1
|
Zhan C, Lee N, Lan G, Dan Q, Cowan A, Wang Z, Baidoo EEK, Kakumanu R, Luckie B, Kuo RC, McCauley J, Liu Y, Valencia L, Haushalter RW, Keasling JD. Improved polyketide production in C. glutamicum by preventing propionate-induced growth inhibition. Nat Metab 2023; 5:1127-1140. [PMID: 37443355 DOI: 10.1038/s42255-023-00830-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/25/2023] [Indexed: 07/15/2023]
Abstract
Corynebacterium glutamicum is a promising host for production of valuable polyketides. Propionate addition, a strategy known to increase polyketide production by increasing intracellular methylmalonyl-CoA availability, causes growth inhibition in C. glutamicum. The mechanism of this inhibition was unclear before our work. Here we provide evidence that accumulation of propionyl-CoA and methylmalonyl-CoA induces growth inhibition in C. glutamicum. We then show that growth inhibition can be relieved by introducing methylmalonyl-CoA-dependent polyketide synthases. With germicidin as an example, we used adaptive laboratory evolution to leverage the fitness advantage of polyketide production in the presence of propionate to evolve improved germicidin production. Whole-genome sequencing revealed mutations in germicidin synthase, which improved germicidin titer, as well as mutations in citrate synthase, which effectively evolved the native glyoxylate pathway to a new methylcitrate pathway. Together, our results show that C. glutamicum is a capable host for polyketide production and we can take advantage of propionate growth inhibition to drive titers higher using laboratory evolution or to screen for production of polyketides.
Collapse
Affiliation(s)
- Chunjun Zhan
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Departments of Chemical & Biomolecular Engineering and of Bioengineering, University of California, Berkeley, CA, USA
| | - Namil Lee
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Departments of Chemical & Biomolecular Engineering and of Bioengineering, University of California, Berkeley, CA, USA
| | - Guangxu Lan
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Qingyun Dan
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
| | - Aidan Cowan
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Zilong Wang
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Departments of Chemical & Biomolecular Engineering and of Bioengineering, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
| | - Edward E K Baidoo
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ramu Kakumanu
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Bridget Luckie
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Rita C Kuo
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Joshua McCauley
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yuzhong Liu
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Luis Valencia
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Robert W Haushalter
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA.
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Jay D Keasling
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA.
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Departments of Chemical & Biomolecular Engineering and of Bioengineering, University of California, Berkeley, CA, USA.
- Center for Biosustainability, Danish Technical University, Lyngby, Denmark.
- Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Shenzhen, China.
| |
Collapse
|
2
|
Barik K, Arya PK, Singh AK, Kumar A. Potential therapeutic targets for combating Mycoplasma genitalium. 3 Biotech 2023; 13:9. [PMID: 36532859 PMCID: PMC9755450 DOI: 10.1007/s13205-022-03423-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Mycoplasma genitalium (M. genitalium) has emerged as a sexually transmitted infection (STI) all over the world in the last three decades. It has been identified as a cause of male urethritis, and there is now evidence that it also causes cervicitis and pelvic inflammatory disease in women. However, the precise role of M. genitalium in diseases such as pelvic inflammatory disease, and infertility is unknown, and more research is required. It is a slow-growing organism, and with the advent of the nucleic acid amplification test (NAAT), more studies are being conducted and knowledge about the pathogenicity of this organism is being elucidated. The accumulation of data has improved our understanding of the pathogen and its role in disease transmission. Despite the widespread use of single-dose azithromycin in the sexual health field, M. genitalium is known to rapidly develop antibiotic resistance. As a result, the media frequently refer to this pathogen as the "new STI superbug." Despite their rarity, antibiotics available today have serious side effects. As the cure rates for first-line antimicrobials have decreased, it is now a challenge to determine the effective antimicrobial therapy. In this review, we summarise recent M. genitalium research and investigate potential therapeutic targets for combating this pathogen.
Collapse
Affiliation(s)
- Krishnendu Barik
- Department of Bioinformatics, Central University of South Bihar, Gaya, 824236 India
| | - Praffulla Kumar Arya
- Department of Bioinformatics, Central University of South Bihar, Gaya, 824236 India
| | - Ajay Kumar Singh
- Department of Bioinformatics, Central University of South Bihar, Gaya, 824236 India
| | - Anil Kumar
- Department of Bioinformatics, Central University of South Bihar, Gaya, 824236 India
| |
Collapse
|
3
|
Malit JJL, Leung HYC, Qian PY. Targeted Large-Scale Genome Mining and Candidate Prioritization for Natural Product Discovery. Mar Drugs 2022; 20:398. [PMID: 35736201 PMCID: PMC9231227 DOI: 10.3390/md20060398] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 12/20/2022] Open
Abstract
Large-scale genome-mining analyses have identified an enormous number of cryptic biosynthetic gene clusters (BGCs) as a great source of novel bioactive natural products. Given the sheer number of natural product (NP) candidates, effective strategies and computational methods are keys to choosing appropriate BGCs for further NP characterization and production. This review discusses genomics-based approaches for prioritizing candidate BGCs extracted from large-scale genomic data, by highlighting studies that have successfully produced compounds with high chemical novelty, novel biosynthesis pathway, and potent bioactivities. We group these studies based on their BGC-prioritization logics: detecting presence of resistance genes, use of phylogenomics analysis as a guide, and targeting for specific chemical structures. We also briefly comment on the different bioinformatics tools used in the field and examine practical considerations when employing a large-scale genome mining study.
