1
|
Zhou J, Wang W, Zhang Z, Zhu G, Qiao J, Guo S, Bai Y, Zhao C, Teng C, Qin P, Zhang L, Ren G. An underutilized bean: hyacinth bean [Lablab purpureus (L.) sweet]: bioactive compounds, functional activity, and future food prospect and applications. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:701-720. [PMID: 38961686 DOI: 10.1002/jsfa.13708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024]
Abstract
Hyacinth bean [Lablab purpureus (L.) Sweet], a plant belonging to the leguminous family and traditionally used for medicinal purposes in China, is a valuable resource with a wide range of health benefits. This review examines the bioactive compounds, health-promoting properties and functional food potential of hyacinth bean, highlighting its role in protecting against metabolic diseases and the underlying molecular mechanisms. According to existing research, hyacinth bean contains a diverse array of bioactive compounds, Consumption of hyacinth beans and hyacinth bean-related processed food products, as well as their use in medicines, is associated with a variety of health benefits that are increasingly favoured by the scientific community. In light of these findings, we posit that hyacinth bean holds great promise for further research and food application. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiankang Zhou
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenting Wang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Zhuo Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gege Zhu
- Wuhan No. 23 Middle School in Hanyang District, Wuhan, China
| | - Jiawei Qiao
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Shengyuan Guo
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yu Bai
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Chaofan Zhao
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Cong Teng
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Peiyou Qin
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lizhen Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Guixing Ren
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Guan T, Wei X, Qiu X, Liu Y, Yu J, Hou R, Liu M, Mao Y, Liu Q, Tian L, He Z, Xiang S. Precipitation and temperature drive microbial community changes affecting flavor quality of Nongxiangxing Daqu. Food Chem X 2024; 24:102063. [PMID: 39717403 PMCID: PMC11665295 DOI: 10.1016/j.fochx.2024.102063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/24/2024] [Accepted: 11/29/2024] [Indexed: 12/25/2024] Open
Abstract
Nongxiangxing Baijiu is the most famous Baijiu flavor in China, and its characteristic style is closely related to Nongxiangxing Daqu used in fermentation. However, there are few reports about the difference of Daqu quality between seasonal variations. In this study, precipitation and temperature drove changes in microbial communities that resulted in differences in the flavor of Daqu produced in different seasons. For example, the average daily temperature in summer was as high as 27.29 ± 2.24 °C, which was significantly higher than other seasons (p < 0.01). Bacillus was abundant in the Daqu produced in this season, while tetramethylpyrazine flavor was more prominent, up to 1556.95 ± 153.92 μg/kg. Metabolomics studies identified major pathways associated with the weak flavor of spring_Daqu. In addition, LEFSe analysis revealed the marked microorganisms in different seasons. These results revealed the differences in seasonal Daqu, thus contributing to the scientific and rational use of Daqu.
Collapse
Affiliation(s)
- Tongwei Guan
- College of Food and Biological Engineering, Xihua University, Food Microbiology Key Laboratory of Sichuan Province,Chengdu 610039, China
| | - Xinyue Wei
- Sichuan Mianzhu Jiannanchun Liquor Co., Ltd, Mianzhu 618200, China
| | - Xianping Qiu
- Sichuan Quanxing of Liquor Co., Ltd., Chengdu 610000, China
| | - Ying Liu
- College of Food and Biological Engineering, Xihua University, Food Microbiology Key Laboratory of Sichuan Province,Chengdu 610039, China
| | - Jianshen Yu
- Sichuan Quanxing of Liquor Co., Ltd., Chengdu 610000, China
| | - Rui Hou
- Sichuan Mianzhu Jiannanchun Liquor Co., Ltd, Mianzhu 618200, China
| | - Maoke Liu
- Institute of Rice and Sorghum Sciences, Sichuan Academy of Agricultural Sciences, Deyang 618000, China
| | - Yichen Mao
- Xinjiang Kaiduhe Liquor Co., Ltd, Hejing 841302, China
| | - Qingru Liu
- College of Food and Biological Engineering, Xihua University, Food Microbiology Key Laboratory of Sichuan Province,Chengdu 610039, China
| | - Lei Tian
