1
|
Zhao H, Yan Y, Gao Y, Wang J, Li S. Tris (2-chloroisopropyl) phosphate and Tris (nonylphenyl) phosphite Promote Human Renal Cell Apoptosis through the ERK/CEPBA/Long Non-Coding RNA Cytoskeleton Regulator Axis. TOXICS 2024; 12:452. [PMID: 39058104 PMCID: PMC11281261 DOI: 10.3390/toxics12070452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024]
Abstract
Organophosphorus compounds (OPs) are widely used and have the potential to be harmful environmental toxicants to humans. Long non-coding RNA (lncRNA) plays a crucial regulatory role in cytotoxicity. This study aimed to investigate the effects of OPs on the expression of lncRNAs in cells. The effects of the industrial OPs TNPP and TCPP on both CYTOR and cellular viability were examined in the following human renal cell lines: HEK293T and HK-2. Both TCPP and TNPP downregulated CYTOR expression, increased reactive oxygen species levels, and induced apoptosis; the upregulated expression of CYTOR resulted in a reduction in apoptosis. The results of the luciferase reporter assay and the knock-down assay indicate that CEBPA binds to the upstream promoter region of CYTOR and regulates its transcription. Furthermore, TCPP and TNPP were found to downregulate the phosphorylation of ERK in the signaling pathway that is upstream of CEBPA. These results indicate that TCPP and TNPP can decrease the level of CEBPA by reducing ERK phosphorylation; this leads to a decrease in CYTOR expression, which further promotes cellular reactive oxygen species and apoptosis. Therefore, the ERK/CEBPA/CYTOR axis is one of the pathways by which organophosphates produce cytotoxicity, leading to renal cell injury. This study presents evidence for both the abnormal expression of lncRNA that is caused by organophosphates and the regulatory function of lncRNA regarding downstream cellular viability.
Collapse
Affiliation(s)
| | | | | | | | - Sheng Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China; (H.Z.); (Y.Y.); (Y.G.); (J.W.)
| |
Collapse
|
2
|
Lawrie RD, Mitchell RD, Dhammi A, Wallace A, Hodgson E, Roe RM. Role of long non-coding RNA in DEET- and fipronil-mediated alteration of transcripts associated with Phase I and Phase II xenobiotic metabolism in human primary hepatocytes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 167:104607. [PMID: 32527422 DOI: 10.1016/j.pestbp.2020.104607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 05/07/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Human exposure to environmental chemicals both individually and in combination occurs frequently world-wide most often with unknown consequences. Use of molecular approaches to aide in the assessment of risk involved in chemical exposure is a growing field in toxicology. In this study, we examined the impact of two environmental chemicals used in and around homes, the insect repellent DEET (N,N-diethyl-m-toluamide) and the phenylpyrazole insecticide fipronil (fluocyanobenpyrazole) on transcript levels of enzymes potentially involved in xenobiotic metabolism and on long non-coding RNAs (lncRNAs). Primary human hepatocytes were treated with these two chemicals both individually and in combination. Using RNA-Seq, we found that 10 major enzyme categories involved in phase 1 and phase 2 xenobiotic metabolism were significantly (α = 0.05) up- and down-regulated (i.e., 100 μM DEET-19 transcripts, 89% up and 11% down; 10 μM fipronil-52 transcripts, 53% up and 47% down; and 100 μM DEET +10 μM fipronil-69 transcripts, 43% up and 57% down). The altered genes were then mapped to the human genome and their proximity (within 1,000,000 bp) to lncRNAs examined. Unique proximities were discovered between altered lncRNA and altered P450s (CYP) and other enzymes (DEET, 2 CYP; Fipronil, 6 CYP and 15 other; and DEET + fipronil, 7 CYP and 21 other). Many of the altered P450 transcripts were in multiple clusters in the genome with proximal altered lncRNAs, suggesting a regulator function for the lncRNA. At the gene level there was high percent identity for lncRNAs near P450 clusters, but this relationship was not found at the transcript level. The role of these altered lncRNAs associated with xenobiotic induction, human diseases and chemical mixtures is discussed.
