1
|
Thitiprasert S, Jaiaue P, Amornbunchai N, Thammakes J, Piluk J, Srimongkol P, Tanasupawat S, Thongchul N. Association between organic nitrogen substrates and the optical purity of D-lactic acid during the fermentation by Sporolactobacillus terrae SBT-1. Sci Rep 2024; 14:10522. [PMID: 38719898 PMCID: PMC11079031 DOI: 10.1038/s41598-024-61247-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
The development of biotechnological lactic acid production has attracted attention to the potential production of an optically pure isomer of lactic acid, although the relationship between fermentation and the biosynthesis of highly optically pure D-lactic acid remains poorly understood. Sporolactobacillus terrae SBT-1 is an excellent D-lactic acid producer that depends on cultivation conditions. Herein, three enzymes responsible for synthesizing optically pure D-lactic acid, including D-lactate dehydrogenase (D-LDH; encoded by ldhDs), L-lactate dehydrogenase (L-LDH; encoded by ldhLs), and lactate racemase (Lar; encoded by larA), were quantified under different organic nitrogen sources and concentration to study the relationship between fermentation conditions and synthesis pathway of optically pure lactic acid. Different organic nitrogen sources and concentrations significantly affected the quantity and quality of D-lactic acid produced by strain SBT-1 as well as the synthetic optically pure lactic acid pathway. Yeast extract is a preferred organic nitrogen source for achieving high catalytic efficiency of D-lactate dehydrogenase and increasing the transcription level of ldhA2, indicating that this enzyme plays a major role in D-lactic acid formation in S. terrae SBT-1. Furthermore, lactate racemization activity could be regulated by the presence of D-lactic acid. The results of this study suggest that specific nutrient requirements are necessary to achieve a stable and highly productive fermentation process for the D-lactic acid of an individual strain.
Collapse
Affiliation(s)
- Sitanan Thitiprasert
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand.
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand.
| | - Phetcharat Jaiaue
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Nichakorn Amornbunchai
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Jesnipit Thammakes
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Jirabhorn Piluk
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Piroonporn Srimongkol
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Somboon Tanasupawat
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Nuttha Thongchul
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand.
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Balasubramanian VK, Muthuramalingam JB, Chen YP, Chou JY. Recent trends in lactic acid-producing microorganisms through microbial fermentation for the synthesis of polylactic acid. Arch Microbiol 2023; 206:31. [PMID: 38127148 DOI: 10.1007/s00203-023-03745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023]
Abstract
Polylactic acid (PLA) is a range of unique bioplastics that are bio-based and biodegradable. PLA is currently driving market expansion for lactic acid (LA) due to its high demand as a building block in production. One of the most practical and environmentally benign techniques for synthesising PLA is through enzymatic polymerisation of microbial LA monomers. However, microbial LA fermentation does have some limitations. Firstly, it requires the use of a nutritionally rich medium. Secondly, LA production can be disrupted by bacteriophage infection or other microorganisms. Lastly, the yield can be low due to the formation of by-products through heterofermentative pathway. Considering the potential use of PLA as a replacement for conventional petrochemical-based polymers in industrial applications, researchers are focused on exploring the diversity of LA-producing microorganisms from various niches. Their goal is to study the functional properties of these microorganisms and their ability to produce industrially valuable metabolites. This review highlights the advantages and disadvantages of lactic acid-producing microorganisms used in microbial fermentation for PLA synthesis.
Collapse
Affiliation(s)
- Vignesh Kumar Balasubramanian
- Department of Botany, Alagappa University, Karaikudi, Tamil Nadu, 630003, India
- Department of Biology, National Changhua University of Education, Changhua, 500, Taiwan
| | | | - Yen-Po Chen
- Department of Animal Science, National Chung Hsing University, 145 Xingda Road, South Dist., Taichung City, 402, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Jui-Yu Chou
- Department of Biology, National Changhua University of Education, Changhua, 500, Taiwan.
