1
|
Noroozi K, Jarboe LR. Strategic nutrient sourcing for biomanufacturing intensification. J Ind Microbiol Biotechnol 2023; 50:kuad011. [PMID: 37245065 PMCID: PMC10549214 DOI: 10.1093/jimb/kuad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
The successful design of economically viable bioprocesses can help to abate global dependence on petroleum, increase supply chain resilience, and add value to agriculture. Specifically, bioprocessing provides the opportunity to replace petrochemical production methods with biological methods and to develop novel bioproducts. Even though a vast range of chemicals can be biomanufactured, the constraints on economic viability, especially while competing with petrochemicals, are severe. There have been extensive gains in our ability to engineer microbes for improved production metrics and utilization of target carbon sources. The impact of growth medium composition on process cost and organism performance receives less attention in the literature than organism engineering efforts, with media optimization often being performed in proprietary settings. The widespread use of corn steep liquor as a nutrient source demonstrates the viability and importance of "waste" streams in biomanufacturing. There are other promising waste streams that can be used to increase the sustainability of biomanufacturing, such as the use of urea instead of fossil fuel-intensive ammonia and the use of struvite instead of contributing to the depletion of phosphate reserves. In this review, we discuss several process-specific optimizations of micronutrients that increased product titers by twofold or more. This practice of deliberate and thoughtful sourcing and adjustment of nutrients can substantially impact process metrics. Yet the mechanisms are rarely explored, making it difficult to generalize the results to other processes. In this review, we will discuss examples of nutrient sourcing and adjustment as a means of process improvement. ONE-SENTENCE SUMMARY The potential impact of nutrient adjustments on bioprocess performance, economics, and waste valorization is undervalued and largely undercharacterized.
Collapse
Affiliation(s)
- Kimia Noroozi
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Laura R Jarboe
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
2
|
Lane S, Turner TL, Jin YS. Glucose assimilation rate determines the partition of flux at pyruvate between lactic acid and ethanol in Saccharomyces cerevisiae. Biotechnol J 2023; 18:e2200535. [PMID: 36723451 DOI: 10.1002/biot.202200535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/16/2022] [Accepted: 01/19/2023] [Indexed: 02/02/2023]
Abstract
Engineered Saccharomyces cerevisiae expressing a lactic acid dehydrogenase can metabolize pyruvate into lactic acid. However, three pyruvate decarboxylase (PDC) isozymes drive most carbon flux toward ethanol rather than lactic acid. Deletion of endogenous PDCs will eliminate ethanol production, but the resulting strain suffers from C2 auxotrophy and struggles to complete a fermentation. Engineered yeast assimilating xylose or cellobiose produce lactic acid rather than ethanol as a major product without the deletion of any PDC genes. We report here that sugar flux, but not sensing, contributes to the partition of flux at the pyruvate branch point in S. cerevisiae expressing the Rhizopus oryzae lactic acid dehydrogenase (LdhA). While the membrane glucose sensors Snf3 and Rgt2 did not play any direct role in the option of predominant product, the sugar assimilation rate was strongly correlated to the partition of flux at pyruvate: fast sugar assimilation favors ethanol production while slow sugar assimilation favors lactic acid. Applying this knowledge, we created an engineered yeast capable of simultaneously converting glucose and xylose into lactic acid, increasing lactic acid production to approximately 17 g L-1 from the 12 g L-1 observed during sequential consumption of sugars. This work elucidates the carbon source-dependent effects on product selection in engineered yeast.