Collapse
Affiliation(s)
- Jessie James Limlingan Malit
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (J.J.L.M.); (H.Y.C.L.)
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hiu Yu Cherie Leung
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (J.J.L.M.); (H.Y.C.L.)
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (J.J.L.M.); (H.Y.C.L.)
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
4
|
Maithani D, Sharma A, Gangola S, Choudhary P, Bhatt P. Insights into applications and strategies for discovery of microbial bioactive metabolites. Microbiol Res 2022; 261:127053. [DOI: 10.1016/j.micres.2022.127053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 03/12/2022] [Accepted: 04/26/2022] [Indexed: 10/25/2022]
|
5
|
Quorum-Sensing Inhibition by Gram-Positive Bacteria. Microorganisms 2022; 10:microorganisms10020350. [PMID: 35208805 PMCID: PMC8875677 DOI: 10.3390/microorganisms10020350] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/01/2022] Open
Abstract
The modern paradigm assumes that interspecies communication of microorganisms occurs through precise regulatory mechanisms. In particular, antagonism between bacteria or bacteria and fungi can be achieved by direct destruction of the targeted cells through the regulated production of antimicrobial metabolites or by controlling their adaptive mechanisms, such as the formation of biofilms. The quorum-quenching phenomenon provides such a countermeasure strategy. This review discusses quorum-sensing suppression by Gram-positive microorganisms, the underlying mechanisms of this process, and its molecular intermediates. The main focus will be on Gram-positive bacteria that have practical applications, such as starter cultures for food fermentation, probiotics, and other microorganisms of biotechnological importance. The possible evolutionary role of quorum-quenching mechanisms during the development of interspecies interactions of bacteria is also considered. In addition, the review provides possible practical applications for these mechanisms, such as the control of pathogens, improving the efficiency of probiotics, and plant protection.
Collapse
|
6
|
Zong G, Fu J, Zhang P, Zhang W, Xu Y, Cao G, Zhang R. Use of elicitors to enhance or activate the antibiotic production in streptomyces. Crit Rev Biotechnol 2021; 42:1260-1283. [PMID: 34706600 DOI: 10.1080/07388551.2021.1987856] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Streptomyces is the largest and most significant genus of Actinobacteria, comprising 961 species. These Gram-positive bacteria produce many versatile and important bioactive compounds; of these, antibiotics, specifically the enhancement or activation of their production, have received extensive research attention. Recently, various biotic and abiotic elicitors have been reported to modify the antibiotic metabolism of Streptomyces, which promotes the production of new antibiotics and bioactive metabolites for improvement in the yields of endogenous products. However, some elicitors that obviously contribute to secondary metabolite production have not yet received sufficient attention. In this study, we have reviewed the functions and mechanisms of chemicals, novel microbial metabolic elicitors, microbial interactions, enzymes, enzyme inhibitors, environmental factors, and novel combination methods regarding antibiotic production in Streptomyces. This review has aimed to identify potentially valuable elicitors for stimulating the production of latent antibiotics or enhancing the synthesis of subsistent antibiotics in Streptomyces. Future applications and challenges in the discovery of new antibiotics and enhancement of existing antibiotic production using elicitors are discussed.
Collapse
Affiliation(s)
- Gongli Zong
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Jiafang Fu
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Peipei Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Wenchi Zhang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Guangxiang Cao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Rongzhen Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
7
|
Beck C, Blin K, Gren T, Jiang X, Mohite OS, Palazzotto E, Tong Y, Charusanti P, Weber T. Metabolic Engineering of Filamentous Actinomycetes. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Fatoba AJ, Okpeku M, Adeleke MA. Subtractive Genomics Approach for Identification of Novel Therapeutic Drug Targets in Mycoplasma genitalium. Pathogens 2021; 10:pathogens10080921. [PMID: 34451385 PMCID: PMC8402164 DOI: 10.3390/pathogens10080921] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 12/14/2022] Open
Abstract
Mycoplasma genitalium infection is a sexually transmitted infection that causes urethritis, cervicitis, and pelvic inflammatory disease (PID) in men and women. The global rise in antimicrobial resistance against recommended antibiotics for the treatment of M. genitalium infection has triggered the need to explore novel drug targets against this pathogen. The application of a bioinformatics approach through subtractive genomics has proven highly instrumental in predicting novel therapeutic targets against a pathogen. This study aimed to identify essential and non-homologous proteins with unique metabolic pathways in the pathogen that could serve as novel drug targets. Based on this, a manual comparison of the metabolic pathways of M. genitalium and the human host was done, generating nine pathogen-specific metabolic pathways. Additionally, the analysis of the whole proteome of M. genitalium using different bioinformatics databases generated 21 essential, non-homologous, and cytoplasmic proteins involved in nine pathogen-specific metabolic pathways. The further screening of these 21 cytoplasmic proteins in the DrugBank database generated 13 druggable proteins, which showed similarity with FDA-approved and experimental small-molecule drugs. A total of seven proteins that are involved in seven different pathogen-specific metabolic pathways were finally selected as novel putative drug targets after further analysis. Therefore, these proposed drug targets could aid in the design of potent drugs that may inhibit the functionality of these pathogen-specific metabolic pathways and, as such, lead to the eradication of this pathogen.
