1
|
Bakke M. A Comprehensive Analysis of ATP Tests: Practical Use and Recent Progress in the Total Adenylate Test for the Effective Monitoring of Hygiene. J Food Prot 2022; 85:1079-1095. [PMID: 35503956 DOI: 10.4315/jfp-21-384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/26/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Rapid hygiene monitoring tests based on the presence of ATP have been widely used in the food industry to ensure that adequate cleanliness is maintained. In this study, the practical applications and limitations of these tests and recent technological progress for facilitating more accurate control were evaluated. The presence of ATP on a surface indicates improper cleaning and the presence of contaminants, including organic debris and bacteria. Food residues are indicators of insufficient cleaning and are direct hazards because they may provide safe harbors for bacteria, provide sources of nutrients for bacterial growth, interfere with the antimicrobial activity of disinfectants, and support the formation of biofilms. Residues of allergenic foods on a surface may increase the risk of allergen cross-contact. However, ATP tests cannot detect bacteria or allergenic proteins directly. To ensure efficient use of commercially available ATP tests, in-depth knowledge is needed regarding their practical applications, methods for determining pass-fail limits, and differences in performance. Conventional ATP tests have limitations due to possible hydrolysis of ATP to ADP and AMP, which further hinders the identification of food residues. To overcome this problem, a total adenylate test was developed that could detect ATP+ADP+AMP (A3 test). The A3 test is suitable for the detection of adenylates from food residues and useful for verification of hygiene levels. The A3 test in conjunction with other methods, such as microorganism culture and food allergen tests, may be a useful strategy for identifying contamination sources and facilitating effective hygiene management. HIGHLIGHTS
Collapse
Affiliation(s)
- Mikio Bakke
- Kikkoman Biochemifa Company, Marketing & Planning Division, 2-1-1 Nishi-shinbashi, Minato-ku, Tokyo 105-0003, Japan
| |
Collapse
|
2
|
Weng X, Li J, Sui X, Li M, Yin W, Ma W, Yang L, Mu L. Soil microbial functional diversity responses to different vegetation types in the Heilongjiang Zhongyangzhan Black-billed Capercaillie Nature Reserve. ANN MICROBIOL 2021. [DOI: 10.1186/s13213-021-01638-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
The soil microbial community is an important bioactive component of terrestrial ecosystems. Its structural and functional diversity directly affects carbon and nitrogen processes. This study aimed to investigate the variations in the functional diversity of soil microbial communities in forests with different types of vegetation.
Methods
We selected three typical vegetation types, larch (LG), black birch (BD), and larch and black birch mixed (LGBD) forests, located in the Heilongjiang Zhongyangzhan Black-billed Capercaillie Nature Reserve. The Biolog-Eco microplate technology was selected to perform these analyses.
Result
Our results showed clear differences between microorganisms in the three typical forests. The average well colour development (AWCD) change rate gradually increased with incubation time. The BD type had the highest AWCD value, followed by LGBD; the LG forest type had the lowest value. The difference in the soil microbial alpha diversity index between BD and LG was significant. A principal component analysis showed that PC1 and PC2 respectively explained 62.77% and 13.3% of the variance observed. The differences in the soil microbial carbon-source utilisation patterns under different vegetation types were mainly caused by esters and carbohydrates. Redundancy analysis showed that soil microbial functional diversity was strongly affected by soil physicochemistrical properties (e.g. organic carbon, total nitrogen and pH).
Conclusion
These results provide a reference for further exploring the relationship between forest communities and soil microbes during the process of forest succession.
Collapse
|
3
|
Wang X, Cao X, Liu H, Guo L, Lin Y, Liu X, Xiong Y, Ni K, Yang F. Effects of Lactic Acid Bacteria on Microbial Metabolic Functions of Paper Mulberry Silage: A BIOLOG ECO Microplates Approach. Front Microbiol 2021; 12:689174. [PMID: 34248912 PMCID: PMC8267872 DOI: 10.3389/fmicb.2021.689174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Lactic acid bacteria occupy an important position in silage microorganisms, and the effects of exogenous lactic acid bacteria on silage quality have been widely studied. Microbial metabolism has been proved as an indicator of substrate utilization by microorganisms. Paper mulberry is rich in free carbohydrate, amino acids, and other components, with the potential to be decomposed and utilized. In this study, changes in the microbial metabolism characteristics of paper mulberry silage with Lactiplantibacillus plantarum (LP) and Lentilactobacillus buchneri (LB) were studied along with a control (CK) using BIOLOG ECO microplates. The results showed that average well-color development (AWCD), Shannon diversity, Shannon evenness, and Simpson diversity exhibited significant temporal trends. LB and LP responded differently in the early ensiling phase, and the AWCD of LB was higher than LP at 7 days. Principal component analysis revealed that CK, LB, and LP samples initially clustered at 3 days and then moved into another similar cluster after 15 days. Overall, the microplates methodology applied in this study offers important advantages, not least in terms of accuracy.