Collapse
Affiliation(s)
- Roger D Lawrie
- Toxicology Program, Department of Biology, North Carolina State University, Raleigh, NC 27695, USA; Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Robert D Mitchell
- Toxicology Program, Department of Biology, North Carolina State University, Raleigh, NC 27695, USA; United States Department of Agriculture, Agricultural Research Service, U.S. Livestock Insects Research Lab, Kerrville, TX 78028, USA
| | - Anirudh Dhammi
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Andrew Wallace
- Toxicology Program, Department of Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Ernest Hodgson
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA
| | - R Michael Roe
- Toxicology Program, Department of Biology, North Carolina State University, Raleigh, NC 27695, USA; Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
3
|
Identification of RNA biomarkers for chemical safety screening in neural cells derived from mouse embryonic stem cells using RNA deep sequencing analysis. Biochem Biophys Res Commun 2019; 512:641-646. [DOI: 10.1016/j.bbrc.2018.11.141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/21/2018] [Indexed: 01/13/2023]
|
4
|
Huang Q, Liu Y, Dong S. Emerging roles of long non-coding RNAs in the toxicology of environmental chemicals. J Appl Toxicol 2018; 38:934-943. [PMID: 29388697 DOI: 10.1002/jat.3595] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/27/2017] [Accepted: 12/27/2017] [Indexed: 12/12/2022]
Abstract
Environmental chemicals (ECs) are drawing great attention to their effects on health and their toxicological mechanisms are being investigated. Long non-coding RNA (lncRNA) is a class of RNA with more than 200 nucleotides and does not have protein coding potential. Recently, it is emerging as a star molecule that participates in a wide range of physiological and pathological processes. It has been reported to be abnormally expressed in diseases. As an epigenetic factor, lncRNAs play an important role in the response of organisms to environmental stress. Their roles in the toxicity of ECs are being identified. Altered expression profiles of lncRNAs have been explored after exposure to ECs. Various kinds of ECs are reported to disturb the expression of lncRNAs in vitro and in vivo. Then, dysregulated lncRNAs can affect the expression of target genes directly or indirectly via regulating the level of microRNAs. The network among lncRNAs, microRNAs and mRNAs can initiate or impede specific signaling pathway and lead to adverse outcome upon exposure to ECs. Recovery of the lncRNAs level by overexpression or knockdown technology diminished the effect induced by ECs. In the review, biological roles of lncRNAs are depicted. The lncRNAs involved in the toxicology are summarized. Types of ECs that have been reported to affect the expression of lncRNAs are categorized. The interaction between various types of ECs and lncRNAs is discussed.
Collapse
Affiliation(s)
- Qiansheng Huang
- Chinese Academy of Sciences, Key Lab of Urban Environment and Health, Institute of Urban Environment, Xiamen, 361021, People's Republic of China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China
| | - Yiyao Liu
- Chinese Academy of Sciences, Key Lab of Urban Environment and Health, Institute of Urban Environment, Xiamen, 361021, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Sijun Dong
- Chinese Academy of Sciences, Key Lab of Urban Environment and Health, Institute of Urban Environment, Xiamen, 361021, People's Republic of China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China
| |
Collapse
|
5
|
Tani H, Takeshita JI, Aoki H, Nakamura K, Abe R, Toyoda A, Endo Y, Miyamoto S, Gamo M, Sato H, Torimura M. Identification of RNA biomarkers for chemical safety screening in mouse embryonic stem cells using RNA deep sequencing analysis. PLoS One 2017; 12:e0182032. [PMID: 28750099 PMCID: PMC5531504 DOI: 10.1371/journal.pone.0182032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/11/2017] [Indexed: 11/18/2022] Open
Abstract
Although it is not yet possible to replace in vivo animal testing completely, the need for a more efficient method for toxicity testing, such as an in vitro cell-based assay, has been widely acknowledged. Previous studies have focused on mRNAs as biomarkers; however, recent studies have revealed that non-coding RNAs (ncRNAs) are also efficient novel biomarkers for toxicity testing. Here, we used deep sequencing analysis (RNA-seq) to identify novel RNA biomarkers, including ncRNAs, that exhibited a substantial response to general chemical toxicity from nine chemicals, and to benzene toxicity specifically. The nine chemicals are listed in the Japan Pollutant Release and Transfer Register as class I designated chemical substances. We used undifferentiated mouse embryonic stem cells (mESCs) as a simplified cell-based toxicity assay. RNA-seq revealed that many mRNAs and ncRNAs responded substantially to the chemical compounds in mESCs. This finding indicates that ncRNAs can be used as novel RNA biomarkers for chemical safety screening.