- College of Food and Biological Engineering, Xihua University, Food Microbiology Key Laboratory of Sichuan Province,Chengdu 610039, China
| | - Zongjun He
- Sichuan Tujiu Liquor Co., Ltd, Nanchong 637919, China
| | | |
Collapse
|
3
|
Liu J, Wang J, Zhu B, Liang K, Zhang Y, Song J, Tu L, Zheng Y, Wang M. Identification of phenols and their formation network during the brewing process of Shanxi aged vinegar. Food Chem 2024; 470:142635. [PMID: 39798261 DOI: 10.1016/j.foodchem.2024.142635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 01/15/2025]
Abstract
Phenols are important functional compounds present in vineagr, however, their composition and formation pathways remain uncertain. Herein, non-targeted metabolomics and macrotranscriptomics methods were applied to identify phenols and analyze their formation network during the brewing process of Shanxi aged vinegar. A total of 82 phenols were detected from the raw material and the brewing process. Results indicated that phenolic acids were the major phenols and were mainly formed during acetic acid fermentation stages. Water, reducing sugars, lactic acid, and 7 amino acids influenced the formation and transformation of phenols, as shown through Spearman analysis. Furthermore, 16 genera and 38 enzymes were involved in substrates decomposition and phenols formation according to the metabolic pathway analysis, with Xenobiotics biodegradation and metabolism identified as the main pathway for phenols formation. Lactobacillus and Acetobacter were the key genera responsible for the phenols transformation. This study provides new insights into the phenols formation mechanisms in cereal vinegars and it is helpful for isolating the functional strains to reinforce the phenols formation.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, School of Biological Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jiao Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, School of Biological Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Boya Zhu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, School of Biological Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kai Liang
- Shanxi Province Key Laboratory of Vinegar Fermentation Science and Engineering, Shanxi Zilin Vinegar Industry Co, Ltd, Taiyuan 030400, China
| | - Yushi Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, School of Biological Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jia Song
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, School of Biological Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Linna Tu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, School of Biological Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yu Zheng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, School of Biological Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; Shanxi Province Key Laboratory of Vinegar Fermentation Science and Engineering, Shanxi Zilin Vinegar Industry Co, Ltd, Taiyuan 030400, China.
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, School of Biological Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
4
|
Zhang Z, Zhang ZH, He R, Zhao G, Yu Y, Zhang R, Gao X. Research advances in technologies and mechanisms to regulate vinegar flavor. Food Chem 2024; 460:140783. [PMID: 39137579 DOI: 10.1016/j.foodchem.2024.140783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
New vinegar needs a long maturing time to improve its poor flavor before sale, which greatly increases its production cost. Therefore, it is urgent to explore regulation technologies to accelerate vinegar flavor maturation. Based on literature and our research, this review introduces the latest advances in flavor regulation technologies of vinegar including microbial fortification/multi starters fermentation, key production processes optimization and novel physical processing technologies. Microbial fortification or multi starters fermentation accelerates vinegar flavor maturation via enhancing total acids, esters and aroma precursors content in vinegar. Adjusting raw materials composition, fermentation temperature, and oxygen flow reasonably increase alcohols, organic acids, polyphenols and esters levels via generating more corresponding precursors in vinegar, thereby improving its flavor. Furthermore, novel processing technologies greatly promote conversion of alcohols into acids and esters in vinegar, shortening flavor maturation time for over six months. Meanwhile, the corresponding mechanisms are discussed and future research directions are addressed.