Collapse
Affiliation(s)
- Stephan Lane
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Timothy L Turner
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
3
|
Su YQ, Min SN, Jian XY, Guo YC, He SH, Huang CY, Zhang Z, Yuan S, Chen YE. Bioreduction mechanisms of high-concentration hexavalent chromium using sulfur salts by photosynthetic bacteria. CHEMOSPHERE 2023; 311:136861. [PMID: 36243096 DOI: 10.1016/j.chemosphere.2022.136861] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/06/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Eliminating "sulfur starvation" caused by competition for sulfate transporters between chromate and sulfate is crucial to enhance the content of sulfur-containing compounds and improve the tolerance and reduction capability of Cr(VI) in bacteria. In this study, the effects of sulfur salts on the Cr(VI) bioremediation and the possible mechanism were investigated in Rhodobacter sphaeroides SC01 by cell imaging, spectroscopy, and biochemical measurements. The results showed that, when the concentration of metabisulfite was 2.0 g L-1, and the initial OD600 was 0.33, the reduction rate of R. sphaeroides SC01 reached up to 91.3% for 500 mg L-1 Cr(VI) exposure at 96 h. Moreover, thiosulfate and sulfite also markedly increased the concentration of reduced Cr(VI) in R. sphaeroides SC01. Furthermore, the characterization results revealed that -OH, -CONH, -COOH, -SO3, -PO3, and -S-S- played a major role in the adsorption of Cr, and Cr(III) reduced by bacteria was bioprecipitated in the production of Cr2P3S9 and CrPS4. In addition, R. sphaeroids SC01 combined with metabisulfite significantly increased the activity of glutathione peroxidase and the content of glutathione (GSH) and total sulfhydryl while decreasing reactive oxygen species (ROS) accumulation and cell death induced by Cr(VI) toxic. Overall, the results of this research revealed a highly efficient and reliable strategy for Cr(VI) removal by photosynthetic bacteria combined with sulfur salts in high-concentration Cr(VI)-contaminated wastewater.
Collapse
Affiliation(s)
- Yan-Qiu Su
- College of Life Science, Sichuan Normal University, Chengdu, China.
| | - Shuang-Nan Min
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Xin-Yi Jian
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Yuan-Cheng Guo
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Shu-Hao He
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Chun-Yi Huang
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Zheng Zhang
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yang-Er Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China.
| |
Collapse
|
4
|
Abstract
Reactive compounds with one or more sulfane sulfur atoms can be an important source of reductive off-odors in wine. These substances contain labile sulfur, which can participate in microbiological (enzymatic) and chemical transformations (including in the post-bottling period), releasing malodorous hydrogen sulfide (H2S) and its derivatives (MeSH, EtSH, etc.). The following sulfane sulfur compounds were considered in this review as important precursors in the wine chemistry of reductive aromas: elemental sulfur (S8), persulfides (R-S-S-H), polysulfanes (R-Sn-R(′)), polythionates (−O3S-Sn-SO3−), thiosulfate (S2O32−) and derivatives of (poly)sulfane monosulfonic acids (R-Sn-SO3H). This review discusses the formation of these compounds, their reactivity and chemical transformations in wine, including reactions of nucleophilic substitution. In particular, the reactions of thiolysis, thiosulfatolysis and sulfitolysis of sulfane sulfur compounds are described, which lead in the end to reductive aroma compounds. In this way, the review attempts to shed light on some of the mysteries in the field of sulfur chemistry in wine and the reappearance of reductive off-odors after bottling.
Collapse
|
5
|
Ohtsuka H, Shimasaki T, Aiba H. Response to sulfur in Schizosaccharomyces pombe. FEMS Yeast Res 2021; 21:6324000. [PMID: 34279603 PMCID: PMC8310684 DOI: 10.1093/femsyr/foab041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
Sulfur is an essential component of various biologically important molecules, including methionine, cysteine and glutathione, and it is also involved in coping with oxidative and heavy metal stress. Studies using model organisms, including budding yeast (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe), have contributed not only to understanding various cellular processes but also to understanding the utilization and response mechanisms of each nutrient, including sulfur. Although fission yeast can use sulfate as a sulfur source, its sulfur metabolism pathway is slightly different from that of budding yeast because it does not have a trans-sulfuration pathway. In recent years, it has been found that sulfur starvation causes various cellular responses in S. pombe, including sporulation, cell cycle arrest at G2, chronological lifespan extension, autophagy induction and reduced translation. This MiniReview identifies two sulfate transporters in S. pombe, Sul1 (encoded by SPBC3H7.02) and Sul2 (encoded by SPAC869.05c), and summarizes the metabolic pathways of sulfur assimilation and cellular response to sulfur starvation. Understanding these responses, including metabolism and adaptation, will contribute to a better understanding of the various stress and nutrient starvation responses and chronological lifespan regulation caused by sulfur starvation.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
