, Hatton D. New Mammalian Expression Systems. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 165:9-50. [PMID: 28585079 DOI: 10.1007/10_2016_55] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There are an increasing number of recombinant antibodies and proteins in preclinical and clinical development for therapeutic applications. Mammalian expression systems are key to enabling the production of these molecules, and Chinese hamster ovary (CHO) cell platforms continue to be central to delivery of the stable cell lines required for large-scale production. Increasing pressure on timelines and efficiency, further innovation of molecular formats and the shift to new production systems are driving developments of these CHO cell line platforms. The availability of genome and transcriptome data coupled with advancing gene editing tools are increasing the ability to design and engineer CHO cell lines to meet these challenges. This chapter aims to give an overview of the developments in CHO expression systems and some of the associated technologies over the past few years.
Collapse
Affiliation(s)
- Jie Zhu
- MedImmune, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Diane Hatton
- MedImmune, Milstein Building, Granta Park, Cambridge, CB21 6GH, UK.
| |
Collapse
|
21
|
Van der Weken H, Cox E, Devriendt B. Rapid production of a chimeric antibody-antigen fusion protein based on 2A-peptide cleavage and green fluorescent protein expression in CHO cells. MAbs 2019; 11:559-568. [PMID: 30694096 PMCID: PMC6512901 DOI: 10.1080/19420862.2019.1574531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/04/2019] [Accepted: 01/21/2019] [Indexed: 01/22/2023] Open
Abstract
To enable large-scale antibody production, the creation of a stable, high producer cell line is essential. This process often takes longer than 6 months using standard limited dilution techniques and is very labor intensive. The use of a tri-cistronic vector expressing green fluorescent protein (GFP) and both antibody chains, separated by a GT2A peptide sequence, allows expression of all proteins under a single promotor in equimolar ratios. By combining the advantages of 2A peptide cleavage and single cell sorting, a chimeric antibody-antigen fusion protein that contained the variable domains of mouse IgG with a porcine IgA constant domain fused to the FedF antigen could be produced in CHO-K1 cells. After transfection, a strong correlation was found between antibody production and GFP expression (r = 0.69) using image analysis of formed monolayer patches. This enables the rapid selection of GFP-positive clones using automated image analysis for the selection of high producer clones. This vector design allowed the rapid selection of high producer clones within a time-frame of 4 weeks after transfection. The highest producing clone had a specific antibody productivity of 2.32 pg/cell/day. Concentrations of 34 mg/L were obtained using shake-flask batch culture. The produced recombinant antibody showed stable expression, binding and minimal degradation. In the future, this antibody will be assessed for its effectiveness as an oral vaccine antigen.
Collapse
Affiliation(s)
- Hans Van der Weken
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ughent, Ghent, Belgium
| | - Eric Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ughent, Ghent, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ughent, Ghent, Belgium
| |
Collapse
|
22
|
Mauro VP. Codon Optimization in the Production of Recombinant Biotherapeutics: Potential Risks and Considerations. BioDrugs 2018; 32:69-81. [PMID: 29392566 DOI: 10.1007/s40259-018-0261-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biotherapeutics are increasingly becoming the mainstay in the treatment of a variety of human conditions, particularly in oncology and hematology. The production of therapeutic antibodies, cytokines, and fusion proteins have markedly accelerated these fields over the past decade and are probably the major contributor to improved patient outcomes. Today, most protein therapeutics are expressed as recombinant proteins in mammalian cell lines. An expression technology commonly used to increase protein levels involves codon optimization. This approach is possible because degeneracy of the genetic code enables most amino acids to be encoded by more than one synonymous codon and because codon usage can have a pronounced influence on levels of protein expression. Indeed, codon optimization has been reported to increase protein expression by > 1000-fold. The primary tactic of codon optimization is to increase the rate of translation elongation by overcoming limitations associated with species-specific differences in codon usage and transfer RNA (tRNA) abundance. However, in mammalian cells, assumptions underlying codon optimization appear to be poorly supported or unfounded. Moreover, because not all synonymous codon mutations are neutral, codon optimization can lead to alterations in protein conformation and function. This review discusses codon optimization for therapeutic protein production in mammalian cells.
