1
|
Xu Z, Li R, KuoK Ho Tang D, Zhang X, Zhang X, Liu H, Quan F. Enhancing nitrogen transformation and humification in cow manure composting through psychrophilic and thermophilic nitrifying bacterial consortium inoculation. BIORESOURCE TECHNOLOGY 2024; 413:131507. [PMID: 39303947 DOI: 10.1016/j.biortech.2024.131507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
Excessive nitrogen release during composting poses significant challenges to both the environment and compost quality. Biological enhancement of humification and nitrogen conservation is an environmentally friendly and cost-effective approach to composting. The aim of this study was to develop a psychrophilic and thermophilic nitrifying bacterial consortium (CNB) and investigate its role in nitrogen transformation and humification during cow manure composting. Analysis revealed that CNB inoculation promoted microbial proliferation and metabolism, significantly increased the number of nitrifying bacteria (p < 0.05), and elevated the activity of nitrite oxidoreductase and nxrA gene abundance. Compared to the control, CNB inoculation promoted the formation of NO3--N (77.87-82.35 %), while reducing NH3 (48.89 %) and N2O (20.05 %) emissions, and increased humus content (16.22 %). Mantel analysis showed that the higher abundance of nitrifying bacteria and nxrA facilitated the nitrification of NH4+-N. The improvement in nitrite oxidoreductase activity promoted NO3--N formation, leading to increased humus content and enhanced compost safety.
Collapse
Affiliation(s)
- Zhiming Xu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China; School of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling 712100, Shaanxi, China
| | - Ronghua Li
- School of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling 712100, Shaanxi, China; School of Natural Resources and Environment, NWAFU-UA Micro-campus, Yangling, Shaanxi 712100, China
| | - Daniel KuoK Ho Tang
- School of Natural Resources and Environment, NWAFU-UA Micro-campus, Yangling, Shaanxi 712100, China; The University of Arizona (UA), The Department of Environmental Science, Tucson, AZ 85721, USA
| | - Xiu Zhang
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan 750021, China
| | - Xin Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
| | - Hong Liu
- School of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling 712100, Shaanxi, China
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Lu J, Tan Y, Tian S, Qin Y, Zhou M, Hu H, Zhao X, Wang Z, Hu B. Effect of carbon source on carbon and nitrogen metabolism of common heterotrophic nitrification-aerobic denitrification pathway. CHEMOSPHERE 2024; 361:142525. [PMID: 38838867 DOI: 10.1016/j.chemosphere.2024.142525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/10/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Pseudomonas sp. ZHL02, removing nitrogen via ammonia nitrogen (NH4+) → hydroxylamine (HN2OH) → nitrite (NO2-) → nitrate (NO3-) → NO2- → nitric oxide (NO) → nitrous oxide (N2O) pathway was employed for getting in-depth information on the heterotrophic nitrification-aerobic denitrification (HNAD) pathway from carbon oxidation, nitrogen conversion, electron transport process, enzyme activity, as well as gene expression while sodium succinate, sodium citrate, and sodium acetate were utilized as the carbon sources. The nitrogen balance analysis results demonstrated that ZHL02 mainly removed NH4+-N through assimilation. The carbon source metabolism resulted in the discrepancies in electron transport chain and nitrogen removal between different HNAD bacteria. Moreover, the prokaryotic strand-specific transcriptome method showed that, amo and hao were absent in ZHL02, and unknown genes may be involved in ZHL02 during the HNAD process. As a fascinating process for removing nitrogen, the HNAD process is still puzzling, and the relationship between carbon metabolism and nitrogen metabolism among different HNAD pathways should be studied further.