6
|
Chen Z, Xia Y, Liu H, Liu H, Xun L. The Mechanisms of Thiosulfate Toxicity against Saccharomyces cerevisiae. Antioxidants (Basel) 2021; 10:antiox10050646. [PMID: 33922196 PMCID: PMC8146336 DOI: 10.3390/antiox10050646] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022] Open
Abstract
Elemental sulfur and sulfite have been used to inhibit the growth of yeasts, but thiosulfate has not been reported to be toxic to yeasts. We observed that thiosulfate was more inhibitory than sulfite to Saccharomyces cerevisiae growing in a common yeast medium. At pH < 4, thiosulfate was a source of elemental sulfur and sulfurous acid, and both were highly toxic to the yeast. At pH 6, thiosulfate directly inhibited the electron transport chain in yeast mitochondria, leading to reductions in oxygen consumption, mitochondrial membrane potential and cellular ATP. Although thiosulfate was converted to sulfite and H2S by the mitochondrial rhodanese Rdl1, its toxicity was not due to H2S as the rdl1-deletion mutant that produced significantly less H2S was more sensitive to thiosulfate than the wild type. Evidence suggests that thiosulfate inhibits cytochrome c oxidase of the electron transport chain in yeast mitochondria. Thus, thiosulfate is a potential agent against yeasts.
Collapse
Affiliation(s)
- Zhigang Chen
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (Z.C.); (Y.X.); (H.L.)
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (Z.C.); (Y.X.); (H.L.)
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (Z.C.); (Y.X.); (H.L.)
| | - Honglei Liu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (Z.C.); (Y.X.); (H.L.)
- Correspondence: (H.L.); (L.X.); Tel.: +86-15966642788 (H.L.); +1-509-335-2787 (L.X.)
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (Z.C.); (Y.X.); (H.L.)
- School of Molecular Biosciences, Washington State University, Pullman, WA 991647520, USA
- Correspondence: (H.L.); (L.X.); Tel.: +86-15966642788 (H.L.); +1-509-335-2787 (L.X.)
| |
Collapse
|
7
|
Tanaka Y, Yoshikaie K, Takeuchi A, Ichikawa M, Mori T, Uchino S, Sugano Y, Hakoshima T, Takagi H, Nonaka G, Tsukazaki T. Crystal structure of a YeeE/YedE family protein engaged in thiosulfate uptake. SCIENCE ADVANCES 2020; 6:eaba7637. [PMID: 32923628 PMCID: PMC7449682 DOI: 10.1126/sciadv.aba7637] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 07/13/2020] [Indexed: 05/04/2023]
Abstract
We have demonstrated that a bacterial membrane protein, YeeE, mediates thiosulfate uptake. Thiosulfate is used for cysteine synthesis in bacteria as an inorganic sulfur source in the global biological sulfur cycle. The crystal structure of YeeE at 2.5-Å resolution reveals an unprecedented hourglass-like architecture with thiosulfate in the positively charged outer concave side. YeeE is composed of loops and 13 helices including 9 transmembrane α helices, most of which show an intramolecular pseudo 222 symmetry. Four characteristic loops are buried toward the center of YeeE and form its central region surrounded by the nine helices. Additional electron density maps and successive molecular dynamics simulations imply that thiosulfate can remain temporally at several positions in the proposed pathway. We propose a plausible mechanism of thiosulfate uptake via three important conserved cysteine residues of the loops along the pathway.
Collapse
Affiliation(s)
- Yoshiki Tanaka
- Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | | | - Azusa Takeuchi
- Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | | | - Tomoyuki Mori
- Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Sayaka Uchino
- Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Yasunori Sugano
- Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Toshio Hakoshima
- Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Hiroshi Takagi
- Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Gen Nonaka
- Ajinomoto-Genetika Research Institute, Moscow 117545, Russia
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co. Inc., Kawasaki 210-8681, Japan
| | - Tomoya Tsukazaki
- Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- Corresponding author.