Collapse
Affiliation(s)
- Xuekai Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Xinxin Cao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Han Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Linna Guo
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Yanli Lin
- College of Grassland Science and Technology, China Agricultural University, Beijing, China.,Beijing Sure Academy of Biosciences Co., Ltd., Beijing, China
| | - Xiaojing Liu
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| | - Yi Xiong
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Kuikui Ni
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Fuyu Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
The Second-Generation Biomethane from Mandarin Orange Peel under Cocultivation with Methanogens and the Armed Clostridium cellulovorans. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5040095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study demonstrates that the consortium, which consists of the microbial flora of methane production (MFMP) and Clostridium cellulovorans grown with cellulose, can perform the direct conversion of cellulosic biomass to methane. The MFMP was taken from a commercial methane fermentation tank and was extremely complicated. Therefore, C. cellulovorans grown with cellobiose could not perform high degradation ability on cellulosic biomass due to competition by various microorganisms in MFMP. Focusing on the fact that C. cellulovorans was cultivated with cellulose, which is armed with cellulosome, so that it is now armed C. cellulovorans; the direct conversion was carried out by the consortium which consisted of MFMP and the armed C. cellulovorans. As a result, the consortium of C. cellulovorans grown with cellobiose and MFMP (CCeM) could not degrade the purified cellulose and mandarin orange peel. However, MFMP and the armed C. cellulovorans reduced 78.4% of the total sugar of the purified cellulose such as MN301, and produced 6.89 mL of methane simultaneously. Furthermore, the consortium consisted of MFMP and the armed C. cellulovorans degraded mandarin orange peel without any pretreatments and produced methane that was accounting for 66.2% of the total produced gas.
Collapse
|
5
|
Fricke C, Harms H, Maskow T. Rapid Calorimetric Detection of Bacterial Contamination: Influence of the Cultivation Technique. Front Microbiol 2019; 10:2530. [PMID: 31736935 PMCID: PMC6838224 DOI: 10.3389/fmicb.2019.02530] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/21/2019] [Indexed: 11/13/2022] Open
Abstract
Modern isothermal microcalorimeters (IMC) are able to detect the metabolic heat of bacteria with an accuracy sufficient to recognize even the smallest traces of bacterial contamination of water, food, and medical samples. The modern IMC techniques are often superior to conventional detection methods in terms of the detection time, reliability, labor, and technical effort. What is missing is a systematic analysis of the influence of the cultivation conditions on calorimetric detection. For the acceptance of IMC techniques, it is advantageous if already standardized cultivation techniques can be combined with calorimetry. Here we performed such a systematic analysis using Lactobacillus plantarum as a model bacterium. Independent of the cultivation techniques, IMC detections were much faster for high bacterial concentrations (>102 CFU⋅mL-1) than visual detections. At low bacterial concentrations (<102 CFU⋅mL-1), detection times were approximately the same. Our data demonstrate that all kinds of traditional cultivation techniques like growth on agar (GOA) or in agar (GIA), in liquid media (GL) or on agar after enrichment via membrane filtration (GF) can be combined with IMC. The order of the detection times was GF < GIA ≈ GL ≈ GOA. The observed linear relationship between the calorimetric detection times and the initial bacterial concentrations can be used to quantify the bacterial contamination. Further investigations regarding the correlation between the filling level (in mm) of the calorimetric vessel and the specific maximum heat flow (in μW⋅g-1) illustrated two completely different results for liquid and solid media. Due to the better availability of substrates and the homogeneous distribution of bacteria growing in a liquid medium, the volume-related maximum heat flow was independent on the filling level of the calorimetric vessels. However, in a solid medium, the volume-related maximum heat flow approached a threshold and achieved a maximum at low filling levels. This fundamentally different behavior can be explained by the spatial limitation of the growth of bacterial colonies and the reduced substrate supply due to diffusion.
