1
|
Tang R, Yang W, Song J, Xiang K, Li S, Zhao C, Zhang N, Fu Y, Hu X. The rumen microbiota contributed to the development of mastitis induced by subclinical ketosis. Microb Pathog 2024; 187:106509. [PMID: 38185451 DOI: 10.1016/j.micpath.2023.106509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Mastitis is a serious disease which affects animal husbandry, particularly in cow breeding. The etiology of mastitis is complex and its pathological mechanism is not yet fully understood. Our previous research in clinical investigation has revealed that subclinical ketosis can increase the number of somatic cell counts (SCC) in milk, although the underlying mechanism remains unclear. Recent studies have further confirmed the significant role of mastitis. RESULTS In this study, we aimed to examine the SCC, rumen microbiota, and metabolites in the milkmen of cows with subclinical ketosis. Additionally, we conducted a rumen microbiota transplant into mice to investigate the potential association between rumen microbiota disturbance and mastitis induced by subclinical ketosis in dairy cows. The study has found that cows with subclinical ketosis have a higher SCC in their milk compared to healthy cows. Additionally, there were significant differences in the rumen microbiota and the level of volatile fatty acid (VFA) between cows with subclinical ketosis and healthy cows. Moreover, transplanting the rumen microbiota from subclinical ketosis and mastitis cows into mice can induce mammary inflammation and liver function damage than transplanting the rumen flora from healthy dairy cows. CONCLUSIONS In addition to the infection of mammary gland by pathogenic microorganisms, there is also an endogenous therapeutic pathway mediated by rumen microbiota. Targeted rumen microbiota modulation may be an effective way to prevent and control mastitis in dairy cows.
Collapse
Affiliation(s)
- Ruibo Tang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Wencheng Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Jianhua Song
- Lin Qu County Animal Husbandry Development Center, China
| | - Kaihe Xiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Shuang Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Caijun Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Naisheng Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Yunhe Fu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China.
| | - Xiaoyu Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China.
| |
Collapse
|
2
|
Wu H, Li A, Yang X, Wang J, Liu Y, Zhan G. The research progress, hotspots, challenges and outlooks of solid-phase denitrification process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159929. [PMID: 36356784 DOI: 10.1016/j.scitotenv.2022.159929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/30/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen pollution is one of the main reasons for water eutrophication. The difficulty of nitrogen removal in low-carbon wastewater poses a huge potential threat to the ecological environment and human health. As a clean biological nitrogen removal process, solid-phase denitrification (SPD) was proposed for long-term operation of low-carbon wastewater. In this paper, the progress, hotspots, and challenges of the SPD process based on different solid carbon sources (SCSs) are reviewed. Compared with synthetic SCS and natural SCS, blended SCSs have more application potential and have achieved pilot-scale application. Differences in SCSs will lead to changes in the enrichment of hydrolytic microorganisms and hydrolytic genes, which indirectly affect denitrification performance. Moreover, the denitrification performance of the SPD process is also affected by the physical and chemical properties of SCSs, pH of wastewater, hydraulic retention time, filling ratio, and temperature. In addition, the strengthening of the SPD process is an inevitable trend. The strengthening measures including SCSs modification and coupled electrochemical technology are regarded as the current research hotspots. It is worth noting that the outbreak of the COVID-19 epidemic has led to the increase of disinfection by-products and antibiotics in wastewater, which makes the SPD process face challenges. Finally, this review proposes prospects to provide a theoretical basis for promoting the efficient application of the SPD process and coping with the challenge of the COVID-19 epidemic.
Collapse
Affiliation(s)
- Heng Wu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China; College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Anjie Li
- College of Grassland and Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xu Yang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Jingting Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Yiliang Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Guoqiang Zhan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China.