Collapse
|
9
|
Ghosh S, Sarangi AN, Mukherjee M, Singh D, Madhavi M, Tripathy S. Reconstructing Draft Genomes Using Genome Resolved Metagenomics Reveal Arsenic Metabolizing Genes and Secondary Metabolites in Fresh Water Lake in Eastern India. Bioinform Biol Insights 2021; 15:11779322211025332. [PMID: 34220198 PMCID: PMC8221699 DOI: 10.1177/11779322211025332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/24/2021] [Indexed: 12/03/2022] Open
Abstract
Rabindra Sarovar lake is an artificial freshwater lake in the arsenic infested eastern region of India. In this study, using the genome resolved metagenomics approach; we have deciphered the taxonomic diversity as well as the functional insights of the gene pools specific to this region. Initially, a total of 113 Metagenome Assembled Genomes (MAGs) were recovered from the two predominant seasons, that is, rainy (n = 50) and winter (n = 63). After bin refinement and de-replication, 27 MAGs (18 from Winter season and 9 from Rainy season) were reconstructed. These MAGs were either of high-quality (n = 10) or of medium quality (n = 17) that was determined based on genome completeness and contamination. These 27 MAGs spanning across 6 bacterial phyla and the most predominant ones were Proteobacteria, Bacteroidetes, and Cyanobacteria regardless of the season. Functional annotation across the MAGs suggested the existence of all known types of arsenic resistance and metabolism genes. Besides, important secondary metabolites such as zoocin_A, prochlorosin, and microcin were also abundantly present in these genomes. The metagenomic study of this lake provides the first insights into the microbiome composition and functional classification of the gene pools in two predominant seasons. The presence of arsenic metabolism and resistance genes in the recovered genomes is a sign of adaptation of the microbes to the arsenic contamination in this region. The presence of secondary metabolite genes in the lake microbiome has several implications including the potential use of these for the pharmaceutical industry.
Collapse
Affiliation(s)
- Samrat Ghosh
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aditya Narayan Sarangi
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, India
| | - Mayuri Mukherjee
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Deeksha Singh
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Madduluri Madhavi
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, India
| | - Sucheta Tripathy
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
10
|
Khosravi Babadi Z, Ebrahimipour G, Wink J, Narmani A, Risdian C. Isolation and identification of Streptomyces sp. Act4Zk, a good producer of Staurosporine and some derivatives. Lett Appl Microbiol 2020; 72:206-218. [PMID: 33058293 DOI: 10.1111/lam.13415] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 11/28/2022]
Abstract
In this study, strain Streptomyces sp. Act4Zk was isolated based on a method developed for the isolation of myxobacteria. Due to the low efficiency of the majority of conventional DNA extraction techniques, for molecular identification of the strain Streptomyces sp. Act4Zk, a new technique for DNA extraction of Actinobacteria was developed. In order to explore potential bioactivities of the strain, extracts of the fermented broth culture were prepared by an organic solvent (i.e. ethyl acetate) extraction method using. These ethyl acetate extracts were subjected to HPLC fractionation against standard micro-organisms, followed by LC/MS analysis. Based on morphological, physiological, biochemical and 16S rRNA gene sequence data, strain Streptomyces sp. Act4Zk is likely to be a new species of Streptomyces, close to Streptomyces genecies and Streptomyces roseolilacinus. Antimicrobial assay indicated high antifungal activity as well as antibacterial activity against Mycobacterium smegmatis and Gram-positive bacteria for the new strain. HPLC and LC/MS analyses of the extracts led to the identification of three different compounds and confirmed our hypothesis that the interesting species of the genus Streptomyces being a good producer of staurosporine and some derivatives.