Collapse
Affiliation(s)
| | | | - Thomas Maskow
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| |
Collapse
|
6
|
Aburaya S, Aoki W, Kuroda K, Minakuchi H, Ueda M. Temporal proteome dynamics of Clostridium cellulovorans cultured with major plant cell wall polysaccharides. BMC Microbiol 2019; 19:118. [PMID: 31159733 PMCID: PMC6547498 DOI: 10.1186/s12866-019-1480-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 05/07/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Clostridium cellulovorans is a mesophilic, cellulosome-producing bacterium containing 57 genomic cellulosomal enzyme-encoding genes. In addition to cellulosomal proteins, C. cellulovorans also secretes non-cellulosomal proteins to degrade plant cell wall polysaccharides. Unlike other cellulosome-producing Clostridium species, C. cellulovorans can metabolize all major plant cell wall polysaccharides (cellulose, hemicelluloses, and pectins). In this study, we performed a temporal proteome analysis of C. cellulovorans to reveal strategies underlying plant cell wall polysaccharide degradation. RESULTS We cultured C. cellulovorans with five different carbon sources (glucose, cellulose, xylan, galactomannan, and pectin) and performed proteome analysis on cellular and secreted proteins. In total, we identified 1895 cellular proteins and 875 secreted proteins. The identified unique carbohydrate-degrading enzymes corresponding to each carbon source were annotated to have specific activity against each carbon source. However, we identified pectate lyase as a unique enzyme in C. cellulovorans cultivated on xylan, which was not previously associated with xylan degradation. We performed k-means clustering analysis for elucidation of temporal changes of the cellular and secreted proteins in each carbon sources. We found that cellular proteins in most of the k-means clusters are involved in carbohydrate metabolism, amino acid metabolism, translation, or membrane transport. When xylan and pectin were used as the carbon sources, the most increasing k-means cluster contained proteins involved in the metabolism of cofactors and vitamins. In case of secreted proteins of C. cellulovorans cultured either on cellulose or xylan, galactomannan, and pectin, the clusters with the most increasing trend contained either 25 cellulosomal proteins and five non-cellulosomal proteins or 8-19 cellulosomal proteins and 9-16 non-cellulosomal proteins, respectively. These differences might reflect mechanisms for degrading cellulose of other carbon source. Co-abundance analysis of the secreted proteins revealed that proteases and protease inhibitors accumulated coordinately. This observation implies that the secreted protease inhibitors and proteases protect carbohydrate-degrading enzymes from an attack from the plant. CONCLUSION In this study, we clarified, for the first time, the temporal proteome dynamics of cellular and secreted proteins in C. cellulovorans. This data will be valuable in understanding strategies employed by C. cellulovorans for degrading major plant cell wall polysaccharides.
Collapse
Affiliation(s)
- Shunsuke Aburaya
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan.,Research Fellow of the Japan Society for the Promotion of Science, Sakyo-ku, Kyoto, Japan
| | - Wataru Aoki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan.,Kyoto Integrated Science and Technology Bio-Analysis Center, Shimogyo-ku, Kyoto, Japan.,JST-PRESTO, Chiyoda-ku, Tokyo, Japan
| | - Kouichi Kuroda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hiroshi Minakuchi
- Kyoto-monotech, 1095, Shuzei-cho, Kamigyo-ku, Kyoto-shi, Kyoto, 602-8155, Japan
| | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan. .,Kyoto Integrated Science and Technology Bio-Analysis Center, Shimogyo-ku, Kyoto, Japan. .,JST-PRESTO, Chiyoda-ku, Tokyo, Japan.
| |
Collapse
|
7
|
Tomita H, Okazaki F, Tamaru Y. Biomethane production from sugar beet pulp under cocultivation with Clostridium cellulovorans and methanogens. AMB Express 2019; 9:28. [PMID: 30778890 PMCID: PMC6379495 DOI: 10.1186/s13568-019-0752-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 02/08/2019] [Indexed: 12/11/2022] Open
Abstract
This study was demonstrated with a coculture fermentation system using sugar beet pulp (SBP) as a carbon source combining the cellulose-degrading bacterium Clostridium cellulovorans with microbial flora of methane production (MFMP) for the direct conversion of cellulosic biomass to methane (CH4). The MFMP was taken from a commercial methane fermentation plant and extremely complicated. Therefore, the MFMP was analyzed by a next-generation sequencing system and the microbiome was identified and classified based on several computer programs. As a result, Methanosarcina mazei (1.34% of total counts) and the other methanogens were found in the MFMP. Interestingly, the simultaneous utilization of hydrogen (H2) and carbon dioxide (CO2) for methanogenesis was observed in the coculture with Consortium of C. cellulovorans with the MFMP (CCeM) including M. mazei. Furthermore, the CCeM degraded 87.3% of SBP without any pretreatment and produced 34.0 L of CH4 per 1 kg of dry weight of SBP. Thus, a gas metabolic shift in the fermentation pattern of C. cellulovorans was observed in the CCeM coculture. These results indicated that degradation of agricultural wastes was able to be carried out simultaneously with CH4 production by C. cellulovorans and the MFMP.