| |
Collapse
|
3
|
Kong LH, Liu TY, Yao QS, Zhang XH, Xu WN, Qin JY. Enhancing the biosynthesis of nicotinamide mononucleotide in Lactococcus lactis by heterologous expression of FtnadE. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:450-456. [PMID: 36205212 DOI: 10.1002/jsfa.12253] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Nicotinamide mononucleotide (NMN), a key intermediate of nicotinamide adenine dinucleotide, plays an important in anti-aging and disease. Lactococcus lactis, an important probiotic lactic acid bacteria (LAB), has shown great potential for the biosynthesis of NMN, which will significantly affect the probiotic effects of the dairy products. RESULTS We used the CRISPR/nCas9 technique to knockout nadR gene of L. lactis NZ9000 to enhance the accumulation of NMN by 61%. The nadE* gene from Francisella tularensis with codon optimization was heterologous in L. lactis NZ9000ΔnadR and has a positive effect on NMN production. Combined with optimization of the concentration of substrate nicotinamide, a final intracellular NMN titer was 2289 μmol L-1 mg-1 with 10 g L-1 nicotinamide supplement, which was 5.7-fold higher than that of the control. The transcription levels of key genes (pncA, nadD and prs1) involved in NMN biosynthesis were up-regulated by more than two-fold, indicating that the increase of NMN titer was attributed to FtnadE* heterologous expression. CONCLUSION Our study provides a better understanding of the NMN biosynthesis pathway in L. lactis, and can facilitate NMN production in LAB via synthetic biology approaches. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ling-Hui Kong
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong Province, China
| | - Tai-Yu Liu
- Shanghai BEIONMED Technology Co., Ltd., Shanghai, China
| | - Qing-Shou Yao
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong Province, China
| | - Xiao-Hua Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong Province, China
| | - Wei-Na Xu
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong Province, China
| | - Jia-Yang Qin
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong Province, China
| |
Collapse
|
4
|
Protective effect of the stressed supernatant from Lactococcus lactis subsp. lactis and its metabolic analysis. Arch Microbiol 2022; 204:428. [PMID: 35751720 DOI: 10.1007/s00203-022-03034-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
There are numerous factors restricting wide application of lactic acid bacteria (LAB) in dairy industry, causing urgent demands for novel bioprotectants. Protective effects and metabolites of Lactococcus lactis subsp. lactis (L. lactis) from ultraviolet (UV)-induced supernatant were investigated and the protective mechanism was explored. The strain viability of the group treated with the supernatant of continuous UV irradiation (V1) and the group with intermittent UV irradiation (V2) was 8.45 and 14.13 times of the control group, respectively. Further exploration on the protective of L. lactis supernatant, under different dose of UV treatment, showed it was dose-dependent. The condition for the supernatant with best protective effect was vertical distance 50.00 cm, horizontal distance 25.00 cm, intermittent UV irradiation (30 s interval 30 s) for 4.5 min (V2), which was chose for untargeted metabolite analysis. And that in V1 was for comparative study. There were 181 up-regulated metabolites in V1 and 161 up-regulated metabolites in V2, respectively. Most of the up-regulated metabolites were related to secondary metabolite synthesis, environmental microbial metabolism, antibiotic synthesis and amino acid biosynthesis. Notably, production of dithiothreitol (DTT) in V2 was 65.2-fold higher than that in the control group. Trehalose in ABC transporter pathway was also up-regulated in the metabolites induced by UV. Results indicated that L. lactis could adapt to the UV stress by adjusting metabolic pathways and producing special metabolites to protect itself. This research offers the basis for robust strain development and contributes to initial study on potential bioprotectant.