Collapse
Affiliation(s)
- Zhankai Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Zhi-Hong Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Guozhong Zhao
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yongjian Yu
- School of Grain, Jiangsu University of Science & Technology, 666 Changxiang Avenue, Zhenjiang 212000, China
| | - Rong Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xianli Gao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| |
Collapse
|
5
|
Li C, Kou R, Jia Y, Fan X, Shi Y, Chen Q. Dynamics and biodiversity of microbial community among seasons in Shanxi mature vinegar fermentation by semisolid-solid process. Microbiol Spectr 2024; 12:e0023124. [PMID: 39535179 PMCID: PMC11619342 DOI: 10.1128/spectrum.00231-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
The dynamic succession and seasonal characteristics of microbiota throughout the Shanxi mature vinegar (SMV) fermentation by the semisolid-solid process were explored using high-throughput sequencing techniques. The results showed that the richness and diversity of fungi were higher than those of bacteria in a complete seasonal SMV fermentation cycle, and the microbial community was dominated by 11 taxa of bacteria and 16 taxa of fungi. In all four seasons, lactic acid bacteria and acetic acid bacteria were the dominant bacteria, while the dominant fungi varied. Saccharomyces and Pichia played an important role in spring. Aspergillus and Issatchenkia were enriched in the summer. Kazachstania was the dominant microorganism in autumn. While Mesenteroides and Meyerozyma were enriched in winter. Unweighted pair group method with arithmetic mean (UPGMA) cluster analysis demonstrated that seasonality had a more decisive impact on microbiota composition than the fermentation stage within a season, and the microbiota structure in summer was significantly different from that in the other three seasons. Combined with the highest operational taxonomic units (OTUs) percentage (37%) of summer fungi in the Venn diagrams, it is speculated that the specific fungi may be the root cause for the relatively low SMV quality in summer. This work provided critical insights into the dynamic succession of the microbial community in SMV fermentation from a seasonality view, and the results could enrich our understanding of the microbiota involved in SMV fermentation and guide process control. IMPORTANCE Understanding the changes in microbial communities across different seasons is crucial for ensuring the quality of Shanxi mature vinegar (SMV) by the semisolid-solid process. In a complete seasonal cycle, the richness and diversity of fungi were higher than those of bacteria. The microbial community in summer fermentation was significantly different compared to the other three seasons. For example, the dominant microorganisms such as Acetobacter and Lactobacillus decreased in summer. Screening or modifying this group of bacteria to enhance their tolerance to high fermentation temperature is an approach to improve industrial SMV fermentation. Through co-occurrence network analysis, eight highly connected genera were identified, which may play important roles in ecosystem stability. These results also lay a theoretical foundation for the further development of multi-microbial co-fermentation. This work provides an understanding of SMV fermentation from a seasonal perspective and offers new guidance for the process control of grain vinegar brewing.
Collapse
Affiliation(s)
- Chen Li
- School of Life Science, Shanxi University, Taiyuan, China
| | - Rong Kou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong, China
- Shanxi Xinghuacun Fenjiu Group Co., Ltd., Fenyang, China
| | - Yingying Jia
- School of Life Science, Shanxi University, Taiyuan, China
| | - Xiaojun Fan
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong, China
| | - Ying Shi
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Li L, Wu J, Tao Y, Xu Z, Tang Q, Liu M. Seasonal dynamics of the microbial community in a strong-flavor baijiu fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6605-6614. [PMID: 38523062 DOI: 10.1002/jsfa.13485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND The microbial community plays a crucial role in Chinese strong-flavor baijiu (SFB) fermentation. However, the seasonal dynamics of the microbial community in the SFB fermentation system and its contribution to the unique flavor of SFB have not been fully elucidated. In this study, we investigated the seasonal dynamics of the microbial community through 16S rRNA and ITS gene sequencing. RESULTS The results revealed significant temporal dynamics of microbial communities and environmental variables throughout the four seasons. The influence of seasons on fungal communities was found to be more significant than on bacterial communities. The diversity of bacteria was higher during the winter and summer, whereas fungal diversity was more prominent in summer and autumn. Stochastic processes maintained their dominance in microbial assembly throughout all four seasons but the significance of heterogeneous selection increased during summer for both bacteria and fungi, whereas homogeneous selection became more pronounced during winter for fungi. The pH and environmental temperature were important drivers of microbial community assembly across different seasons, primarily impacting the core genera responsible for the production of major volatile flavor compounds (VFCs), especially ethyl caproate. CONCLUSION These findings provide new insights into the impact of seasons on microbial communities and hold promise for improving the quality-control measures for SFB brewed in different seasons. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lingjuan Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, China