Collapse
Affiliation(s)
- Z Khosravi Babadi
- Department of Microbiology & Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University GC, Tehran, Iran.,Microbial Strain Collection, Helmholtz Centre for Infection Research GmbH (HZI), Braunschweig, Germany
| | - G Ebrahimipour
- Department of Microbiology & Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University GC, Tehran, Iran
| | - J Wink
- Microbial Strain Collection, Helmholtz Centre for Infection Research GmbH (HZI), Braunschweig, Germany
| | - A Narmani
- Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.,Department of Microbial Drugs, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF), Braunschweig, Germany
| | - C Risdian
- Microbial Strain Collection, Helmholtz Centre for Infection Research GmbH (HZI), Braunschweig, Germany.,Research Unit for Clean Technology, Indonesian Institute of Sciences (LIPI), Bandung, Indonesia
| |
Collapse
|
11
|
Chakraborty K, Kizhakkekalam VK, Joy M. Macrocyclic polyketides with siderophore mode of action from marine heterotrophic Shewanella algae: Prospective anti-infective leads attenuate drug-resistant pathogens. J Appl Microbiol 2020; 130:1552-1570. [PMID: 33006801 DOI: 10.1111/jam.14875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/19/2020] [Accepted: 09/24/2020] [Indexed: 02/01/2023]
Abstract
AIMS Biotechnological and chemical characterization of previously undescribed homologous siderophore-type macrocyclic polyketides from heterotrophic Shewanella algae Microbial Type Culture Collection (MTCC) 12715 affiliated with Rhodophycean macroalga Hypnea valentiae of marine origin, with significant anti-infective potential against drug-resistant pathogens. METHODS AND RESULTS The heterotrophic bacterial strain in symbiotic association with intertidal macroalga H. valentiae was isolated to homogeneity in a culture-dependent method and screened for bioactivities by spot-over-lawn assay. The bacterial organic extract was purified and characterized by extensive chromatographic and spectroscopic methods, respectively, and was assessed for antibacterial activities with disc diffusion and microtube dilution methods. The macrocyclic polyketide compounds exhibited wide-spectrum of anti-infective potential against clinically significant vancomycin-resistant Enterococcus faecalis (VREfs), methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa and Klebsiella pneumonia with minimum inhibitory concentration of about 1-3 µg ml-1 , insomuch as the antibiotics chloramphenicol and ampicillin were active at ≥6·25 µg ml-1 . The studied compounds unveiled Fe3+ chelating activity, which designated that their prospective anti-infective activities against the pathogens could be due to their siderophore mechanism of action. In support of that, the bacterium exhibited siderophore production on bioassay involving the cast upon culture agar plate, and the presence of siderophore biosynthetic gene (≈1000 bp) (MF 981936) further corroborated the inference. In silico molecular modelling with penicillin-binding protein (PBP2a) coded by mecA genes of MRSA (docking score -11·68 to -12·69 kcal mol-1 ) verified their in vitro antibacterial activities. Putative biosynthetic pathway of macrocyclic polyketides through stepwise decarboxylative condensation initiated by malonate-acyl carrier protein further validated their structural and molecular attributes. CONCLUSIONS The studied siderophore-type macrocyclic polyketides from S. algae MTCC 12715 with significant anti-infective potential could be considered as promising candidates for pharmaceutical and biotechnological applications, especially against emerging multidrug-resistant pathogens. SIGNIFICANCE AND IMPACT OF THE STUDY This study exhibited the heterotrophic bacteria in association with intertidal macroalga as propitious biological resources to biosynthesize novel antibacterial agents.
Collapse
Affiliation(s)
- K Chakraborty
- Marine Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India.,Faculty of Marine Sciences, Cochin University of Science and Technology, Kerala State, Lakeside Campus, Cochin, India
| | - V K Kizhakkekalam
- Marine Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India.,Faculty of Marine Sciences, Cochin University of Science and Technology, Kerala State, Lakeside Campus, Cochin, India
| | - M Joy
- Marine Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India.,Faculty of Marine Sciences, Cochin University of Science and Technology, Kerala State, Lakeside Campus, Cochin, India
| |
Collapse
|
12
|
Abstract
Over a long period of time, humans have explored many natural resources looking for remedies of various ailments. Traditional medicines have played an intrinsic role in human life for thousands of years, with people depending on medicinal plants and their products as dietary supplements as well as using them therapeutically for treatment of chronic disorders, such as cancer, malaria, diabetes, arthritis, inflammation, and liver and cardiac disorders. However, plant resources are not sufficient for treatment of recently emerging diseases. In addition, the seasonal availability and other political factors put constrains on some rare plant species. The actual breakthrough in drug discovery came concurrently with the discovery of penicillin from Penicillium notatum in 1929. This discovery dramatically changed the research of natural products and positioned microbial natural products as one of the most important clues in drug discovery due to availability, variability, great biodiversity, unique structures, and the bioactivities produced. The number of commercially available therapeutically active compounds from microbial sources to date exceeds those discovered from other sources. In this review, we introduce a short history of microbial drug discovery as well as certain features and recent research approaches, specifying the microbial origin, their featured molecules, and the diversity of the producing species. Moreover, we discuss some bioactivities as well as new approaches and trends in research in this field.
Collapse
|
13
|
Zlotin SG, Dalinger IL, Makhova NN, Tartakovsky VA. Nitro compounds as the core structures of promising energetic materials and versatile reagents for organic synthesis. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4908] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This review addresses some promising areas of chemistry of nitro compounds extensively developed in recent years in Russia (particularly at the N.D.Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences) and worldwide. The most important results in the synthesis of novel energetic N-, C- and O-nitro compounds are summarized. New environmentally friendly approaches to the preparation of known compounds of this series, used as components of energetic compositions, are considered. Methods for selective transformations of various nitro compounds to valuable products of organic synthesis, primarily biologically active products and their precursors, are systematically analyzed.
The bibliography includes 446 references.
