1
|
Pereira RN, Jaeschke DP, Marczak LDF, Rech R, Mercali GD. Effect of ultrasound on Pseudoneochloris marina and Chlorella zofingiensis growth. BIORESOURCE TECHNOLOGY 2023; 373:128741. [PMID: 36791976 DOI: 10.1016/j.biortech.2023.128741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The present work evaluated the ultrasound (US) effects on the growth of Pseudoneochloris marina and Chlorella zofingiensis. For P. marina, US treatment did not increase cell proliferation and reduced cell density when used for 60 min (exponential phase, for 5 days), indicating a possible occurrence of cell damage. For C. zofingiensis, the application of discontinuous US for 10 min resulted in an increase of 65 % in biomass concentration compared to the control. These distinct behaviors indicate that microalgae species react differently to physical stimuli. After US treatment, a reduction of carotenoid, chlorophyll, lipid and protein concentrations was observed, which may be related to changes in the metabolic pathways to produce these compounds. Overall, the results of the present study show the potential of discontinuous US to enhance microalgae cell proliferation.
Collapse
Affiliation(s)
- Renata Nunes Pereira
- Department of Chemical Engineering, Federal University of Rio Grande do Sul (UFRGS), Engenheiro Luiz Englert Street, Porto Alegre, RS 90040-040, Brazil
| | - Débora Pez Jaeschke
- College of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS 96203-900, Brazil
| | - Ligia Damasceno Ferreira Marczak
- Department of Chemical Engineering, Federal University of Rio Grande do Sul (UFRGS), Engenheiro Luiz Englert Street, Porto Alegre, RS 90040-040, Brazil
| | - Rosane Rech
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Bento Gonçalves Avenue, 9500, Porto Alegre, RS 91501-970, Brazil
| | - Giovana Domeneghini Mercali
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Bento Gonçalves Avenue, 9500, Porto Alegre, RS 91501-970, Brazil.
| |
Collapse
|
2
|
Aketo T, Waga K, Yabu Y, Maeda Y, Yoshino T, Hanada A, Sano K, Kamiya T, Takano H, Tanaka T. Algal biomass production by phosphorus recovery and recycling from wastewater using amorphous calcium silicate hydrates. BIORESOURCE TECHNOLOGY 2021; 340:125678. [PMID: 34339995 DOI: 10.1016/j.biortech.2021.125678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
The phosphorous supply crisis is a major challenge for a sustainable society, and the algal industry is not unrelated to this crisis. Recycling phosphorus from sewage wastewater is a potential way to address this issue. We previously developed amorphous calcium silicate hydrates (aCSH) as excellent phosphorus recovery materials. In this study, we designed a phosphorus recovery process using aCSH in a pilot-scale facility connected to a sewage wastewater treatment plant, and demonstrated the production of microalgal biomass using phosphorous-containing aCSH (P_aCSH). As a result, high phosphorous recovery rates (>80%) were obtained throughout the year. The carbohydrate-rich microalga Pseudoneochloris sp. NKY372003 was cultivable with P_aCSH. The biomass and carbohydrate productivity of this microalga with P_aCSH was comparable to that with conventional media. Approximately 94% of the phosphorus in P_aCSH was recycled into the biomass. This study successfully demonstrated the recycling the phosphorus recovered from wastewater for microalgal cultivation by aCSH.
Collapse
Affiliation(s)
- Tsuyoshi Aketo
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan; Central Research Laboratory, Taiheiyo Cement Corporation, 2-4-2, Osaku, Sakura City, Chiba 285-8655, Japan
| | - Kentaro Waga
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yusuke Yabu
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yoshiaki Maeda
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Tomoko Yoshino
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Akiko Hanada
- Central Research Laboratory, Taiheiyo Cement Corporation, 2-4-2, Osaku, Sakura City, Chiba 285-8655, Japan
| | - Koki Sano
- Central Research Laboratory, Taiheiyo Cement Corporation, 2-4-2, Osaku, Sakura City, Chiba 285-8655, Japan
| | - Takashi Kamiya
- Central Research Laboratory, Taiheiyo Cement Corporation, 2-4-2, Osaku, Sakura City, Chiba 285-8655, Japan
| | - Hiroyuki Takano
- Central Research Laboratory, Taiheiyo Cement Corporation, 2-4-2, Osaku, Sakura City, Chiba 285-8655, Japan
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|