Collapse
|
5
|
Ma K, Cui Y, Zhao K, Yang Y, Wang Y, Hu G, He M. D-Lactic acid production from agricultural residues by membrane integrated continuous fermentation coupled with B vitamin supplementation. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:24. [PMID: 35246204 PMCID: PMC8897852 DOI: 10.1186/s13068-022-02124-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/22/2022] [Indexed: 11/10/2022]
Abstract
Background d-Lactic acid played an important role in the establishment of PLA as a substitute for petrochemical plastics. But, so far, the d-lactic acid production was limited in only pilot scale, which was definitely unable to meet the fast growing market demand. To achieve industrial scale d-lactic acid production, the cost-associated problems such as high-cost feedstock, expensive nutrient sources and fermentation technology need to be resolved to establish an economical fermentation process. Results In the present study, the combined effect of B vitamin supplementation and membrane integrated continuous fermentation on d-lactic acid production from agricultural lignocellulosic biomass by Lactobacillus delbrueckii was investigated. The results indicated the specific addition of vitamins B1, B2, B3 and B5 (VB1, VB2, VB3 and VB5) could reduce the yeast extract (YE) addition from 10 to 3 g/l without obvious influence on fermentation efficiency. By employing cell recycling system in 350 h continuous fermentation with B vitamin supplementation, YE addition was further reduced to 0.5 g/l, which resulted in nutrient source cost reduction of 86%. A maximum d-lactate productivity of 18.56 g/l/h and optical purity of 99.5% were achieved and higher than most recent reports. Conclusion These findings suggested the novel fermentation strategy proposed could effectively reduce the production cost and improve fermentation efficiency, thus exhibiting great potential in promoting industrial scale d-lactic acid production from lignocellulosic biomass. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02124-y. High d-lactic acid productivity is achieved by L. delbrueckii from rice straw. B vitamins are satisfied substitute of yeast extract for d-lactic acid fermentation. A process of membrane-integrated continuous fermentation with B vitamin is developed. High fermentation efficiency is achieved by the novel fermentation process.
Collapse
Affiliation(s)
- Kedong Ma
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian, 116600, People's Republic of China.,College of Environment and Resources, Dalian Minzu University, Dalian, 116600, People's Republic of China.,Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Chengdu, 610041, People's Republic of China
| | - Yubo Cui
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian, 116600, People's Republic of China. .,College of Environment and Resources, Dalian Minzu University, Dalian, 116600, People's Republic of China.
| | - Ke Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, People's Republic of China
| | - Yuxuan Yang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian, 116600, People's Republic of China.,College of Environment and Resources, Dalian Minzu University, Dalian, 116600, People's Republic of China
| | - Yidan Wang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian, 116600, People's Republic of China.,College of Environment and Resources, Dalian Minzu University, Dalian, 116600, People's Republic of China
| | - Guoquan Hu
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Chengdu, 610041, People's Republic of China
| | - Mingxiong He
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
6
|
Qin S, Wainaina S, Liu H, Soufiani AM, Pandey A, Zhang Z, Awasthi MK, Taherzadeh MJ. Microbial dynamics during anaerobic digestion of sewage sludge combined with food waste at high organic loading rates in immersed membrane bioreactors. FUEL 2021; 303:121276. [DOI: 10.1016/j.fuel.2021.121276] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
7
|
Jaramillo L, Santos D, Guedes D, Dias D, Borges E, Pereira N. Production of Lactic Acid Enantiomers by Lactobacillus Strains under Limited Dissolved Oxygen Conditions in the Presence of a Pentose Fraction. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821040050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Novel Mode Engineering for β-Alanine Production in Escherichia coli with the Guide of Adaptive Laboratory Evolution. Microorganisms 2021; 9:microorganisms9030600. [PMID: 33803992 PMCID: PMC8000549 DOI: 10.3390/microorganisms9030600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/03/2023] Open
Abstract
The strategy of anaerobic biosynthesis of β-alanine by Escherichia coli (E. coli) has been reported. However, the low energy production under anaerobic condition limited cell growth and then affected the production efficiency of β-alanine. Here, the adaptive laboratory evolution was carried out to improve energy production of E. coli lacking phosphoenolpyruvate carboxylase under anaerobic condition. Five mutants were isolated and analyzed. Sequence analysis showed that most of the consistent genetic mutations among the mutants were related with pyruvate accumulation, indicating that pyruvate accumulation enabled the growth of the lethal parent. It is possible that the accumulated pyruvate provides sufficient precursors for energy generation and CO2 fixing reaction catalyzed by phosphoenolpyruvate carboxykinase. B0016-100BB (B0016-090BB, recE::FRT, mhpF::FRT, ykgF::FRT, mhpB:: mhpB *, mhpD:: mhpD *, rcsA:: rcsA *) was engineered based on the analysis of the genetic mutations among the mutants for the biosynthesis of β-alanine. Along with the recruitment of glycerol as the sole carbon source, 1.07 g/L β-alanine was generated by B0016-200BB (B0016-100BB, aspA::FRT) harboring pET24a-panD-AspDH, which was used for overexpression of two key enzymes in β-alanine fermentation process. Compared with the starting strain, which can hardly generate β-alanine under anaerobic condition, the production efficiency of β-alanine of the engineered cell factory was significantly improved.