Collapse
|
14
|
Antibacterial and antioxidant aryl-enclosed macrocyclic polyketide from intertidal macroalgae associated heterotrophic bacterium Shewanella algae. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02468-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
15
|
Mehetre GT, J S V, Burkul BB, Desai D, B S, Dharne MS, Dastager SG. Bioactivities and molecular networking-based elucidation of metabolites of potent actinobacterial strains isolated from the Unkeshwar geothermal springs in India. RSC Adv 2019; 9:9850-9859. [PMID: 35520740 PMCID: PMC9062624 DOI: 10.1039/c8ra09449g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/15/2019] [Indexed: 02/03/2023] Open
Abstract
The bioactive potential of Actinobacteria endemic to hot springs has rarely been investigated. This study highlights the cultivable diversity and bioactivities of Actinobacteria associated with the Unkeshwar hot springs, India. Potent strains were evaluated for their biosynthetic potentials and metabolite analysis was performed using effective dereplication molecular networking tools. A total of 86 actinobacterial strains were isolated and grouped into 21 distinct genera, based on 16S rRNA gene sequence analysis. These strains included rare members such as Micromonospora, Marmoricola, Actinomadura, Cellulomonas, Cellulosimicrobium, Janibacter, Rothia, Barrentisimonas, Dietzia and Glycomyces. In antimicrobial screening, Micromonospora sp. strain GH99 and Streptomyces sp. strain GH176 were found to be potent antimicrobial strains. The metabolic extracts of these strains exhibited strong antimicrobial activity against Staphylococcus epidermidis (NCIM 2493), Shigella flexneri (NCIM 5265), Klebsiella pneumonia (NCIM 2098), and Salmonella abony (NCIM 2257). The extracts also displayed strong anti-biofilm and anticancer activities against Pseudomonas aeruginosa (NCIM 5029), Acinetobacter junii (NCIM 5188) and breast cancer cell line MCF7, respectively. Both strains also tested positive for the presence of the PKS biosynthetic gene cluster in their genomes. To effectively delineate the secondary metabolites, the extracts were subjected to MS/MS-guided molecular networking analysis. Structurally diverse compounds including the polyketides 22-dehydroxymethyl-kijanolide (GH99 strain) and Abyssomicin I (GH176 strain) were detected in the extracts. Interestingly, Brevianamide F was detected in the extract of Micromonospora, which has previously been mostly found in fungal species. Other compounds such as cyclic tripeptides, Cyclo(l-Pro-d-Ile) and Cyclo(d-Pro-l-Phe), were also identified in this strain. In summary, for the first time, we explored the diversity of Actinobacteria and evaluated their bioactive potential from the Unkeshwar hot springs. The potent strains isolated in the study could be useful in drug discovery programs. The bioactive potential of Actinobacteria endemic to hot springs has rarely been investigated.![]()
Collapse
Affiliation(s)
- Gajanan T Mehetre
- NCIM Resource Centre, CSIR-National Chemical Laboratory Pune India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Vinodh J S
- NCIM Resource Centre, CSIR-National Chemical Laboratory Pune India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Bhushan B Burkul
- Centre for Materials Characterization, CSIR-National Chemical Laboratory Pune India
| | - D Desai
- National Center for Nanoscience and Nanotechnology, University of Mumbai India
| | - Santhakumari B
- Centre for Materials Characterization, CSIR-National Chemical Laboratory Pune India
| | - Mahesh S Dharne
- NCIM Resource Centre, CSIR-National Chemical Laboratory Pune India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Syed G Dastager
- NCIM Resource Centre, CSIR-National Chemical Laboratory Pune India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
16
|
Tran PN, Yen MR, Chiang CY, Lin HC, Chen PY. Detecting and prioritizing biosynthetic gene clusters for bioactive compounds in bacteria and fungi. Appl Microbiol Biotechnol 2019; 103:3277-3287. [PMID: 30859257 PMCID: PMC6449301 DOI: 10.1007/s00253-019-09708-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 11/23/2022]
Abstract
Secondary metabolites (SM) produced by fungi and bacteria have long been of exceptional interest owing to their unique biomedical ramifications. The traditional discovery of new natural products that was mainly driven by bioactivity screening has now experienced a fresh new approach in the form of genome mining. Several bioinformatics tools have been continuously developed to detect potential biosynthetic gene clusters (BGCs) that are responsible for the production of SM. Although the principles underlying the computation of these tools have been discussed, the biological background is left underrated and ambiguous. In this review, we emphasize the biological hypotheses in BGC formation driven from the observations across genomes in bacteria and fungi, and provide a comprehensive list of updated algorithms/tools exclusively for BGC detection. Our review points to a direction that the biological hypotheses should be systematically incorporated into the BGC prediction and assist the prioritization of candidate BGC.
Collapse
Affiliation(s)
- Phuong Nguyen Tran
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128, Section 2, Academia Rd, Nangang District, Taipei City, 11529, Taiwan
| | - Ming-Ren Yen
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128, Section 2, Academia Rd, Nangang District, Taipei City, 11529, Taiwan
| | - Chen-Yu Chiang
- Institute of Biological Chemistry, Academia Sinica, No. 128, Section 2, Academia Rd, Nangang District, Taipei City, 11529, Taiwan
| | - Hsiao-Ching Lin
- Institute of Biological Chemistry, Academia Sinica, No. 128, Section 2, Academia Rd, Nangang District, Taipei City, 11529, Taiwan.