Collapse
Affiliation(s)
- Jiyan Lu
- School of Civil Engineering, Changan University, Xian, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, China; Chang'an University, The Middle Section of the South 2nd Ring Road, 710064, Xian, Shaanxi Province, China
| | - Yue Tan
- School of Civil Engineering, Changan University, Xian, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, China; Chang'an University, The Middle Section of the South 2nd Ring Road, 710064, Xian, Shaanxi Province, China
| | - Shanghong Tian
- School of Civil Engineering, Changan University, Xian, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, China; Chang'an University, The Middle Section of the South 2nd Ring Road, 710064, Xian, Shaanxi Province, China
| | - Yuxiao Qin
- School of Civil Engineering, Changan University, Xian, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, China; Chang'an University, The Middle Section of the South 2nd Ring Road, 710064, Xian, Shaanxi Province, China
| | - Meng Zhou
- School of Civil Engineering, Changan University, Xian, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, China; Chang'an University, The Middle Section of the South 2nd Ring Road, 710064, Xian, Shaanxi Province, China
| | - Hao Hu
- School of Civil Engineering, Changan University, Xian, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, China; Chang'an University, The Middle Section of the South 2nd Ring Road, 710064, Xian, Shaanxi Province, China
| | - Xiaohong Zhao
- School of Civil Engineering, Changan University, Xian, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, China; Chang'an University, The Middle Section of the South 2nd Ring Road, 710064, Xian, Shaanxi Province, China
| | - Zhoufeng Wang
- School of Water and Environment, Changan University, Xian, China; Chang'an University, The Middle Section of the South 2nd Ring Road, 710064, Xian, Shaanxi Province, China.
| | - Bo Hu
- School of Civil Engineering, Changan University, Xian, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, China; Chang'an University, The Middle Section of the South 2nd Ring Road, 710064, Xian, Shaanxi Province, China.
| |
Collapse
|
3
|
Zhu Q, Wu P, Chen B, Wu Q, Cao F, Wang H, Mei Y, Liang Y, Sun X, Chen Z. Improving NH 3 and H 2S removal efficiency with pilot-scale biotrickling filter by co-immobilizing Kosakonia oryzae FB2-3 and Acinetobacter baumannii L5-4. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:33181-33194. [PMID: 36474037 DOI: 10.1007/s11356-022-24426-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
In this study, two NH4+-N and S2- removal strains, namely, Kosakonia oryzae (FB2-3) and Acinetobacter baumannii (L5-4), were isolated from the packing materials in a long-running biotrickling filter (BTF). The removal capacities of combined FB2-3 and L5-4 (FB2-3 + L5-4) toward 100 mg L-1 of NH4+-N and 200 mg L-1 of S2- reached 97.31 ± 1.62% and 98.57 ± 1.12% under the optimal conditions (32.0 °C and initial pH = 7.0), which were higher than those of single strain. Then, FB2-3 and L5-4 liquid inoculums were prepared, and their concentrations respectively reached 1.56 × 109 CFU mL-1 and 1.05 × 109 CFU mL-1 by adding different resuspension solutions and protective agents after 12-week storage at 25 °C. Finally, pilot-scale BTF test showed that NH3 and H2S in the real exhaust gases from a pharmaceutical factory were effectively removed with removal rates > 87% and maximum elimination capacities were reached 136 g (NH3) m-3 h-1 and 176 g (H2S) m-3 h-1 at 18 °C-34 °C and pH 4.0-7.0 in the BTF loaded with bamboo charcoal packing materials co-immobilized with FB2-3 and L5-4. After co-immobilization of FB2-3 and L5-4, in the bamboo charcoal packing materials, the new microbial diversity composition contained the dominant genera of Acinetobacter, Mycobacterium, Kosakonia, and Sulfobacillus was formed, and the diversity of entire bacterial community was decreased, compared to the control. These results indicate that FB2-3 and L5-4 have potential to be developed into liquid ready-to-use inoculums for effectively removing NH3 and H2S from exhaust gases in BTF.