Collapse
|
9
|
Cloning and characterization of a L-lactate dehydrogenase gene from Ruminococcaceae bacterium CPB6. World J Microbiol Biotechnol 2020; 36:182. [PMID: 33170386 DOI: 10.1007/s11274-020-02958-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/03/2020] [Indexed: 10/23/2022]
Abstract
Lactate are proved to be attractive electron donor for the production of n-caproic acid (CA) that is a high value-added fuel precursor and chemical feedstock, but little is known about molecular mechanism of lactate transformation. In the present study, the gene for L-lactate dehydrogenase (LDH, EC.1.1.1.27) from a Ruminococcaceae strain CPB6 was cloned and expressed in Escherichia coli BL21 (DE3) with plasmid pET28a. The recombinant LDH exhibited molecular weight of 36-38 kDa in SDS-PAGE. The purified LDH was found to have the maximal oxidation activity of 29.6 U/mg from lactate to pyruvate at pH 6.5, and the maximal reduction activity of 10.4 U/mg from pyruvate to lactate at pH 8.5, respectively. Strikingly, its oxidative activity predominates over reductive activity, leading to a 17-fold increase for the utilization of lactate in E. coli/pET28a-LDH than E. coli/pET28a. The CPB6 LDH gene encodes a 315 amino acid protein sharing 42.19% similarity with Clostridium beijerinckii LDH, and lower similarity with LDHs of other organisms. Significant difference were observed between the CPB6 LDH and C. beijerinckii and C. acetobutylicum LDH in the predicted tertiary structure and active center. Further, X-ray crystal structure analysis need to be performed to verify the specific active center of the CPB6 LDH and its role in the conversion of lactate into CA.
Collapse
|
10
|
Abedi E, Hashemi SMB. Lactic acid production - producing microorganisms and substrates sources-state of art. Heliyon 2020; 6:e04974. [PMID: 33088933 PMCID: PMC7566098 DOI: 10.1016/j.heliyon.2020.e04974] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/08/2020] [Accepted: 09/16/2020] [Indexed: 01/18/2023] Open
Abstract
Lactic acid is an organic compound produced via fermentation by different microorganisms that are able to use different carbohydrate sources. Lactic acid bacteria are the main bacteria used to produce lactic acid and among these, Lactobacillus spp. have been showing interesting fermentation capacities. The use of Bacillus spp. revealed good possibilities to reduce the fermentative costs. Interestingly, lactic acid high productivity was achieved by Corynebacterium glutamicum and E. coli, mainly after engineering genetic modification. Fungi, like Rhizopus spp. can metabolize different renewable carbon resources, with advantageously amylolytic properties to produce lactic acid. Additionally, yeasts can tolerate environmental restrictions (for example acidic conditions), being the wild-type low lactic acid producers that have been improved by genetic manipulation. Microalgae and cyanobacteria, as photosynthetic microorganisms can be an alternative lactic acid producer without carbohydrate feed costs. For lactic acid production, it is necessary to have substrates in the fermentation medium. Different carbohydrate sources can be used, from plant waste as molasses, starchy, lignocellulosic materials as agricultural and forestry residues. Dairy waste also can be used by the addition of supplementary components with a nitrogen source.