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128, Section 2, Academia Rd, Nangang District, Taipei City, 11529, Taiwan.
| |
Collapse
|
17
|
Sarkale AM, Kumar A, Appayee C. Organocatalytic Approach for Short Asymmetric Synthesis of (R)-Paraconyl Alcohol: Application to the Total Syntheses of IM-2, SCB2, and A-Factor γ-Butyrolactone Autoregulators. J Org Chem 2018; 83:4167-4172. [DOI: 10.1021/acs.joc.8b00122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Abhijeet M. Sarkale
- Discipline of Chemistry, Indian Institute of Technology Gandhinagar,
Palaj, Gandhinagar, Gujarat 382355, India
| | - Amit Kumar
- Discipline of Chemistry, Indian Institute of Technology Gandhinagar,
Palaj, Gandhinagar, Gujarat 382355, India
| | - Chandrakumar Appayee
- Discipline of Chemistry, Indian Institute of Technology Gandhinagar,
Palaj, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
18
|
Jackson DR, Shakya G, Patel AB, Mohammed LY, Vasilakis K, Wattana-Amorn P, Valentic TR, Milligan JC, Crump MP, Crosby J, Tsai SC. Structural and Functional Studies of the Daunorubicin Priming Ketosynthase DpsC. ACS Chem Biol 2018; 13:141-151. [PMID: 29161022 DOI: 10.1021/acschembio.7b00551] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Daunorubicin is a type II polyketide, one of a large class of polyaromatic natural products with anticancer, antibiotic, and antiviral activity. Type II polyketides are formed by the assembly of malonyl-CoA building blocks, though in rare cases, biosynthesis is initiated by the incorporation of a nonmalonyl derived starter unit, which adds molecular diversity to the poly-β-ketone backbone. Priming mechanisms for the transfer of novel starter units onto polyketide synthases (PKS) are still poorly understood. Daunorubicin biosynthesis incorporates a unique propionyl starter unit thought to be selected for by a subclass ("DpsC type") of priming ketosynthases (KS III). To date, however, no structural information exists for this subclass of KS III enzymes. Although selectivity for self-acylation with propionyl-CoA has previously been implied, we demonstrate that DpsC shows no discrimination for self-acylation or acyl-transfer to the cognate acyl carrier protein, DpsG with short acyl-CoAs. We present five crystal structures of DpsC, including apo-DpsC, acetyl-DpsC, propionyl-DpsC, butyryl-DpsC, and a cocrystal of DpsC with a nonhydrolyzable phosphopantetheine (PPant) analogue. The DpsC crystal structures reveal the architecture of the active site, the molecular determinants for catalytic activity and homology to O-malonyl transferases, but also indicate distinct differences. These results provide a structural basis for rational engineering of starter unit selection in type II polyketide synthases.
Collapse
Affiliation(s)
- David R. Jackson
- Department
of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical
Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Gaurav Shakya
- Department
of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical
Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Avinash B. Patel
- Department
of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical
Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Lina Y. Mohammed
- School
of Chemistry, Cantock’s Close, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Kostas Vasilakis
- School
of Chemistry, Cantock’s Close, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Pakorn Wattana-Amorn
- School
of Chemistry, Cantock’s Close, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Timothy R. Valentic
- Department
of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical
Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Jacob C. Milligan
- Department
of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical
Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Matthew P. Crump
- School
of Chemistry, Cantock’s Close, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - John Crosby
- School
of Chemistry, Cantock’s Close, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Shiou-Chuan Tsai
- Department
of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical
Sciences, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
19
|
Kjaerulff L, Sikandar A, Zaburannyi N, Adam S, Herrmann J, Koehnke J, Müller R. Thioholgamides: Thioamide-Containing Cytotoxic RiPP Natural Products. ACS Chem Biol 2017; 12:2837-2841. [PMID: 28981254 DOI: 10.1021/acschembio.7b00676] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thioviridamide is a structurally unique ribosomally synthesized and post-translationally modified peptide that contains several thioamide bonds and is active against a number of cancer cell lines. In the search for naturally occurring thioviridamide analogs, we employed genome mining that led to the identification of several related gene clusters. Chemical screening followed by cultivation and isolation yielded thioholgamides A and B, two new additions to the thioviridamide family with several amino acid substitutions, a different N-capping moiety, and with one less thioamide bond. Thioholgamides display improved cytotoxicity in the submicromolar range against a range of cell lines and an IC50 of 30 nM for thioholgamide A against HCT-116 cells. Herein, we report the isolation and structural elucidation of thioholgamides A and B, a proposed biosynthetic cluster for their production, and their bioactivities against a larger panel of microorganisms and cancer cell lines.