Collapse
Affiliation(s)
- Qiuyan Zhu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Pengyu Wu
- College of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, People's Republic of China
| | - Budong Chen
- Chuhuan Science and Technology Co., Ltd, Hangzhou, 310000, People's Republic of China
| | - Qijun Wu
- Chuhuan Science and Technology Co., Ltd, Hangzhou, 310000, People's Republic of China
| | - Feifei Cao
- Chuhuan Science and Technology Co., Ltd, Hangzhou, 310000, People's Republic of China
| | - Hao Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yuxia Mei
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yunxiang Liang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xiaowen Sun
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhenmin Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
4
|
Wu R, Yao F, Li X, Shi C, Zang X, Shu X, Liu H, Zhang W. Manganese Pollution and Its Remediation: A Review of Biological Removal and Promising Combination Strategies. Microorganisms 2022; 10:2411. [PMID: 36557664 PMCID: PMC9781601 DOI: 10.3390/microorganisms10122411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Manganese (Mn), as a cofactor of multiple enzymes, exhibits great significance to the human body, plants and animals. It is also a critical raw material and alloying element. However, extensive employment for industrial purposes leads to its excessive emission into the environment and turns into a significant threat to the ecosystem and public health. This review firstly introduces the essentiality, toxicity and regulation of Mn. Several traditional physicochemical methods and their problems are briefly discussed as well. Biological remediation, especially microorganism-mediated strategies, is a potential alternative for remediating Mn-polluted environments in a cost-efficient and eco-friendly manner. Among them, microbially induced carbonate precipitation (MICP), biosorption, bioaccumulation, bio-oxidation are discussed in detail, including their mechanisms, pivotal influencing factors along with strengths and limitations. In order to promote bioremediation efficiency, the combination of different techniques is preferable, and their research progress is also summarized. Finally, we propose the future directions of Mn bioremediation by microbes. Conclusively, this review provides a scientific basis for the microbial remediation performance for Mn pollution and guides the development of a comprehensive competent strategy towards practical Mn remediation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hengwei Liu
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wenchao Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
5
|
Yang K, Bu H, Zhang Y, Yu H, Huang S, Ke L, Hong P. Efficacy of simultaneous hexavalent chromium biosorption and nitrogen removal by the aerobic denitrifying bacterium Pseudomonas stutzeri YC-34 from chromium-rich wastewater. Front Microbiol 2022; 13:961815. [PMID: 35992714 PMCID: PMC9389319 DOI: 10.3389/fmicb.2022.961815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/11/2022] [Indexed: 12/03/2022] Open
Abstract
The impact of high concentrations of heavy metals and the loss of functional microorganisms usually affect the nitrogen removal process in wastewater treatment systems. In the study, a unique auto-aggregating aerobic denitrifier (Pseudomonas stutzeri strain YC-34) was isolated with potential applications for Cr(VI) biosorption and reduction. The nitrogen removal efficiency and denitrification pathway of the strain were determined by measuring the concentration changes of inorganic nitrogen during the culture of the strain and amplifying key denitrification functional genes. The changes in auto-aggregation index, hydrophobicity index, and extracellular polymeric substances (EPS) characteristic index were used to evaluate the auto-aggregation capacity of the strain. Further studies on the biosorption ability and mechanism of cadmium in the process of denitrification were carried out. The changes in tolerance and adsorption index of cadmium were measured and the micro-characteristic changes on the cell surface were analyzed. The strain exhibited excellent denitrification ability, achieving 90.58% nitrogen removal efficiency with 54 mg/L nitrate-nitrogen as the initial nitrogen source and no accumulation of ammonia and nitrite-nitrogen. Thirty percentage of the initial nitrate-nitrogen was converted to N2, and only a small amount of N2O was produced. The successful amplification of the denitrification functional genes, norS, norB, norR, and nosZ, further suggested a complete denitrification pathway from nitrate to nitrogen. Furthermore, the strain showed efficient aggregation capacity, with the auto-aggregation and hydrophobicity indices reaching 78.4 and 75.5%, respectively. A large amount of protein-containing EPS was produced. In addition, the strain effectively removed 48.75, 46.67, 44.53, and 39.84% of Cr(VI) with the initial concentrations of 3, 5, 7, and 10 mg/L, respectively, from the nitrogen-containing synthetic wastewater. It also could reduce Cr(VI) to the less toxic Cr(III). FTIR measurements and characteristic peak deconvolution analysis demonstrated that the strain had a robust hydrogen-bonded structure with strong intermolecular forces under the stress of high Cr(VI) concentrations. The current results confirm that the novel denitrifier can simultaneously remove nitrogen and chromium and has potential applications in advanced wastewater treatment for the removal of multiple pollutants from sewage.