| |
Collapse
|
8
|
Nakajima T, Kawano Y, Ohtsu I, Maruyuama-Nakashita A, Allahham A, Sato M, Sawada Y, Hirai MY, Yokoyama T, Ohkama-Ohtsu N. Effects of Thiosulfate as a Sulfur Source on Plant Growth, Metabolites Accumulation and Gene Expression in Arabidopsis and Rice. PLANT & CELL PHYSIOLOGY 2019; 60:1683-1701. [PMID: 31077319 DOI: 10.1093/pcp/pcz082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Plants are considered to absorb sulfur from their roots in the form of sulfate. In bacteria like Escherichia coli, thiosulfate is a preferred sulfur source. It is converted into cysteine (Cys). This transformation consumes less NADPH and ATP than sulfate assimilation into Cys. In Saccharomyces cerevisiae, thiosulfate promoted growth more than sulfate. In the present study, the availability of thiosulfate, the metabolite transformations and gene expressions it induces were investigated in Arabidopsis and rice as model dicots and monocots, respectively. In Arabidopsis, the thiosulfate-amended plants had lower biomass than those receiving sulfate when sulfur concentrations in the hydroponic medium were above 300 μM. In contrast, rice biomass was similar for plants raised on thiosulfate and sulfate at 300 μM sulfur. Therefore, both plants can use thiosulfate but it is a better sulfur source for rice. In both plants, thiosulfate levels significantly increased in roots following thiosulfate application, indicating that the plants absorbed thiosulfate into their root cells. Thiosulfate is metabolized in plants by a different pathway from that used for sulfate metabolism. Thiosulfate increases plant sulfide and cysteine persulfide levels which means that plants are in a more reduced state with thiosulfate than with sulfate. The microarray analysis of Arabidopsis roots revealed that 13 genes encoding Cys-rich proteins were upregulated more with thiosulfate than with sulfate. These results together with those of the widely targeted metabolomics analysis were used to proposes a thiosulfate assimilation pathway in plants.
Collapse
Affiliation(s)
- Takatsugu Nakajima
- Graduate school of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yusuke Kawano
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Iwao Ohtsu
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | | | - Alaa Allahham
- Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, Japan
| | - Muneo Sato
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Yuji Sawada
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | | | - Tadashi Yokoyama
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Naoko Ohkama-Ohtsu
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Institute of Global Innovation research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
9
|
Takagi H. Metabolic regulatory mechanisms and physiological roles of functional amino acids and their applications in yeast. Biosci Biotechnol Biochem 2019; 83:1449-1462. [PMID: 30712454 DOI: 10.1080/09168451.2019.1576500] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In yeast, amino acid metabolism and its regulatory mechanisms vary under different growth environments by regulating anabolic and catabolic processes, including uptake and export, and the metabolic styles form a complicated but robust network. There is also crosstalk with various metabolic pathways, products and signal molecules. The elucidation of metabolic regulatory mechanisms and physiological roles is important fundamental research for understanding life phenomenon. In terms of industrial application, the control of amino acid composition and content is expected to contribute to an improvement in productivity, and to add to the value of fermented foods, alcoholic beverages, bioethanol, and other valuable compounds (proteins and amino acids, etc.). This review article mainly describes our research in constructing yeast strains with high functionality, focused on the metabolic regulatory mechanisms and physiological roles of "functional amino acids", such as l-proline, l-arginine, l-leucine, l-valine, l-cysteine, and l-methionine, found in yeast.