| | - Jing Wu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, China
| | - Yong Tao
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, China
- Liquor Making Biological Technology and Application of Key Laboratory of Sichuan Province, Department of Bioengineering, Sichuan University of Science & Engineering, Zigong, China
| | - Zhancheng Xu
- Sichuan Jiannanchun Group Co. Ltd., Mianzhu, China
| | - Qinglan Tang
- Sichuan Jiannanchun Group Co. Ltd., Mianzhu, China
| | - Menghua Liu
- Sichuan Jiannanchun Group Co. Ltd., Mianzhu, China
| |
Collapse
|
7
|
Li Y, Wang A, Dang B, Yang X, Nie M, Chen Z, Lin R, Wang L, Wang F, Tong LT. Deeply analyzing dynamic fermentation of highland barley vinegar: Main physicochemical factors, key flavors, and dominate microorganisms. Food Res Int 2024; 177:113919. [PMID: 38225120 DOI: 10.1016/j.foodres.2023.113919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024]
Abstract
Highland barley vinegar, as a solid-state fermentation-type vinegar emerged recently, is well-known in Qinghai-Tibet plateau area of China. This work aimed to explore the main physicochemical factors, key flavor volatile compounds, and dominate microorganisms of highland barley vinegar during fermentation. The results showed that the decrease trend of reducing sugar, pH and the increase trend of amino acid nitrogen were associated with the metabolism of dominate bacteria, especially Lactobacillus and Acetobacter. Totally, 35 volatile compounds mainly including 20 esters, 10 alcohols, 2 aldehydes, 1 ketone and 2 pyrazines and 7 organic acids were identified. Especially, isoamyl acetate, acetyl methyl carbinol, ethyl caprylate, 1,2-propanediol, 3-methyl-1-butanol and ethyl isovalerate with high odor activity values were confirmed as key aroma compounds. Meanwhile, the relative average abundance of bacteria at genus level decreased significantly as fermentation time goes on. Among these microbes, Lactobacillus were the dominate bacteria at alcohol fermentation stage, Lactobacillus and Acetobacter were dominate at acetic acid fermentation stage. Furthermore, the correlations between dominate bacteria and the key volatile compounds were revealed, which highlighted Lactobacillus and Acetobacter were significantly correlated with key volatile compounds (|r| > 0.5, P < 0.01). The fundings of this study provide insights into the flavor and assist to improve the production quality of highland barley vinegar.
Collapse
Affiliation(s)
- Yan Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing 100193, China
| | - Aixia Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing 100193, China
| | - Bin Dang
- Qinghai Tibetan Plateau Key Laboratory of Agric-Product Processing, Qinghai Academy of Agricultural and Forestry Sciences, Xining 810016, China
| | - Xijuan Yang
- Qinghai Tibetan Plateau Key Laboratory of Agric-Product Processing, Qinghai Academy of Agricultural and Forestry Sciences, Xining 810016, China
| | - Mengzi Nie
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing 100193, China
| | - Zhiying Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing 100193, China
| | - Ran Lin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing 100193, China
| | - Lili Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing 100193, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing 100193, China.
| | - Li-Tao Tong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing 100193, China.
| |
Collapse
|
8
|
Hou Z, Zhang J, Dang L, Xue H, Chen M, Bai B, Yang Y, Bo T, Fan S. Correlation Analysis of Microbial Community Changes and Physicochemical Characteristics in Aged Vinegar Brewing. Foods 2023; 12:3430. [PMID: 37761138 PMCID: PMC10528154 DOI: 10.3390/foods12183430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
This study aimed to explore key physicochemical characteristics and evolutionary patterns of microbial community structure during the fermentation of aged vinegar. The correlation between microorganisms and physicochemical characteristics during fermentation was examined. The results revealed significant differences in genera at different stages of fermentation. The dominant bacteria in R1 were Bacillus, Lactobacillus, Aspergillus, and Issatchenkia. During the R2 fermentation stage, Lactobacillus, Acetobacter, and Saccharomyces exhibited an upward trend and finally became the dominant bacteria. Aspergillus was the main bacterial genus at the end of overall fermentation. The correlation analysis showed that the bacterial genera significantly positively and negatively correlated with reducing sugars and amino acid nitrogen were the same in Cuqu. Similarly, the bacterial genera significantly positively and negatively correlated with pH and saccharification power were the same. pH, reducing sugar, and saccharification ability were mainly positively correlated with bacterial genera during fermentation. Further, studies found that the overall correlation between fungal communities and physicochemical characteristics was weaker than the correlation with bacteria during fermentation.
Collapse
Affiliation(s)
- Zhixing Hou
- College of Life Science, Shanxi University, Taiyuan 030006, China; (Z.H.); (J.Z.); (H.X.); (B.B.); (Y.Y.)
- Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan 030006, China
| | - Jinhua Zhang
- College of Life Science, Shanxi University, Taiyuan 030006, China; (Z.H.); (J.Z.); (H.X.); (B.B.); (Y.Y.)
- Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan 030006, China
| | - Ling Dang
- School of Health Management, Shanxi Technology and Business College, Taiyuan 030006, China;
| | - Hugui Xue
- College of Life Science, Shanxi University, Taiyuan 030006, China; (Z.H.); (J.Z.); (H.X.); (B.B.); (Y.Y.)
- Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan 030006, China
| | - Min Chen
- Shanxi Food Research Institute Co., Ltd., Taiyuan 030024, China;
| | - Baoqing Bai
- College of Life Science, Shanxi University, Taiyuan 030006, China; (Z.H.); (J.Z.); (H.X.); (B.B.); (Y.Y.)
- Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan 030006, China
| | - Yukun Yang
- College of Life Science, Shanxi University, Taiyuan 030006, China; (Z.H.); (J.Z.); (H.X.); (B.B.); (Y.Y.)
- Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan 030006, China
| | - Tao Bo
- Institute of Biotechnology, Shanxi University, Taiyuan 030006, China;
| | - Sanhong Fan
- College of Life Science, Shanxi University, Taiyuan 030006, China; (Z.H.); (J.Z.); (H.X.); (B.B.); (Y.Y.)
- Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
9
|
Sun D, Li W, Luo L. Deciphering the brewing process of Cantonese-style rice vinegar: Main flavors, key physicochemical factors, and important microorganisms. Food Res Int 2023; 171:113068. [PMID: 37330828 DOI: 10.1016/j.foodres.2023.113068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/19/2023]
Abstract
Cantonese-style rice vinegar is one of the most important Chinese rice vinegars and is quite popular all over the southeast coast of China, especially in Guangdong. This study identified 31 volatile compounds, including 11 esters, 6 alcohols, 3 aldehydes, 3 acids, 2 ketones, 1 phenol, and 5 alkanes, using headspace solid-phase microextraction-gas chromatography-mass spectrometry. Six organic acids were detected by high performance liquid chromatography. The ethanol content was detected by gas chromatography. During acetic acid fermentation, physicochemical analysis showed that the initial concentrations of reducing sugar and ethanol were 0.0079 g/L and 23.81 g/L, respectively, and the final value of total acid was 46.5 g/L, and the pH value was stable at 3.89. High-throughput sequencing was used to identify the microorganisms, and Acetobacter, Komagataeibacter, and Ralstonia were the top three bacterial genera. Quantitative real-time polymerase chain reaction revealed patterns that were different from those of high-throughput sequencing. The co-occurrence network of microorganisms and the correlation analysis between microorganisms and flavor substances indicate that Acetobacter and Ameyamaea played crucial roles as the main functional AAB, and the failure of Cantonese-style rice vinegar fermentation can be attributed to the abnormal increase in Komagataeibacter. Microbial co-occurrence network analysis indicated that Oscillibacter, Parasutterella, and Alistipes were the top three microorganisms. Redundancy analysis disclosed that total acid and ethanol were the key environmental factors influencing the microbial community. Fifteen microorganisms closely related to the metabolites were identified using the bidirectional orthogonal partial least squares model. Correlation analysis showed that these microorganisms were strongly associated with flavor metabolites and environmental factors. The findings of this study deepen our understanding of the fermentation of traditional Cantonese-style rice vinegar.
Collapse
Affiliation(s)
- Dongdong Sun
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China; Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Weixin Li
- Guangdong Heshan Donggu Flavoring Food Co. Ltd, Heshan 529700, PR China
| | - Lixin Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China; Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
10
|
Fan J, Qu G, Wang D, Chen J, Du G, Fang F. Synergistic Fermentation with Functional Microorganisms Improves Safety and Quality of Traditional Chinese Fermented Foods. Foods 2023; 12:2892. [PMID: 37569161 PMCID: PMC10418588 DOI: 10.3390/foods12152892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Traditional fermented foods are favored by people around the world for their positive health and taste advantages. Many of the fermented foods, including Chinese traditional fermented foods, are produced through mixed-culture fermentation. Apart from reducing the formation of harmful compounds such as ethyl carbamate (EC) and biogenic amines (BAs) during food fermentation, it is also difficult to precisely control and regulate the fermentation process based on the control of environmental conditions alone, due to the complex microbiota and an unclarified fermentation mechanism. In this review, key microorganisms involved in Chinese fermented foods such as baijiu, soy sauce, and vinegar production are elaborated, and relations between microbial composition and the aroma or quality of food are discussed. This review focuses on the interpretation of functions and roles of beneficial (functional) microorganisms that participate in food fermentation and the discussion of the possibilities of the synergistic use of functional microorganisms to improve the safety and quality of Chinese fermented foods. Conducting work toward the isolation of beneficial microorganisms is a challenge for modern food fermentation technology. Thus, methods for the isolation and mutagenesis of functional microbial strains for synergistic food fermentation are summarized. Finally, the limitations and future prospects of the use of functional microorganisms in traditional Chinese fermented foods are reviewed. This review provides an overview of the applications of synergistic fermentation with functional microorganisms in the improvement of the safety or sensory qualities of fermented foods.