Collapse
|
23
|
Sequential screening by ClonePix FL and intracellular staining facilitate isolation of high producer cell lines for monoclonal antibody manufacturing. J Immunol Methods 2017; 451:100-110. [DOI: 10.1016/j.jim.2017.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/09/2017] [Accepted: 08/29/2017] [Indexed: 01/14/2023]
|
24
|
Brown AJ, Kalsi D, Fernandez-Martell A, Cartwright J, Barber NOW, Patel YD, Turner R, Bryant CL, Johari YB, James DC. Expression Systems for Recombinant Biopharmaceutical Production by Mammalian Cells in Culture. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1002/9783527699124.ch13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Adam J. Brown
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Devika Kalsi
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | | | - Joe Cartwright
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Nicholas O. W. Barber
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Yash D. Patel
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | | | - Claire L. Bryant
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Yusuf B. Johari
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - David C. James
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| |
Collapse
|
25
|
Klottrup KJ, Miro-Quesada G, Flack L, Pereda I, Hawley-Nelson P. Measuring the aggregation of CHO cells prior to single cell cloning allows a more accurate determination of the probability of clonality. Biotechnol Prog 2017; 34:593-601. [PMID: 28556621 DOI: 10.1002/btpr.2500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/14/2017] [Indexed: 11/11/2022]
Abstract
The manufacturing process for biotherapeutics is closely regulated by the Food and Drug Administration (FDA), European Medicines Agency (EMA) and other regulatory agencies worldwide. To ensure consistency of the product of a manufacturing cell line, International Committee on Harmonization guidelines (Q5D, 1997) state that the cell substrate should be derived from a single cell progenitor, i.e., clonal.Cell lines in suspension culture may naturally revert to cell adhesion in the form of doublets, triplets and higher order structures of clustered cells. We can show evidence of a single colony from limiting dilution cloning or in semi-solid media, but we cannot determine the number of cells from which the colony originated. To address this, we have used the ViCELL® XR (Beckman Coulter, High Wycombe, UK) cell viability analyzer to determine the proportion of clusters of two or more cells in a sample of the cell suspension immediately prior to cloning. Here, we show data to define the accuracy of the ViCELL for characterizing a cell suspension and summarize the statistical model combining two or more rounds of cloning to derive the probability of clonality. The resulting statistical model is applied to cloning in semi-solid medium, but could equally be applied to a limiting dilution cloning process. We also describe approaches to reduce cell clusters to generate a cell line with a high probability of clonality from a CHO host lineage. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:593-601, 2018.
Collapse
Affiliation(s)
- Kerensa J Klottrup
- Cell Culture and Fermentation Sciences, Biopharmaceutical Development, MedImmune, Cambridge, CB21 6GH, UK
| | - Guillermo Miro-Quesada
- Data Management and Quantitative Sciences, Biopharmaceutical Development, MedImmune, Gaithersburg, MD, 20878
| | | | - Ivan Pereda
- R&D Informatics, AstraZeneca, Cambridge, CB21 6GH, UK
| | - Pamela Hawley-Nelson
- Cell Culture and Fermentation Sciences, Biopharmaceutical Development, MedImmune, Gaithersburg, MD, 20878
| |
Collapse
|
26
|
Droz X, Harraghy N, Lançon E, Le Fourn V, Calabrese D, Colombet T, Liechti P, Rida A, Girod PA, Mermod N. Automated microfluidic sorting of mammalian cells labeled with magnetic microparticles for those that efficiently express and secrete a protein of interest. Biotechnol Bioeng 2017; 114:1791-1802. [DOI: 10.1002/bit.26270] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/05/2017] [Accepted: 02/15/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Xuan Droz
- Department of Fundamental Microbiology, Institute of Biotechnology, University of Lausanne; Center for Biotechnology UNIL-EPFL; Lausanne Switzerland
| | - Niamh Harraghy
- Department of Fundamental Microbiology, Institute of Biotechnology, University of Lausanne; Center for Biotechnology UNIL-EPFL; Lausanne Switzerland
| | - Etienne Lançon
- Department of Fundamental Microbiology, Institute of Biotechnology, University of Lausanne; Center for Biotechnology UNIL-EPFL; Lausanne Switzerland
| | | | | | | | | | | | | | - Nicolas Mermod
- Department of Fundamental Microbiology, Institute of Biotechnology, University of Lausanne; Center for Biotechnology UNIL-EPFL; Lausanne Switzerland
| |
Collapse
|
27
|
Abali F, Stevens M, Tibbe AGJ, Terstappen LWMM, van der Velde PN, Schasfoort RBM. Isolation of single cells for protein therapeutics using microwell selection and Surface Plasmon Resonance imaging. Anal Biochem 2017; 531:45-47. [PMID: 28545866 DOI: 10.1016/j.ab.2017.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 10/19/2022]
Abstract
Here the feasibility is demonstrated that by combining Surface Plasmon Resonance Imaging (SPRi) and self-sorting microwell technology product secretion of individual cells can be monitored. Additionally isolation of the selected cells can be performed by punching the cells from the microwells using coordinates of the positions of microwells obtained with SPRi. Cells of interest can be retrieved sterile from the microwell array for further cultivation.