| |
Collapse
|
3
|
Xia L, Li X, Fan W, Wang J. Denitrification performance and microbial community of bioreactor packed with PHBV/PLA/rice hulls composite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150033. [PMID: 34492486 DOI: 10.1016/j.scitotenv.2021.150033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
In this study, a novel biodegradable PHBV/PLA/rice hulls (PPRH) composite was applied and tested as biofilm attachment carrier and carbon source in two bioreactors for biological denitrification process. The denitrification performance, effect of operational conditions and microbial community structure of PPRH biofilm were evaluated. The batch experiment results showed that PPRH-packed bioreactor could completely remove 50 mg L-1 of NO3--N at natural pH (ca. 7.5) and room temperature. The continuous flow experiments indicated that high NO3--N removal efficiency (77%-99%) was achieved with low nitrite (<0.48 mg L-1) and ammonia (<0.81 mg L-1) accumulation, when influent NO3--N concentration was 30 mg L-1 and hydraulic retention time was 2-6 h. Furthermore, the microbial community analysis indicated that bacteria belonging to genus Diaphorobacter in phylum Proteobacteria were the most dominant and major denitrifiers in denitrification. In summary, PPRH composite was a promising carbon source for biological nitrate removal from water and wastewater.
Collapse
Affiliation(s)
- Lin Xia
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, Haidian District, Beijing 100191, PR China; Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Xiaomin Li
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, Haidian District, Beijing 100191, PR China
| | - Wenhong Fan
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, Haidian District, Beijing 100191, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
4
|
Qi L, Li L, Yin L, Zhang W. Study on the properties of denitrifying carbon sources from cellulose plants and their nitrogen removal mechanisms. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:719-730. [PMID: 35100149 DOI: 10.2166/wst.2021.626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Carbon sources of cellulose plants are promising materials that enhance the activities of denitrifying bacteria in the groundwater system. To further verify the denitrification performance of cellulose plants and the main factors of affecting the denitrifying system, six cellulose plants from agricultural wastes (wood chip, corn cob, rice husk, corn straw, wheat straw, and sugar cane) were selected for bioavailable organic matter leaching experiments, carbon denitrification experiments, functional bacteria identification, and analysis experiments. The results show that the extracts of cellulose plants contain a mixed carbon sources system including small molecular organic acids, sugars, nitrogen-containing organic components, and esters. The qPCR results showed that the denitrifying bacteria had obvious advantages compared to anaerobic ammonia-oxidizing bacteria during the stable period; the denitrification experiment showed that each of six cellulose plants removed more than 80% of nitrogen, and the denitrification rates reached 1.00-2.00 mg N cm-3·d-1. The supplement of cellulose plants promotes the metabolism rate of denitrifying bacteria, and the additional denitrifying bacteria have little effect on nitrate removal. In summary, the expected denitrification reaction occurred in the cellulose plant system, which is suitable as a carbon source material for water body nitrogen pollution remediation.
Collapse
Affiliation(s)
- Liang Qi
- School of Engineering, Westlake University, Hangzhou 310024, China E-mail: ; Key Laboratory of Coastal Environment and Resources of Zhejiang Province, Hangzhou 310024, China
| | - Ling Li
- School of Engineering, Westlake University, Hangzhou 310024, China E-mail: ; Key Laboratory of Coastal Environment and Resources of Zhejiang Province, Hangzhou 310024, China
| | - Lin Yin
- School of Earth Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Wen Zhang
- School of Engineering, Westlake University, Hangzhou 310024, China E-mail: ; Key Laboratory of Coastal Environment and Resources of Zhejiang Province, Hangzhou 310024, China; School of Earth Science and Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
5
|
Zhang F, Ma C, Huang X, Liu J, Lu L, Peng K, Li S. Research progress in solid carbon source-based denitrification technologies for different target water bodies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146669. [PMID: 33839669 DOI: 10.1016/j.scitotenv.2021.146669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/25/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Nitrogen pollution in water bodies is a serious environmental issue which is commonly treated by various methods such as heterotrophic denitrification. In particular, solid carbon source (SCS)-based denitrification has attracted widespread research interest due to its gradual carbon release, ease of management, and long-term operation. This paper reviews the types and properties of SCSs for different target water bodies. While both natural (wheat straw, wood chips, and fruit shells) and synthetic (polybutylene succinate, polycaprolactone, polylactic acid, and polyhydroxyalkanoates) SCSs are commonly used, it is observed that the denitrification performance of the synthetic sources is generally superior. SCSs have been used in the treatment of wastewater (including aquaculture wastewater), agricultural subsurface drainage, surface water, and groundwater; however, the key research aspects related to SCSs differ markedly based on the target waterbody. These key research aspects include nitrogen pollutant removal rate and byproduct accumulation (ordinary wastewater); water quality parameters and aquatic product yield (recirculating aquaculture systems); temperature and hydraulic retention time (agricultural subsurface drainage); the influence of dissolved oxygen (surface waters); and nitrate-nitrogen load, HRT, and carbon source dosage on denitrification rate (groundwater). It is concluded that SCS-based denitrification is a promising technique for the effective elimination of nitrate-nitrogen pollution in water bodies.