Collapse
Affiliation(s)
- Jingya Fan
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; (J.F.); (G.Q.); (D.W.); (J.C.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guanyi Qu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; (J.F.); (G.Q.); (D.W.); (J.C.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Datao Wang
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; (J.F.); (G.Q.); (D.W.); (J.C.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; (J.F.); (G.Q.); (D.W.); (J.C.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; (J.F.); (G.Q.); (D.W.); (J.C.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Fang Fang
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; (J.F.); (G.Q.); (D.W.); (J.C.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
11
|
Dong K, Li W, Xu Q, Hong Z, Zhang S, Zhang B, Wu Y, Zuo H, Liu J, Yan Z, Pei X. Exploring the correlation of metabolites changes and microbial succession in solid-state fermentation of Sichuan Sun-dried vinegar. BMC Microbiol 2023; 23:197. [PMID: 37488503 PMCID: PMC10364395 DOI: 10.1186/s12866-023-02947-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 07/17/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND The traditional Sichuan Sun-dried vinegar (SSV) with unique flavor and taste is believed to be generated by the solid-state fermentation craft. However, how microorganisms and their metabolites change along with fermentation has not yet been explored. RESULTS In this study, our results demonstrated that the middle and late stages of SSV fermentation were the periods showing the largest accumulation of organic acids and amino acids. Furthermore, in the bacterial community, the highest average relative abundance was Lactobacillus (ranging from 37.55 to 92.50%) in all fermentation stages, while Acetobacters ranked second position (ranging from 20.15 to 0.55%). The number of culturable lactic acid bacteria is also increased during fermentation process (ranging from 3.93 to 8.31 CFU/g). In fungal community, Alternaria (29.42%), Issatchenkia (37.56%) and Zygosaccharomyces (69.24%) were most abundant in different fermentation stages, respectively. Interestingly, Zygosaccharomyces, Schwanniomyces and Issatchenkia were first noticed as the dominant yeast genera in vinegar fermentation process. Additionally, spearman correlation coefficients exhibited that Lactobacillus, Zygosaccharomyces and Schwanniomyces were significant correlation with most metabolites during the fermentation, implying that these microorganisms might make a significant contribution to the flavor formation of SSV. CONCLUSION The unique flavor of SSV is mainly produced by the core microorganisms (Lactobacillus, Zygosaccharomyces and Schwanniomyces) during fermentation. This study will provide detailed information related to the structure of microorganism and correlation between changes in metabolites and microbial succession in SSV. And it will be very helpful for proposing a potential approach to monitor the traditional fermentation process.
Collapse
Affiliation(s)
- Ke Dong
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Renmin Nan Road, Chengdu, 610041, PR China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, 610041, PR China
| | - Weizhou Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Renmin Nan Road, Chengdu, 610041, PR China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, 610041, PR China
| | - Qiuhong Xu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Renmin Nan Road, Chengdu, 610041, PR China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, 610041, PR China
| | - Zehui Hong
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Renmin Nan Road, Chengdu, 610041, PR China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, 610041, PR China
| | - Shirong Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Renmin Nan Road, Chengdu, 610041, PR China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, 610041, PR China
| | - Baochao Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Renmin Nan Road, Chengdu, 610041, PR China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, 610041, PR China
| | - Yating Wu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Renmin Nan Road, Chengdu, 610041, PR China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, 610041, PR China
| | - Haojiang Zuo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Renmin Nan Road, Chengdu, 610041, PR China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, 610041, PR China
| | - Jiazhen Liu
- Zigong Qiantian Baiwei Food Co., Ltd, Zigong, 643200, PR China
| | - Ziwen Yan
- Zigong Qiantian Baiwei Food Co., Ltd, Zigong, 643200, PR China
| | - Xiaofang Pei
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Renmin Nan Road, Chengdu, 610041, PR China.
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, 610041, PR China.