Collapse
Affiliation(s)
- Hiroshi Takagi
- a Division of Biological Science, Graduate School of Science and Technology , Nara Institute of Science and Technology , Nara , Japan
| |
Collapse
|
10
|
The Complete Pathway for Thiosulfate Utilization in Saccharomyces cerevisiae. Appl Environ Microbiol 2018; 84:AEM.01241-18. [PMID: 30217845 DOI: 10.1128/aem.01241-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/02/2018] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae is known to grow with thiosulfate as a sulfur source, and it produces more ethanol when using thiosulfate than using sulfate. Here, we report how it assimilates thiosulfate. S. cerevisiae absorbed thiosulfate into the cell through two sulfate permeases, Sul1 and Sul2. Two rhodaneses, Rdl1 and Rdl2, converted thiosulfate to a persulfide and sulfite. The persulfide was reduced by cellular thiols to H2S, and sulfite was reduced by sulfite reductase to H2S. Cysteine synthase incorporated H2S into O-acetyl-l-homoserine to produce l-homocysteine, which is the precursor for cysteine and methionine in S. cerevisiae Several other rhodaneses replaced Rdl1 and Rdl2 for thiosulfate utilization in the yeast. Thus, any organisms with the sulfate assimilation system potentially could use thiosulfate as a sulfur source, since rhodaneses are common in most organisms.IMPORTANCE The complete pathway of thiosulfate assimilation in baker's yeast is determined. The finding reveals the extensive overlap between sulfate and thiosulfate assimilation. Rhodanese is the only additional enzyme for thiosulfate utilization. The common presence of rhodanese in most organisms, including Bacteria, Archaea, and Eukarya, suggests that most organisms with the sulfate assimilation system also use thiosulfate. Since it takes less energy to reduce thiosulfate than sulfate for assimilation, thiosulfate has the potential to become a choice of sulfur in optimized media for industrial fermentation.
Collapse
|
11
|
Kawano Y, Suzuki K, Ohtsu I. Current understanding of sulfur assimilation metabolism to biosynthesize L-cysteine and recent progress of its fermentative overproduction in microorganisms. Appl Microbiol Biotechnol 2018; 102:8203-8211. [PMID: 30046857 DOI: 10.1007/s00253-018-9246-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/01/2022]
Abstract
To all organisms, sulfur is an essential and important element. The assimilation of inorganic sulfur molecules such as sulfate and thiosulfate into organic sulfur compounds such as L-cysteine and L-methionine (essential amino acid for human) is largely contributed by microorganisms. Of these, special attention is given to thiosulfate (S2O32-) assimilation, because thiosulfate relative to often utilized sulfate (SO42-) as a sulfur source is proposed to be more advantageous in microbial growth and biotechnological applications like L-cysteine fermentative overproduction toward industrial manufacturing. In Escherichia coli as well as other many bacteria, the thiosulfate assimilation pathway is known to depend on O-acetyl-L-serine sulfhydrylase B. Recently, another yet-unidentified CysM-independent thiosulfate pathway was found in E. coli. This pathway is expected to consist of the initial part of the thiosulfate to sulfite (SO32-) conversion, and the latter part might be shared with the final part of the known sulfate assimilation pathway [sulfite → sulfide (S2-) → L-cysteine]. The catalysis of thiosulfate to sulfite is at least partly mediated by thiosulfate sulfurtransferase (GlpE). In this mini-review, we introduce updated comprehensive information about sulfur assimilation in microorganisms, including this topic. Also, we introduce recent advances of the application study about L-cysteine overproduction, including the GlpE overexpression.
Collapse
Affiliation(s)
- Yusuke Kawano
- Innovation Medical Research Institute, University of Tsukuba, Tsukuba, Japan
| | - Kengo Suzuki
- Department of Research and Development, Euglena Co., Ltd., Minato-ku, Tokyo, Japan
| | - Iwao Ohtsu
- Innovation Medical Research Institute, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
12
|
Parshina AV, Denisova TS, Safronova EY, Karavanova YA, Safronov DV, Bobreshova OV, Yaroslavtsev AB. Determination of sulfur-containing anions in alkaline solutions using arrays of DP-sensors based on hybrid perfluorinated membranes with proton-donor dopants. JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1134/s1061934817120097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Huang CW, Walker ME, Fedrizzi B, Gardner RC, Jiranek V. Hydrogen sulfide and its roles in Saccharomyces cerevisiae in a winemaking context. FEMS Yeast Res 2017; 17:4056150. [DOI: 10.1093/femsyr/fox058] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/28/2017] [Indexed: 01/02/2023] Open
|
14
|
Improved fermentative l-cysteine overproduction by enhancing a newly identified thiosulfate assimilation pathway in Escherichia coli. Appl Microbiol Biotechnol 2017; 101:6879-6889. [DOI: 10.1007/s00253-017-8420-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/09/2017] [Accepted: 07/02/2017] [Indexed: 10/19/2022]
|
15
|
l-Cysteine Metabolism and Fermentation in Microorganisms. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 159:129-151. [DOI: 10.1007/10_2016_29] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|