Collapse
Affiliation(s)
- Feifan Zhang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, People's Republic of China
| | - Chengjin Ma
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, People's Republic of China
| | - Xiangfeng Huang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, People's Republic of China
| | - Jia Liu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, People's Republic of China
| | - Lijun Lu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, People's Republic of China
| | - Kaiming Peng
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, People's Republic of China
| | - Shiyang Li
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and chemical engineering, Shanghai University, Shanghai 200092, People's Republic of China.
| |
Collapse
|
6
|
Feng L, Yang J, Yu H, Lan Z, Ye X, Yang G, Yang Q, Zhou J. Response of denitrifying community, denitrification genes and antibiotic resistance genes to oxytetracycline stress in polycaprolactone supported solid-phase denitrification reactor. BIORESOURCE TECHNOLOGY 2020; 308:123274. [PMID: 32251865 DOI: 10.1016/j.biortech.2020.123274] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/25/2020] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
The coexistence of nitrate and antibiotics in wastewater is a common problem. The study aimed to explore the response of denitrifying community, denitrification genes and antibiotic resistance genes (ARGs) to oxytetracycline (OTC) stress in polycaprolactone (PCL) supported solid-phase denitrification (SPD) reactors. Complete nitrate reduction (greater than99%) was achieved in SPD system with OTC stress of 0, 0.05, 0.25 and 1 mg L-1 during three-month operation, while it significantly declined by about 5% at a further increased OTC level of 5 mg L-1. The efficient denitrification strongly related with a rich diversity of denitrifiers, while the abundances of which dramatically reduced as the OTC concentration reached ≥0.25 mg L-1, which caused significant decline of denitrification genes, especially for narH, narJ, narI nirD, nosZ, and norB. Tetracycline resistance genes were a major type of promoted ARGs by different OTC stress, mainly related with the increase of tet36, tetG, tetA, tetM and tetC.
Collapse
Affiliation(s)
- Lijuan Feng
- Department of Environmental Science and Engineering, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Jingyi Yang
- Department of Environmental Science and Engineering, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Hui Yu
- Department of Environmental Science and Engineering, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Zeyu Lan
- Department of Environmental Science and Engineering, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Xin Ye
- Department of Environmental Science and Engineering, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Guangfeng Yang
- Department of Environmental Science and Engineering, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Qiao Yang
- Department of Environmental Science and Engineering, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Jiaheng Zhou
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
7
|
Effects of Hydraulic Retention Time and Influent Nitrate-N Concentration on Nitrogen Removal and the Microbial Community of an Aerobic Denitrification Reactor Treating Recirculating Marine Aquaculture System Effluent. WATER 2020. [DOI: 10.3390/w12030650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The effects of hydraulic retention time (HRT) and influent nitrate-N concentration on nitrogen removal and the microbial community composition of an aerobic denitrification reactor treating recirculating marine aquaculture system effluent were evaluated. Results showed that over 98% of nitrogen was removed and ammonia-N and nitrite-N levels were below 1 mg/L when influent nitrate-N was below 150 mg/L and HRT over 5 h. The maximum nitrogen removal efficiency and nitrogen removal rate were observed at HRT of 6 or 7 h when influent nitrate-N was 150 mg/L. High-throughput DNA sequencing analysis revealed that the microbial phyla Proteobacteria and Bacteroidetes were predominant in the reactor, with an average relative total abundance above 70%. The relative abundance of denitrifying bacteria of genera Halomonas and Denitratisoma within the reactor decreased with increasing influent nitrate-N concentrations. Our results show the presence of an aerobically denitrifying microbial consortium with both expected and unexpected members, many of them relatively new to science. Our findings provide insights into the biological workings and inform the design and operation of denitrifying reactors for marine aquaculture systems.