- West China-PUMC C. C. Chen Institute of Health, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
12
|
Ye X, Yu Y, Liu J, Zhu Y, Yu Z, Liu P, Wang Y, Wang K. Inoculation strategies affect the physicochemical properties and flavor of Zhenjiang aromatic vinegar. Front Microbiol 2023; 14:1126238. [PMID: 36970705 PMCID: PMC10033837 DOI: 10.3389/fmicb.2023.1126238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/15/2023] [Indexed: 03/11/2023] Open
Abstract
Inoculation strategy is a significant determinant of the flavor quality of Zhenjiang aromatic vinegar. Herein, the comparative analyses of the effects of various inoculation strategies on the physicochemical properties, microbial community structure, and flavoring characteristics of Zhenjiang aromatic vinegar were performed. The results showed that the contents of total acid (6.91 g/100 g), organic acid (2099.63 ± 4.13 mg/100 g) and amino acid (3666.18 ± 14.40 mg/100 g) in the direct inoculation strategy were higher than those in the traditional inoculation strategy (6.21 ± 0.02 g/100 g, 1939.66 ± 4.16 mg/100 g and 3301.46 ± 13.41 mg/100 g). At the same time, it can effectively promote the production of acetoin. The diversity of strains under the traditional inoculation strategy was higher than that under the direct inoculation strategy, and the relative abundance of major microbial genera in the fermentation process was lower than that under the direct inoculation strategy. In addition, for two different inoculation strategies, pH was proved to be an important environmental factor affecting the microbial community structure during acetic acid fermentation. The correlation between main microbial species, organic acids, non-volatile acids, and volatile flavor compounds is more consistent. Therefore, this study may help to develop direct injection composite microbial inoculants to replace traditional starter cultures in future research.
Collapse
|
13
|
Investigating the mechanism of the flavor formation in Sichuan sun vinegar based on flavor-orientation and metagenomics. Curr Res Food Sci 2023; 6:100460. [PMID: 36798948 PMCID: PMC9925973 DOI: 10.1016/j.crfs.2023.100460] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023] Open
Abstract
Fermentation and aging are the key stages of flavor formation in Sichuan sun vinegar (SSV), but the generation mechanisms of the flavor produced by these processes are unknown. However, complex microbial metabolism is critical to the flavor development of SSV. In this study, we analyzed the key flavor compounds present in SSV. Combined with odor activity value (OAV), the main aroma components of SSV were screened, and the relationship between microorganisms and key flavor formation was predicted using metagenomic sequencing technology. The results revealed 38 key flavor compounds in SSV. Lactobacillus, Weissella, Acetobacter, Lichtheimia, Pediococcus, Oenococcus, Brettanomyces, Kazachstania, Pichia, Xanthomonas, Lenconostoc are widely involved in the production of key flavor compounds such as 2,3-butanediol, 2-Furanmethanol, phenylethanol, 3-(Methylthio)-1-propanol, acetic acid, lactic acid, butyric acid, isovaleric acid and other organic acids. Among them, Lichtheimia and Lactobacillus are important genera for the degradation of starch, arabinoxylan and cellulose. The acetaldehyde,4-ethyl-2-methoxy-phenol and 2-methoxy-4-methyl-phenol production pathway may be related to Lactobacillus, Acetobacter and Brettanomyces. This study provides a new understanding of the key flavor-formation stage and flavor compound generation mechanism of SSV and provides a reference for the screening and isolation of functional strains and the reconstruction of microbial communities.
Collapse
|
14
|
Liu A, Ou Y, Shu H, Mou T, Li Q, Li J, Hu K, Chen S, He L, Zhou J, Ao X, Yang Y, Liu S. Exploring the role of Sichuan Baoning vinegar microbiota and the association with volatile flavor compounds at different fermentation depths. Front Microbiol 2023; 14:1135912. [PMID: 36876092 PMCID: PMC9975336 DOI: 10.3389/fmicb.2023.1135912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 01/27/2023] [Indexed: 02/17/2023] Open
Abstract
Cereal vinegar is usually produced through solid-state fermentation, and the microbial community plays an important role in fermentation. In this study, the composition and function of Sichuan Baoning vinegar microbiota at different fermentation depths were evaluated by high-throughput sequencing combined with PICRUSt and FUNGuild analysis, and variations in volatile flavor compounds were also determined. The results revealed that no significant differences (p > 0.05) were found in both total acid content and pH of vinegar Pei collected on the same day with different depths. There were significant differences between the bacterial community of samples from the same day with different depths at both phylum and genus levels (p < 0.05), however, no obvious difference (p > 0.05) was observed in the fungal community. PICRUSt analysis indicated that fermentation depth affected the function of microbiota, meanwhile, FUNGuild analysis showed that there were variations in the abundance of trophic mode. Additionally, differences in volatile flavor compounds were observed in samples from the same day with different depths, and significant correlations between microbial community and volatile flavor compounds were observed. The present study provides insights into the composition and function of microbiota at different depths in cereal vinegar fermentation and quality control of vinegar products.