Collapse
|
6
|
Shi X, He C, Wang Y, Lu J, Guo H, Zhang B. Concurrent anaerobic chromate bio-reduction and pentachlorophenol bio-degradation in a synthetic aquifer. WATER RESEARCH 2022; 216:118326. [PMID: 35364351 DOI: 10.1016/j.watres.2022.118326] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Chromate [Cr(VI)] and pentachlorophenol (PCP) coexist widely in the environment and are highly toxic to public health. However, whether Cr(VI) bio-reduction is accompanied by PCP bio-degradation and how microbial communities can keep long-term stability to mediate these bioprocesses in aquifer remain elusive. Herein, we conducted a 365-day continuous column experiment, during which the concurrent removals of Cr(VI) and PCP were realized under anaerobic condition. This process allowed for complete Cr(VI) bio-reduction and PCP bio-degradation at an efficiency of 92.8 ± 4.2% using ethanol as a co-metabolic substrate. More specifically, Cr(VI) was reduced to insoluble chromium (III) and PCP was efficiently dechlorinated with chloride ion release. Collectively, Acinetobacter and Spirochaeta regulated Cr(VI) bio-reduction heterotrophically, while Pseudomonas mediated not only Cr(VI) bio-reduction but also PCP bio-dechlorination. The bio-dechlorinated products were further mineralized by Azospira and Longilinea. Genes encoding proteins for Cr(VI) bio-reduction (chrA and yieF) and PCP bio-degradation (pceA) were upregulated. Cytochrome c and intracellular nicotinamide adenine dinucleotide were involved in Cr(VI) and PCP detoxification by promoting electron transfer. Taken together, our findings provide a promising bioremediation strategy for concurrent removal of Cr(VI) and PCP in aquifers through bio-stimulation with supplementation of appropriate substrates.
Collapse
Affiliation(s)
- Xinyue Shi
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Chao He
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Ya'nan Wang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Jianping Lu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Huaming Guo
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China.
| |
Collapse
|
7
|
Gong L, Tong Y, Yang H, Feng S. Simultaneously pollutant removal and S 0 recovery from composite wastewater containing Cr(VI)-S 2- based on biofilm enhancement. BIORESOURCE TECHNOLOGY 2022; 351:127017. [PMID: 35306135 DOI: 10.1016/j.biortech.2022.127017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Bioaugmentation of extracellular polymeric substances-producing bacteria was applied in pollutant removal and S0 recovery from composite wastewater in a mixotrophic denitrification system. In the presence of 200 mg·L-1 S2- and 50 mg·L-1 Cr(VI), the removal efficiencies of chemical oxygen demand, NO3-, S2- and Cr(VI) were 86.38%, 91.82%, 95.75%, and 100.00% respectively, while S0 recovery efficiency reached 79.17%. Increased contents of protein and polysaccharide, especially the high ratio of protein/polysaccharide verified the structural stability of biofilm was promoted by biofilm enhancement. The widespread distribution of bacteria/extracellular polymeric substance (EPS) revealed the more obvious biofilms formation in biofilm-enhanced group. High-throughput sequencing analysis showed that EPS-producing bacteria (Flavobacterium, Thauera, Thiobacillus and Simplicispira) were dominant bacteria in the biofilm-enhanced group. Moreover, by comprehensive considering of redundancy analysis, the colonization of selected bacteria improved the robustness of the reactor and treatment performance to wastewater contained toxic pollutions.
Collapse
Affiliation(s)
- Liangqi Gong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 1800 Lihu Road, People's Republic of China
| | - Yanjun Tong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi, 1800 Lihu Road, People's Republic of China
| | - Hailin Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 1800 Lihu Road, People's Republic of China; Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education, Jiangnan University, Wuxi, 1800 Lihu Road, People's Republic of China
| | - Shoushuai Feng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 1800 Lihu Road, People's Republic of China; Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education, Jiangnan University, Wuxi, 1800 Lihu Road, People's Republic of China.
| |
Collapse
|
8
|
Pan J, Liu L, Pan H, Yang L, Su M, Wei C. A feasibility study of metal sulfide (FeS and MnS) on simultaneous denitrification and chromate reduction. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127491. [PMID: 34673399 DOI: 10.1016/j.jhazmat.2021.127491] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/30/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Metal sulfide-based biological process is considered as a promising biotechnology for next-generation wastewater treatment. However, it is not clear if simultaneous bio-reduction of nitrate and chromate was achievable in this process. This study aimed to evaluate the feasibility of metal sulfides (FeS and MnS) on simultaneous denitrification and chromate reduction in autotrophic denitrifying column bioreactors. Results showed that simultaneous reduction of nitrate and chromate was achieved using metal sulfides (FeS and MnS) as electron donors, in which sulfate was the sole soluble end-product. Apart from the sulfur element in the metal sulfides, Fe(II) and Mn(II) were also involved in nitrate and chromate reduction as indicative by the formation of their oxidative states compounds. In microbial communities, SHD-231 and Thiobacillus were the most predominant bacteria, which might have played important roles in simultaneous denitrification and chromate reduction. Compared to FeS, MnS showed a higher performance on nitrate and chromate removal, which could also reduce the toxic inhibition of chromate on nitrate reduction. According to results of XRD and XPS, as well as a lower sulfate production in the FeS system, FeS might have been covered easily to hydroxides due to its bio-oxidation, which limited mass transfer efficiency and bio-availability of FeS. The findings in this study offered insights in the development of promising approaches for the treatment of toxic and hazardous compounds using metal sulfide.