Collapse
|
8
|
Xue Y, Wei F, Jiang Y, Li L, Dong S, Tian X. Transcriptome signatures of the Pacific white shrimp Litopenaeus vannamei hepatopancreas in response to stress in biofloc culture systems. FISH & SHELLFISH IMMUNOLOGY 2019; 91:369-375. [PMID: 30999042 DOI: 10.1016/j.fsi.2019.04.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
Comparative transcriptome analysis via high throughput sequencing was applied to gain knowledge on the immune response in Litopenaeus vannamei reared in biofloc technology systems (BFT). Two types of carbon sources, namely, traditional carbon sources (molasses) and biodegradable polymers [hydroxybutyric acid-co-3-hydroxyvaleric acid (PHBV)] were used in BFT systems. Clear water systems without the addition of carbon sources were treated as the control. Water quality assays showed that the average concentrations of several stress factors, including nitrite, nitrate and TSS, were the highest in molasses-based BFT systems. After sequencing and comparing the transcriptome profiles of the L. vannamei hepatopancreas, 743 and 201 genes were significantly differentially expressed in molasses- and PHBV-based BFT systems, respectively. GO enrichment analysis, which was performed using the differentially expressed genes, revealed seven significantly over-represented GO terms in molasses-based BFT systems, including catabolic process, hydrolase activity, cellular localization, organic substance metabolic process, cellular metabolic process, establishment of localization and response to stress. The captured key genes were mainly involved in the pathways including cellular stress response, immune response and pathogen recognition. However, no GO terms were significantly over-represented in PHBV-based BFT systems compared with control. This study indicates that shrimp are subject to stress in BFT systems when molasses serves as the carbon source. Thus, PHBV may be a better alternative.
Collapse
Affiliation(s)
- Yiming Xue
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, People's Republic of China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266235, China
| | - Fayi Wei
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, People's Republic of China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266235, China
| | - Yanliang Jiang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Beijing, 100141, China.
| | - Li Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, People's Republic of China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266235, China.
| | - Shuanglin Dong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, People's Republic of China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266235, China
| | - Xiangli Tian
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, People's Republic of China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266235, China
| |
Collapse
|
9
|
Xu Z, Dai X, Chai X. Biological denitrification using PHBV polymer as solid carbon source and biofilm carrier. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.03.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Zhang S, Sun X, Wang X, Qiu T, Gao M, Sun Y, Cheng S, Zhang Q. Bioaugmentation with Diaphorobacter polyhydroxybutyrativorans to enhance nitrate removal in a poly (3-hydroxybutyrate-co-3-hydroxyvalerate)-supported denitrification reactor. BIORESOURCE TECHNOLOGY 2018; 263:499-507. [PMID: 29775906 DOI: 10.1016/j.biortech.2018.04.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/25/2018] [Accepted: 04/28/2018] [Indexed: 06/08/2023]
Abstract
A newly isolated and identified Diaphorobacter polyhydroxybutyrativorans strain (SL-205) was employed to enhance the denitrification performance of a laboratory-scale solid-phase denitrification (SPD) reactor using poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) as a carbon source, and dynamic variations in microbial communities in the reactor were investigated. Results indicated that bioaugmentation with strain SL-205 enabled rapid reactor startup and improved denitrification performance relative to the reactor inoculated with activated sludge. Illumina sequencing revealed that bioaugmentation also significantly increased Proteobacteria abundance along with increased influent nitrate loading. Additionally, two genera of PHBV-degrading denitrifers, Diaphorobacter and Acidovorax, exhibited higher abundance, and elevated expression of denitrification-associated genes (narG, nirK, and nirS) was observed following bioaugmentation relative to the control at influent nitrate loading ranging from 1.28 g N/(L·d) to 1.6 g N/(L·d).