Collapse
|
8
|
Tomita H, Okazaki F, Tamaru Y. Direct IBE fermentation from mandarin orange wastes by combination of Clostridium cellulovorans and Clostridium beijerinckii. AMB Express 2019; 9:1. [PMID: 30607514 PMCID: PMC6318158 DOI: 10.1186/s13568-018-0728-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/26/2018] [Indexed: 11/18/2022] Open
Abstract
For a resolution of reducing carbon dioxide emission and increasing food production to respond to the growth of global population, production of biofuels from non-edible biomass is urgently required. Abundant orange wastes, such as peel and strained lees, are produced as by-product of orange juice, which is available non-edible biomass. However, d-limonene included in citrus fruits often inhibits yeast growth and makes the ethanol fermentation difficult. This study demonstrated that isopropanol-butanol-ethanol fermentation ability of Clostridium beijerinckii and cellulosic biomass degrading ability of C. cellulovorans were cultivated under several concentrations of limonene. As a result, C. cellulovorans was able to grow even in the medium containing 0.05% limonene (v/v) and degraded 85% of total sugar from mandarin peel and strained lees without any pretreatments. More interestingly, C. beijerinckii produced 0.046 g butanol per 1 g of dried strained lees in the culture supernatant together with C. cellulovorans.
Collapse
|
9
|
Ge Z, Du H, Gao Y, Qiu W. Analysis on Metabolic Functions of Stored Rice Microbial Communities by BIOLOG ECO Microplates. Front Microbiol 2018; 9:1375. [PMID: 30018600 PMCID: PMC6037723 DOI: 10.3389/fmicb.2018.01375] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 06/06/2018] [Indexed: 11/13/2022] Open
Abstract
Microbial contamination has been a pervasive issue during the rice storage and triggers extensive researches. The metabolism of microorganisms was proved as an indicator to mirror the degree of microbial contamination. It is necessary to develop a scientific method to analyze the metabolism of rice microbial communities, thereby monitoring the microbial contamination. In this study, the metabolism of rice microbial communities in different storing-year were investigated by BIOLOG ECO microplates. The three rice samples were respectively stored for 1-3 years. The related indicators of BIOLOG ECO microplates were determined, including average well-color development (AWCD) of carbon sources and three metabolic functional diversity indices. The results showed that there were significant differences in the AWCD of all carbon sources among the three rice microbial communities (p < 0.05), and the functional diversity indices except Simpson index showed significant differences (p < 0.05). Additionally, the three rice microbial communities differed significantly in the metabolic utilization of carboxylic acids and miscellaneous (p < 0.05), and there were, however, no significant differences in the other four types of carbon sources. Furthermore, principal component analysis revealed that the microbial communities of stored rice had obviously different metabolic functions in different storage period. Therefore, the study indicated that the BIOLOG ECO microplate was applicable to evaluate the metabolic functions of rice microbial communities, and carboxylic acids and miscellaneous were two crucial parameters of carbon sources to identify the metabolic differences of microbial communities, a case in which it reflected the conditions of rice microbial contamination.
Collapse
Affiliation(s)
| | | | | | - Weifen Qiu
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| |
Collapse
|
10
|
Inamori T, Aburaya S, Morisaka H, Kuroda K, Ueda M. Characteristic strategy of assimilation of various saccharides by Clostridium cellulovorans. AMB Express 2016; 6:64. [PMID: 27586595 PMCID: PMC5009059 DOI: 10.1186/s13568-016-0237-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/24/2016] [Indexed: 11/10/2022] Open
Abstract
Clostridium cellulovorans can effectively assimilate not only cellulose but also hemicellulose by producing cellulosomal and non-cellulosomal enzymes. However, little is known about how C. cellulovorans assimilates various saccharides in media containing polysaccharides and oligosaccharides. In this research, we investigated the property of saccharide incorporation and assimilation by C. cellulovorans. Faster growth in media containing xylan and cellulose was achieved by switching polysaccharides, in which xylan was first assimilated, followed by cellulose. Furthermore, the presence of polysaccharides that can be easily degraded might increase the assimilation rate of lignocellulose by promoting growth. These properties of C. cellulovorans could be suitable for the effective utilization of lignocellulosic biomass.
Collapse
|