Collapse
Affiliation(s)
- Hidenori Tani
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Onogawa, Tsukuba, Ibaraki, Japan
| | - Jun-ichi Takeshita
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), Onogawa, Tsukuba, Ibaraki, Japan
| | - Hiroshi Aoki
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Onogawa, Tsukuba, Ibaraki, Japan
| | - Kaoru Nakamura
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Onogawa, Tsukuba, Ibaraki, Japan
| | - Ryosuke Abe
- College of Engineering Systems, School of Science and Engineering, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Akinobu Toyoda
- College of Engineering Systems, School of Science and Engineering, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Yasunori Endo
- Department of Risk Engineering, Faculty of Systems and Information Engineering, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Sadaaki Miyamoto
- Department of Risk Engineering, Faculty of Systems and Information Engineering, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Masashi Gamo
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), Onogawa, Tsukuba, Ibaraki, Japan
| | - Hiroaki Sato
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba, Ibaraki, Japan
| | - Masaki Torimura
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Onogawa, Tsukuba, Ibaraki, Japan
| |
Collapse
|
6
|
Tani H, Okuda S, Nakamura K, Aoki M, Umemura T. Short-lived long non-coding RNAs as surrogate indicators for chemical exposure and LINC00152 and MALAT1 modulate their neighboring genes. PLoS One 2017; 12:e0181628. [PMID: 28719640 PMCID: PMC5515456 DOI: 10.1371/journal.pone.0181628] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/04/2017] [Indexed: 12/13/2022] Open
Abstract
Whole transcriptome analyses have revealed a large number of novel long non-coding RNAs (lncRNAs). Although accumulating evidence demonstrates that lncRNAs play important roles in regulating gene expression, the detailed mechanisms of action of most lncRNAs remain unclear. We previously reported that a novel class of lncRNAs with a short half-life (t1/2 < 4 h) in HeLa cells, termed short-lived non-coding transcripts (SLiTs), are closely associated with physiological and pathological functions. In this study, we focused on 26 SLiTs and nuclear-enriched abundant lncRNA, MALAT1(t1/2 of 7.6 h in HeLa cells) in neural stem cells (NSCs) derived from human induced pluripotent stem cells, and identified four SLiTs (TUG1, GAS5, FAM222-AS1, and SNHG15) that were affected by the following typical chemical stresses (oxidative stress, heavy metal stress and protein synthesis stress). We also found the expression levels of LINC00152 (t1/2 of 2.1 h in NSCs), MALAT1 (t1/2 of 1.8 h in NSCs), and their neighboring genes were elevated proportionally to the chemical doses. Moreover, we confirmed that the overexpression of LINC00152 or MALAT1 upregulated the expressions of their neighboring genes even in the absence of chemical stress. These results reveal that LINC00152 and MALAT1 modulate their neighboring genes, and thus provide a deeper understanding of the functions of lncRNAs.
Collapse
Affiliation(s)
- Hidenori Tani
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16–1, Onogawa, Tsukuba, Ibaraki, Japan
- * E-mail:
| | - Sayaka Okuda
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16–1, Onogawa, Tsukuba, Ibaraki, Japan
- Department of Molecular Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432–1 Horinouchi, Hachioji, Tokyo, Japan
| | - Kaoru Nakamura
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16–1, Onogawa, Tsukuba, Ibaraki, Japan
| | - Motohide Aoki
- Department of Molecular Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432–1 Horinouchi, Hachioji, Tokyo, Japan
| | - Tomonari Umemura
- Department of Molecular Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432–1 Horinouchi, Hachioji, Tokyo, Japan
| |
Collapse
|
7
|
Abstract
Long non-coding RNAs (lncRNAs) are over 200 nucleotides in length and are transcribed from the mammalian genome in a tissue-specific and developmentally regulated pattern. There is growing recognition that lncRNAs are novel biomarkers and/or key regulators of toxicological responses in humans and animal models. Lacking protein-coding capacity, the numerous types of lncRNAs possess a myriad of transcriptional regulatory functions that include cis and trans gene expression, transcription factor activity, chromatin remodeling, imprinting, and enhancer up-regulation. LncRNAs also influence mRNA processing, post-transcriptional regulation, and protein trafficking. Dysregulation of lncRNAs has been implicated in various human health outcomes such as various cancers, Alzheimer's disease, cardiovascular disease, autoimmune diseases, as well as intermediary metabolism such as glucose, lipid, and bile acid homeostasis. Interestingly, emerging evidence in the literature over the past five years has shown that lncRNA regulation is impacted by exposures to various chemicals such as polycyclic aromatic hydrocarbons, benzene, cadmium, chlorpyrifos-methyl, bisphenol A, phthalates, phenols, and bile acids. Recent technological advancements, including next-generation sequencing technologies and novel computational algorithms, have enabled the profiling and functional characterizations of lncRNAs on a genomic scale. In this review, we summarize the biogenesis and general biological functions of lncRNAs, highlight the important roles of lncRNAs in human diseases and especially during the toxicological responses to various xenobiotics, evaluate current methods for identifying aberrant lncRNA expression and molecular target interactions, and discuss the potential to implement these tools to address fundamental questions in toxicology.
Collapse
Affiliation(s)
- Joseph L Dempsey
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| |
Collapse
|