Collapse
Affiliation(s)
- Elahe Abedi
- Department of Food Science and Technology, College of Agriculture, Fasa University, Fasa, Iran
| | | |
Collapse
|
11
|
Chen YD, Yang Z, Ren NQ, Ho SH. Optimizing the production of short and medium chain fatty acids (SCFAs and MCFAs) from waste activated sludge using different alkyl polyglucose surfactants, through bacterial metabolic analysis. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121384. [PMID: 31605978 DOI: 10.1016/j.jhazmat.2019.121384] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/22/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Alkyl polyglucose is an environmentally-friendly biosurfactant, which is able to enhance short-chain fatty acids production with different carbon chain lengths and concentrations, during sludge anaerobic fermentation. This presents a promising strategy for sludge re-utilization by effectively converting hazardous sludge into value-added compounds. The maximum yield of short-chain fatty acids produced from sludge was 479.3 and 462.2 mg COD/g VSS, following pretreatment with APG06 and APG1214, respectively. To the best of our knowledge, the short-chain fatty acid production performance by sludge fermentation reported here, achieved a higher level than reported in previous studies. Additionally, these findings indicate that the production of medium-chain fatty acids from sludge can be induced by alkyl polyglucoses. Finally, the microbial community and enzyme activity were also assessed to reveal the mechanism of short-/medium-chain fatty acids biosynthesis under alkyl polyglucose pretreatment. This study demonstrates that alkyl polyglucose provides an environmentally-friendly and effective strategy for enhancing the production of short-/medium-chain fatty acids from waste activated sludge. These findings are useful for the assessment of alkyl polyglucose-assisted production of short-/medium-chain fatty acids, as well as for understanding the interactions between short-/medium-chain fatty acids and microbial communities with key enzymes, to establish short-/medium-chain fatty acids metabolic pathways during sludge fermentation.
Collapse
Affiliation(s)
- Yi-di Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Zhongkai Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
12
|
Singhvi M, Zendo T, Gokhale D, Sonomoto K. Greener L-lactic acid production through in situ extractive fermentation by an acid-tolerant Lactobacillus strain. Appl Microbiol Biotechnol 2018; 102:6425-6435. [PMID: 29799089 DOI: 10.1007/s00253-018-9084-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/01/2018] [Accepted: 05/08/2018] [Indexed: 10/16/2022]
Abstract
Lactic acid (LA) fermentation requires a neutralizer for a physiologically acceptable range. However, a neutralizer generates a large amount of gypsum, an environmental pollutant. Furthermore, the downstream processing is complicated and expensive, comprising 50-70% of the total cost. We previously developed a Lactobacillus delbrueckii FM1, which can produce undissociated LA without neutralizer. Here, we improved FM1 by adaptive evolution at pH 4.5, which generated Adp FM1 showing an ~ 1.80-fold increase in LA production compared to FM1. The LA production via fed-batch fermentation yielded 36.2 g/L of LA, with a productivity of 0.500 g/L/h. However, cell viability was reduced due to the acidic pH and/or end-product inhibition. Therefore, an in situ LA recovery process using an extractive solvent was employed to maintain cell viability. Adp FM1 produced 49.2 g/L of LA via in situ LA-extractive fed-batch fermentation, which was ~ 1.4-fold higher than that without LA extraction. Adp FM1 provided a total LA productivity of 0.512 g/L/h in 96 h. Among the tested strains, Adp FM1 exhibited the highest H+-ATPase activity and a 415-fold increase in H+-ATPase gene expression compared to the parent strain. These results suggest that the in situ LA extractive fermentation process will ease downstream processing and prove to be a more economical and environmentally friendly option compared to the present fermentation. To our knowledge, this is the first report on the production of undissociated L-LA by Lactobacillus using an in situ recovery process, with high LA production levels and productivity.
Collapse
Affiliation(s)
- Mamata Singhvi
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-Ku, Fukuoka, 812-8581, Japan
| | - Takeshi Zendo
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-Ku, Fukuoka, 812-8581, Japan
| | - Digambar Gokhale
- NCIM Resource Centre, CSIR-National Chemical Laboratory, Pune, India
| | - Kenji Sonomoto
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-Ku, Fukuoka, 812-8581, Japan.
| |
Collapse
|