Collapse
Affiliation(s)
- F Abali
- Medical Cell Biophysics Group, MIRA Institute, Faculty of Science and Technology, University of Twente, PO Box 217, 7500AE Enschede, The Netherlands
| | - M Stevens
- VyCAP, Abraham Rademakerstraat 41, 7425PG Deventer, The Netherlands
| | - A G J Tibbe
- VyCAP, Abraham Rademakerstraat 41, 7425PG Deventer, The Netherlands
| | - L W M M Terstappen
- Medical Cell Biophysics Group, MIRA Institute, Faculty of Science and Technology, University of Twente, PO Box 217, 7500AE Enschede, The Netherlands.
| | | | - R B M Schasfoort
- Medical Cell Biophysics Group, MIRA Institute, Faculty of Science and Technology, University of Twente, PO Box 217, 7500AE Enschede, The Netherlands; Interfluidics BV, Duizendblad 28, 7483 AL Haaksbergen, The Netherlands
| |
Collapse
|
28
|
Takagi Y, Kikuchi T, Wada R, Omasa T. The enhancement of antibody concentration and achievement of high cell density CHO cell cultivation by adding nucleoside. Cytotechnology 2017; 69:511-521. [PMID: 28251404 DOI: 10.1007/s10616-017-0066-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/05/2017] [Indexed: 01/05/2023] Open
Abstract
Recently, with the dramatic increase in demand for therapeutic antibodies, Chinese hamster ovary (CHO) cell culture systems have made significant progress in recombinant antibody production. Over the past two decades, recombinant antibody productivity has been improved by more than 100-fold. Medium optimization has been identified as an important key approach for increasing product concentrations. In this study, we evaluated the effects of deoxyuridine addition to fed-batch cultures of antibody-expressing CHO cell lines. Furthermore, we investigated the effects of combined addition of deoxyuridine, thymidine, and deoxycytidine. Our results suggest that addition of these pyrimidine nucleosides can increase CHO cell growth, with no significant change in the specific production rate. As a result of the increased cell growth, the antibody concentration was elevated and we were able to achieve more than 9 g/L during 16 days of culture. Similar effects of nucleoside addition were observed in fed-batch cultures of a Fab fragment-expressing CHO cell line, and the final Fab fragment concentration was more than 4 g/L. This nucleoside addition strategy could be a powerful platform for efficient antibody production.
Collapse
Affiliation(s)
- Yasuhiro Takagi
- Institute of Bioscience and Bioindustry, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, 770-8506, Japan
- Biotechnology Laboratories, Astellas Pharma Inc., 5-2-3 Tokodai, Tsukuba, Ibaraki, 300-2698, Japan
| | - Takuya Kikuchi
- Biotechnology Laboratories, Astellas Pharma Inc., 5-2-3 Tokodai, Tsukuba, Ibaraki, 300-2698, Japan
| | - Ryuta Wada
- Biotechnology Laboratories, Astellas Pharma Inc., 5-2-3 Tokodai, Tsukuba, Ibaraki, 300-2698, Japan
| | - Takeshi Omasa
- Institute of Bioscience and Bioindustry, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, 770-8506, Japan.
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
29
|
Tsuruta LR, Lopes dos Santos M, Yeda FP, Okamoto OK, Moro AM. Genetic analyses of Per.C6 cell clones producing a therapeutic monoclonal antibody regarding productivity and long-term stability. Appl Microbiol Biotechnol 2016; 100:10031-10041. [DOI: 10.1007/s00253-016-7841-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/21/2016] [Accepted: 09/07/2016] [Indexed: 11/27/2022]
|