Collapse
Affiliation(s)
| | | | - Nestor Zaburannyi
- German Centre for Infection Research (DZIF),
Partner Site Hannover-Braunschweig, 38124, Braunschweig, Germany
| | | | - Jennifer Herrmann
- German Centre for Infection Research (DZIF),
Partner Site Hannover-Braunschweig, 38124, Braunschweig, Germany
| | | | - Rolf Müller
- German Centre for Infection Research (DZIF),
Partner Site Hannover-Braunschweig, 38124, Braunschweig, Germany
| |
Collapse
|
20
|
Prezioso SM, Brown NE, Goldberg JB. Elfamycins: inhibitors of elongation factor-Tu. Mol Microbiol 2017; 106:22-34. [PMID: 28710887 DOI: 10.1111/mmi.13750] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2017] [Indexed: 01/26/2023]
Abstract
Elfamycins are a relatively understudied group of antibiotics that target the essential process of translation through impairment of EF-Tu function. For the most part, the utility of these compounds has been as laboratory tools for the study of EF-Tu and the ribosome, as their poor pharmacokinetic profile and solubility has prevented implementation as therapeutic agents. However, due to the slowing of the antibiotic pipeline and the rapid emergence of resistance to approved antibiotics, this group is being reconsidered. Some researchers are using screens for novel naturally produced variants, while others are making directed, systematic chemical improvements on publically disclosed compounds. As an example of the latter approach, a GE2270 A derivative, LFF571, has completed phase 2 clinical trials, thus demonstrating the potential for elfamycins to become more prominent antibiotics in the future.
Collapse
Affiliation(s)
- Samantha M Prezioso
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA.,Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nicole E Brown
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Joanna B Goldberg
- Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA.,Emory+Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
21
|
Hampel T, Brückner R. Towards a Total Synthesis of Phenalinolactone Core Diterpenoid 6: Synthesis of a Racemic Decahydrobenzocyclobutaisobenzofuran with a trans-anti-cis
Junction of the Isocyclic Rings. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Thomas Hampel
- Institut für Organische Chemie; Albert-Ludwigs-Universität; Albertstraße 21 79104 Freiburg Germany
| | - Reinhard Brückner
- Institut für Organische Chemie; Albert-Ludwigs-Universität; Albertstraße 21 79104 Freiburg Germany
| |
Collapse
|
22
|
Undabarrena A, Ugalde JA, Seeger M, Cámara B. -Genomic data mining of the marine actinobacteria Streptomyces sp. H-KF8 unveils insights into multi-stress related genes and metabolic pathways involved in antimicrobial synthesis. PeerJ 2017; 5:e2912. [PMID: 28229018 PMCID: PMC5312570 DOI: 10.7717/peerj.2912] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/14/2016] [Indexed: 12/25/2022] Open
Abstract
Streptomyces sp. H-KF8 is an actinobacterial strain isolated from marine sediments of a Chilean Patagonian fjord. Morphological characterization together with antibacterial activity was assessed in various culture media, revealing a carbon-source dependent activity mainly against Gram-positive bacteria (S. aureus and L. monocytogenes). Genome mining of this antibacterial-producing bacterium revealed the presence of 26 biosynthetic gene clusters (BGCs) for secondary metabolites, where among them, 81% have low similarities with known BGCs. In addition, a genomic search in Streptomyces sp. H-KF8 unveiled the presence of a wide variety of genetic determinants related to heavy metal resistance (49 genes), oxidative stress (69 genes) and antibiotic resistance (97 genes). This study revealed that the marine-derived Streptomyces sp. H-KF8 bacterium has the capability to tolerate a diverse set of heavy metals such as copper, cobalt, mercury, chromate and nickel; as well as the highly toxic tellurite, a feature first time described for Streptomyces. In addition, Streptomyces sp. H-KF8 possesses a major resistance towards oxidative stress, in comparison to the soil reference strain Streptomyces violaceoruber A3(2). Moreover, Streptomyces sp. H-KF8 showed resistance to 88% of the antibiotics tested, indicating overall, a strong response to several abiotic stressors. The combination of these biological traits confirms the metabolic versatility of Streptomyces sp. H-KF8, a genetically well-prepared microorganism with the ability to confront the dynamics of the fjord-unique marine environment.
Collapse
Affiliation(s)
- Agustina Undabarrena
- Departmento de Química & Centro de Biotecnología, Universidad Técnica Federico Santa María , Valparaiso , Chile
| | - Juan A Ugalde
- Centro de Genética y Genómica, Facultad de Medicina Clinica Alemana, Universidad del Desarrollo , Santiago , Chile
| | - Michael Seeger
- Departmento de Química & Centro de Biotecnología, Universidad Técnica Federico Santa María , Valparaiso , Chile
| | - Beatriz Cámara
- Departmento de Química & Centro de Biotecnología, Universidad Técnica Federico Santa María , Valparaiso , Chile
| |
Collapse
|
23
|
Kamala K, Sivaperumal P. Biomedical Applications of Enzymes From Marine Actinobacteria. ADVANCES IN FOOD AND NUTRITION RESEARCH 2016; 80:107-123. [PMID: 28215321 DOI: 10.1016/bs.afnr.2016.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Marine microbial enzyme technologies have progressed significantly in the last few decades for different applications. Among the various microorganisms, marine actinobacterial enzymes have significant active properties, which could allow them to be biocatalysts with tremendous bioactive metabolites. Moreover, marine actinobacteria have been considered as biofactories, since their enzymes fulfill biomedical and industrial needs. In this chapter, the marine actinobacteria and their enzymes' uses in biological activities and biomedical applications are described.