Collapse
Affiliation(s)
- Jianxin Pan
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Liangliang Liu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Hanping Pan
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Lihui Yang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Meirong Su
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China.
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
9
|
Xi H, Zhou X, Arslan M, Luo Z, Wei J, Wu Z, Gamal El-Din M. Heterotrophic nitrification and aerobic denitrification process: Promising but a long way to go in the wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150212. [PMID: 34536867 DOI: 10.1016/j.scitotenv.2021.150212] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 05/27/2023]
Abstract
The traditional biological nitrogen removal (BNR) follows the conventional scheme of sequential nitrification and denitrification. In recent years, novel processes such as anaerobic ammonia oxidation (anammox), complete oxidation of ammonia to nitrate in one organism (comammox), heterotrophic nitrification and aerobic denitrification (HN-AD), and dissimilatory nitrate reduction to ammonium (DNRA) are gaining tremendous attention after the discovery of metabolically versatile bacteria. Among them, HN-AD offers several advantages because individual bacteria could achieve one-stage nitrogen removal under aerobic conditions in the presence of organic carbon. In this review, besides classical BNR processes, we summarized the existing literature on HN-AD bacteria which have been isolated from diverse habitats. A particular focus was given on the diversity and physiology of HN-AD bacteria, influences of physiological and biochemical factors on their growth, nitrogen removal performances, as well as limitations and strategies in unraveling HN-AD metabolic pathways. We also presented case studies of HN-AD application in wastewater treatment facilities, pointed out forthcoming challenges of HN-AD in these systems, and presented modulation strategies for HN-AD application in engineering. This review may help improve the existing design of wastewater treatment plants by harnessing HN-AD bacteria for effective nitrogen removal.
Collapse
Affiliation(s)
- Haipeng Xi
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China
| | - Xiangtong Zhou
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China.
| | - Muhammad Arslan
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Zhijun Luo
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China
| | - Jing Wei
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China
| | - Zhiren Wu
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
10
|
Gu X, Leng J, Zhu J, Zhang K, Zhao J, Wu P, Xing Q, Tang K, Li X, Hu B. Influence mechanism of C/N ratio on heterotrophic nitrification- aerobic denitrification process. BIORESOURCE TECHNOLOGY 2022; 343:126116. [PMID: 34653622 DOI: 10.1016/j.biortech.2021.126116] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 05/27/2023]
Abstract
A heterotrophic nitrification- aerobic denitrification (HNAD) bacterium, Acinetobacter junii ZHG-1, was isolated, meanwhile, the optimal conditions for the strain were evaluated, moreover, the influence mechanism of the C/N ratio on the HNAD process was investigated from the perspective of electron transport and energy level. The increasing of C/N ratio enhanced the reduced/oxidized nicotinamide adenine dinucleotide (NADH/NAD+) ratio, NADH concentration, electron transport system activity (ETSA), ATP content, as well as enzymes activities, consequently, the HNAD performance of the strain can be improved, however, when the C/N ratio was higher than 30, the activities of enzymes relating to the HNAD process and the ETSA had reached the maximum, which might limit the further improvement of the nitrogen removal with the increasing of C/N ratio. As the interaction between different biochemical reactions in HNAD process, more efforts should be devoted to the influent mechanism of different environmental factors on the HNAD process.