Collapse
Affiliation(s)
- Shusong Zhang
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing 100097, China; Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xingbin Sun
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xuming Wang
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing 100097, China; Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Tianlei Qiu
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing 100097, China; Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Min Gao
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing 100097, China; Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yanmei Sun
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing 100097, China; Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Shoutao Cheng
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing 100097, China; Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qingjing Zhang
- Beijing Key Laboratory of Fishery Biotechnology, Beijing Fisheries Research Institute, Beijing 100068, China
| |
Collapse
|
11
|
Jeszeová L, Puškárová A, Bučková M, Kraková L, Grivalský T, Danko M, Mosnáčková K, Chmela Š, Pangallo D. Microbial communities responsible for the degradation of poly(lactic acid)/poly(3-hydroxybutyrate) blend mulches in soil burial respirometric tests. World J Microbiol Biotechnol 2018; 34:101. [DOI: 10.1007/s11274-018-2483-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/16/2018] [Indexed: 12/01/2022]
|
12
|
Xu Z, Song L, Dai X, Chai X. PHBV polymer supported denitrification system efficiently treated high nitrate concentration wastewater: Denitrification performance, microbial community structure evolution and key denitrifying bacteria. CHEMOSPHERE 2018; 197:96-104. [PMID: 29334654 DOI: 10.1016/j.chemosphere.2018.01.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/21/2017] [Accepted: 01/06/2018] [Indexed: 06/07/2023]
Abstract
Biodegradable polymer supported denitrification (BPD) system shows good denitrification performance for the wastewater with low nitrate concentrations. In this study, a BPD system using Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) polymer as carbon source was developed to treat the wastewater with high nitrate concentrations. The denitrification performance, utilization ratio of PHBV polymers, and microbial community structure evolution and key denitrifying bacteria were comprehensively studied. Results indicated that an average nitrate removal efficiency of 99% could be achieved with an influent NO3--N concentration of 100 mg L-1 and a hydraulic retention time (HRT) of 7.25 h. Mass balance model predicted that 80% of the PHBV polymers were consumed by denitrifying bacteria, close to 72% consumption in real condition, suggesting the model might be useful for PHBV polymers management in BPD system. Further, the bacterial community structures varied along the bioreactor profile, which closely linked to the concentration profiles of nitrate and ammonia. Metatranscriptomic analysis identified the key denitrifying bacteria as Comamonas, Acidovorax and Dechloromonas. The PHBV supported denitrification system developed in this study shows potential for removal of high concentration of nitrate from wastewater.
Collapse
Affiliation(s)
- Zhongshuo Xu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Liyan Song
- Environmental Microbiology and Ecology Research Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science (CAS), Chongqing, 400714, China
| | - Xiaohu Dai
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaoli Chai
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
13
|
Zhang S, Sun X, Fan Y, Qiu T, Gao M, Wang X. Heterotrophic nitrification and aerobic denitrification by Diaphorobacter polyhydroxybutyrativorans SL-205 using poly(3-hydroxybutyrate-co-3-hydroxyvalerate) as the sole carbon source. BIORESOURCE TECHNOLOGY 2017; 241:500-507. [PMID: 28601768 DOI: 10.1016/j.biortech.2017.05.185] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 05/26/2017] [Accepted: 05/27/2017] [Indexed: 06/07/2023]
Abstract
A new strain of Diaphorobacter polyhydroxybutyrativorans (strain SL-205) was recently isolated and identified. SL-205 can utilize nitrate and nitrite for denitrification and ammonium for nitrification using poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) as the carbon source under aerobic conditions. SL-205 removed 99.11% of NH4+-derived N (83.90mg/L), 95.02% of NO3--N (308.24mg/L), and 84.13% of NO2--N (211.70mg/L), with average removal rates of 1.73mg NH4+-N/(L·h), 6.10mg NO3--N/(L·h), and 4.95mg NO2--N/(L·h). Nitrogen gas was the primary end-product, with negligible nitrous oxide accumulation during ammonium removal, accounting for 57.85% of the removed NH4+-N and 52.30% of the initial NH4+-N. Moreover, hydroxylamine oxidoreductase, nitrate reductase, and nitrite reductase were detected, further indicating that strain SL-205 underwent heterotrophic nitrification coupled with aerobic denitrification (NH4+→NH2OH→NO2-→NO3-→NO2-→N2O→N2). These results support the use of PHBV as a carbon source for nitrogen removal from water and wastewater by strain SL-205.
Collapse
Affiliation(s)
- Shusong Zhang
- College of Life Science, Northeast Forestry University, Harbin 150040, China; Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xingbin Sun
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yueting Fan
- College of Life Science, Northeast Forestry University, Harbin 150040, China; Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Tianlei Qiu
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Min Gao
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xuming Wang
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing 100097, China.
| |
Collapse
|