Collapse
Affiliation(s)
- Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Yixue Ou
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Haojie Shu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Tianyu Mou
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Qin Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Kaidi Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Jiang Zhou
- Sichuan Baoning Vinegar Co., Ltd., Langzhong, Sichuan, China
| | - Xiaolin Ao
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| |
Collapse
|
15
|
Fang GY, Mu XJ, Huang BW, Wu GZ, Jiang YJ. Fungal biodiversity and interaction complexity were the important drivers of multifunctionality for flavor production in a spontaneously fermented vinegar. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Liu A, Pan W, Li S, Li J, Li Q, He L, Chen S, Hu K, Hu X, Han G, Li S, Zhou J, Chen F, Liu S. Seasonal dynamics of microbiota and physicochemical indices in the industrial-scale fermentation of Sichuan Baoning vinegar. Food Chem X 2022; 16:100452. [PMID: 36185105 PMCID: PMC9516444 DOI: 10.1016/j.fochx.2022.100452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/08/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Differences between the microbiomes in every-two seasons were observed. The increase in total acidity of vinegar Pei was lowest in the summer (3.40 g/100 g). Lactic acid and acetic acid contents in raw vinegar from each season were different.
We investigated the impact of seasons of the year on microbiota and physicochemical indices in industrial-scale fermentation of Sichuan Baoning vinegar. Illumina HiSeq sequencing results showed significant differences (P < 0.05) between the microbiomes of vinegar Pei in every-two seasons, except for bacterial communities between summer and autumn. Total acid, reducing sugar, starch, and alcohol contents of vinegar Pei from the same sampling day of each season were measurably different. Although total acid content in vinegar Pei was similar at the end of fermentation (P > 0.05), the increase in total acidity was highest in the autumn. Acetic acid content in raw vinegar was highest in the autumn (3472.42 mg/100 mL), and lowest in the summer (2304.01 mg/100 mL). This study provides a theoretical basis for the production of Sichuan bran vinegar with consistent quality and provides insights into the quality control of traditional fermented foods.
Collapse
|
17
|
Yu Z, Ma Y, Guan Y, Zhu Y, Wang K, Wang Y, Liu P, Chen J, Yu Y. Metagenomics of Virus Diversities in Solid-State Brewing Process of Traditional Chinese Vinegar. Foods 2022; 11:3296. [PMID: 37431044 PMCID: PMC9602057 DOI: 10.3390/foods11203296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 11/24/2022] Open
Abstract
Traditional Chinese vinegar offers an exceptional flavor and rich nutrients due to its unique solid-state fermentation process, which is a multiple microbial fermentation system including various bacteria, fungi and viruses. However, few studies on the virus diversities in traditional Chinese vinegar have been reported. In this paper, using Zhenjiang aromatic vinegar as a model system, we systemically explored the viral communities in the solid-state brewing process of traditional Chinese vinegar using bacterial and viral metagenomes. Results showed that the viral diversity in vinegar Pei was extensive and the virus communities varied along with the fermentation process. In addition, there existed some interactions between viral and bacterial communities. Moreover, abundant antibiotic resistance genes were found in viromes, indicating that viruses might protect fermentation bacteria strains from the stress of antibiotics in the fermentation environment. Remarkably, we identified abundant auxiliary carbohydrate metabolic genes (including alcohol oxidases, the key enzymes for acetic acid synthesis) from viromes, implying that viruses might participate in the acetic acid synthesis progress of the host through auxiliary metabolic genes. Taken together, our results indicated the potential roles of viruses in the vinegar brewing process and provided a new perspective for studying the fermentation mechanisms of traditional Chinese vinegar.
Collapse
Affiliation(s)
- Zhen Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Yan Ma
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Yingfen Guan
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Yuanyuan Zhu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Ke Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Yuqin Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Peng Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Juan Chen
- College of Food Science and Engineering, Moutai Institute, Renhuai 564501, China
| | - Yongjian Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| |
Collapse
|
18
|
Liang F, Ban S, Huang H, Che F, Wu Q, Xu Y. Predicting the effect of climatic factors on diversity of flavor compounds in Daqu fermentation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|