Collapse
Affiliation(s)
- Xin Gu
- School of Civil Engineering, Chang'an University, The Middle Section of the South 2(nd) Ring Road, 710064, Xi'an, Shaanxi Province, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang'an University, The Middle Section of the South 2(nd) Ring Road, 710064, Xi'an, Shaanxi Province, China
| | - Juntong Leng
- School of Civil Engineering, Chang'an University, The Middle Section of the South 2(nd) Ring Road, 710064, Xi'an, Shaanxi Province, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang'an University, The Middle Section of the South 2(nd) Ring Road, 710064, Xi'an, Shaanxi Province, China
| | - Jitao Zhu
- School of Civil Engineering, Chang'an University, The Middle Section of the South 2(nd) Ring Road, 710064, Xi'an, Shaanxi Province, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang'an University, The Middle Section of the South 2(nd) Ring Road, 710064, Xi'an, Shaanxi Province, China
| | - Kai Zhang
- School of Civil Engineering, Chang'an University, The Middle Section of the South 2(nd) Ring Road, 710064, Xi'an, Shaanxi Province, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang'an University, The Middle Section of the South 2(nd) Ring Road, 710064, Xi'an, Shaanxi Province, China
| | - Jianqiang Zhao
- Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang'an University, The Middle Section of the South 2(nd) Ring Road, 710064, Xi'an, Shaanxi Province, China; School of Water and Environment, Chang'an University, The Middle Section of the South 2(nd) Ring Road, 710064, Xi'an, Shaanxi Province, China; Key Laboratory of Environmental Protection & Pollution and Remediation of Water and Soil of Shaanxi Province, Chang'an University, The Middle Section of the South 2(nd) Ring Road, 710064, Xi'an, Shaanxi Province, China
| | - Pei Wu
- School of Civil Engineering, Chang'an University, The Middle Section of the South 2(nd) Ring Road, 710064, Xi'an, Shaanxi Province, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang'an University, The Middle Section of the South 2(nd) Ring Road, 710064, Xi'an, Shaanxi Province, China
| | - Qingyi Xing
- School of Civil Engineering, Chang'an University, The Middle Section of the South 2(nd) Ring Road, 710064, Xi'an, Shaanxi Province, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang'an University, The Middle Section of the South 2(nd) Ring Road, 710064, Xi'an, Shaanxi Province, China
| | - Kejing Tang
- School of Civil Engineering, Chang'an University, The Middle Section of the South 2(nd) Ring Road, 710064, Xi'an, Shaanxi Province, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang'an University, The Middle Section of the South 2(nd) Ring Road, 710064, Xi'an, Shaanxi Province, China
| | - Xiaoling Li
- School of Civil Engineering, Chang'an University, The Middle Section of the South 2(nd) Ring Road, 710064, Xi'an, Shaanxi Province, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang'an University, The Middle Section of the South 2(nd) Ring Road, 710064, Xi'an, Shaanxi Province, China
| | - Bo Hu
- School of Civil Engineering, Chang'an University, The Middle Section of the South 2(nd) Ring Road, 710064, Xi'an, Shaanxi Province, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang'an University, The Middle Section of the South 2(nd) Ring Road, 710064, Xi'an, Shaanxi Province, China.
| |
Collapse
|
11
|
An Q, Zhang C, Zhao B, Li Z, Deng S, Wang T, Jin L. Insight into synergies between Acinetobacter sp. AL-6 and pomelo peel biochar in a hybrid process for highly efficient manganese removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148609. [PMID: 34182459 DOI: 10.1016/j.scitotenv.2021.148609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/07/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
The manganese contamination of groundwater is a global issue that needs to be solved urgently. In this study, a hybrid process between pomelo peel biochar(BC) and Acinetobacter sp. AL-6 (strain AL-6) was established to remove manganese from water. The results showed that microbe-biochar composite had removed 98.19% of manganese (800 mg L-1) within 48 h. Compared with two separate systems (biochar, strain AL-6), the co-system (strain AL-6 and BC composite) had an excellent synergy effect on manganese removal. The average removal rate of manganese in the synergistic system was 14.08 mg L-1 h-1, which was 6.41 times higher than strain AL-6, 3.45 times higher than biochar, and even at 2.24 times their sum. In addition, the scanning electron microscope (SEM) and the bioassay indicated that many strains were attached to biochar and had vigorous biological activity. The FTIR results showed that the functional groups of OH, CO, CO, CH2, and CH played a vital role in removing manganese. And the correlation analysis shows that biochar with strains AL-6 has a highly synergistic effect on manganese removal. Meanwhile, the composite material can maintain excellent manganese removal efficiency under different pH conditions. Besides, in the sequence batch reactor (SBR) inoculating with the microbe-biochar composite, more than 96% of manganese was removed, which far exceeded the treatment efficiency of free bacteria in the SBR. Hence, biochar-immobilized AL-6 has great potential and can be applied to degrade manganese polluted wastewater.
Collapse
Affiliation(s)
- Qiang An
- College of Environment and Ecology, Chongqing University, Chongqing 400045, People's Republic of China; The Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Chongqing University, Chongqing 400045, People's Republic of China.
| | - Chenyi Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, People's Republic of China
| | - Bin Zhao
- College of Environment and Ecology, Chongqing University, Chongqing 400045, People's Republic of China
| | - Zheng Li
- College of Environment and Ecology, Chongqing University, Chongqing 400045, People's Republic of China
| | - Shuman Deng
- College of Environment and Ecology, Chongqing University, Chongqing 400045, People's Republic of China
| | - Tuo Wang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, People's Republic of China
| | - Lin Jin
- College of Environment and Ecology, Chongqing University, Chongqing 400045, People's Republic of China
| |
Collapse
|
12
|
An Q, Jin L, Deng S, Li Z, Zhang C. Removal of Mn(II) by a nitrifying bacterium Acinetobacter sp. AL-6: efficiency and mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31218-31229. [PMID: 33599926 DOI: 10.1007/s11356-021-12764-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
A nitrifying bacterium Acinetobacter sp. AL-6 showed a high efficiency of 99.05% for Mn(II) removal within 144 h when the Mn(II) concentration was 200 mg L-1; meanwhile, 64.23% of NH4+-N was removed. With the Mn(II) concentration increased from 25 to 300 mg L-1, bacterial growth and Mn(II) removal were stimulated. However, due to the electron acceptor competition between Mn(II) oxidation and nitrification reactions, the increase in NH4+-N concentration would inhibit Mn(II) removal. By measuring Mn metabolic form and locating oxidative active factors, it was proved that extracellular oxidation effect played a dominant role in the removal process of Mn(II). The self-regulation of pH during strain metabolism further promoted the occurrence of biological Mn oxidation. Characterization results showed that the Mn oxidation products were tightly attached to the surface of the bacteria in the form of flakes. The product crystal composition (mainly MnO2 and Mn2O3), Mn-O functional group, and element level fluctuations confirmed the biological oxidation information. The changes of -OH, N-H, and -CH2 groups and the appearance of new functional groups (such as C-H and C-O) provided more possibilities for Mn ion adsorption and bonding.
Collapse
Affiliation(s)
- Qiang An
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, People's Republic of China.
- The Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Chongqing University, Chongqing, 400045, People's Republic of China.
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Lin Jin
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Shuman Deng
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Zheng Li
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Chenyi Zhang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, People's Republic of China
| |
Collapse
|
13
|
Isolated heterotrophic nitrifying and aerobic denitrifying bacterium for treating actual refinery wastewater with low C/N ratio. J Biosci Bioeng 2021; 132:41-48. [PMID: 33931317 DOI: 10.1016/j.jbiosc.2021.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 11/20/2022]
Abstract
Heterotrophic nitrifying and aerobic denitrifying bacteria that have been widely isolated from complicated activated sludge microflorae demonstrate dominant advantages in simultaneous removal of ammonium and nitrogen oxides under aerobic conditions. However, owing to the need of organic carbon to support bacterial growth, nitrogen removal of actual industrial wastewater with low carbon-to-nitrogen (C/N) ratio remains a challenge. Here, Pseudomonas mendocina Y7 was identified and presented to effectively remove nitrogen of actual refinery wastewater with low C/N ratio. The isolated bacterium showed high removal efficiency of NH4+-N, NO2--N, and NO3--N up to about 90% in single (100 mg/L) or mixed (200 mg/L) nitrogen source media at low C/N ratio of 6 when it was cultivated for 12 or 21 h. According to PCR amplification, the heterotrophic nitrification and aerobic denitrification capability of strain Y7 was attributed to the functional genes of amoA, hao, napA, and nirS. In activated sludge process for treating actual refinery wastewater with low C/N ratio, compared to abundant accumulation of NO2--N and NO3--N only using the activated sludge, strain Y7 significantly improved the removal efficiency of NH4+‒N and total nitrogen (with influent concentrations of about 40 and 55 mg/L) from about 47% and 22% to about 85% and 73%, respectively, without the accumulation of nitrogen oxides. Microbial community structure analysis revealed that strain Y7 could coexist well with other microorganisms in the activated sludge and maintain highly efficient and steady nitrogen removal in continuous treatment system. This discovery provides a promising treatment approach toward actual nitrogen-rich industrial wastewater.
Collapse
|