Collapse
Affiliation(s)
- K Kamala
- Center for Environmental Nuclear Research, Directorate of Research, SRM University, Kattankulathur, India.
| | - P Sivaperumal
- Center for Environmental Nuclear Research, Directorate of Research, SRM University, Kattankulathur, India
| |
Collapse
|
24
|
Stereoselective reactions of nitro compounds in the synthesis of natural compound analogs and active pharmaceutical ingredients. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.07.067] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Siitonen V, Räty K, Metsä-Ketelä M. Laboratory course on Streptomyces genetics and secondary metabolism. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 44:492-499. [PMID: 27192442 DOI: 10.1002/bmb.20970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/21/2016] [Indexed: 06/05/2023]
Abstract
The "Streptomyces genetics and secondary metabolism" laboratory course gives an introduction to the versatile soil dwelling Gram-positive bacteria Streptomyces and their secondary metabolism. The course combines genetic modification of Streptomyces; growing of the strain and protoplast preparation, plasmid isolation by alkaline lysis and phenol precipitation, digestions, and ligations prior to protoplast transformation, as well as investigating the secondary metabolites produced by the strains. Thus, the course is a combination of microbiology, molecular biology, and chemistry. After the course the students should understand the relationship between genes, proteins, and the produced metabolites. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(5):492-499, 2016.
Collapse
Affiliation(s)
- Vilja Siitonen
- Department of Biochemistry, University of Turku, Turku, FIN-20014, Finland.
| | - Kaj Räty
- Department of Biochemistry, University of Turku, Turku, FIN-20014, Finland
| | - Mikko Metsä-Ketelä
- Department of Biochemistry, University of Turku, Turku, FIN-20014, Finland
| |
Collapse
|
26
|
Ziemert N, Alanjary M, Weber T. The evolution of genome mining in microbes - a review. Nat Prod Rep 2016; 33:988-1005. [PMID: 27272205 DOI: 10.1039/c6np00025h] [Citation(s) in RCA: 428] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Covering: 2006 to 2016The computational mining of genomes has become an important part in the discovery of novel natural products as drug leads. Thousands of bacterial genome sequences are publically available these days containing an even larger number and diversity of secondary metabolite gene clusters that await linkage to their encoded natural products. With the development of high-throughput sequencing methods and the wealth of DNA data available, a variety of genome mining methods and tools have been developed to guide discovery and characterisation of these compounds. This article reviews the development of these computational approaches during the last decade and shows how the revolution of next generation sequencing methods has led to an evolution of various genome mining approaches, techniques and tools. After a short introduction and brief overview of important milestones, this article will focus on the different approaches of mining genomes for secondary metabolites, from detecting biosynthetic genes to resistance based methods and "evo-mining" strategies including a short evaluation of the impact of the development of genome mining methods and tools on the field of natural products and microbial ecology.
Collapse
Affiliation(s)
- Nadine Ziemert
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Microbiology and Biotechnology, University of Tuebingen, Germany.
| | | | | |
Collapse
|
27
|
Alshaibani MM, Jalil J, Sidik NM, Edrada-Ebel R, Zin NM. Isolation and characterization of cyclo-(tryptophanyl-prolyl) and chloramphenicol from Streptomyces sp. SUK 25 with antimethicillin-resistant Staphylococcus aureus activity. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:1817-27. [PMID: 27330275 PMCID: PMC4896468 DOI: 10.2147/dddt.s101212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background Zingiber spectabile, commonly known as Beehive Ginger, is used as an ethnobotanical plant in many countries as an appetizer or to treat stomachache, toothache, muscle sprain, and as a cure for swelling, sores and cuts. This is the first report of isolation of Streptomyces strain from the root of this plant. Strain Universiti Kebangsaan 25 (SUK 25) has a very high activity to produce secondary metabolites against methicillin-resistant Staphylococcus aureus (MRSA), which is associated with high morbidity and mortality rates due to acquired multidrug resistance genes and causes medication failure in some clinical cases worldwide. Phylogenetic analysis based on the 16S ribosomal RNA gene sequence exhibited that the most closely related strain was Streptomyces omiyaensis NBRC 13449T (99.0% similarity). Aim This study was conducted to carry out the extraction, identification, and biological evaluation of active metabolites isolated from SUK 25 against three MRSA strains, namely, MRSA ATCC 43300, MRSA ATCC 33591, and MRSA ATCC 49476. Materials and methods The production of secondary metabolites by this strain was optimized through Thronton’s media. Isolation, purification, and identification of the bioactive compounds were carried out using reversed-phase high-performance liquid chromatography, high-resolution mass spectrometry, Fourier transform infrared, and one-dimensional and two-dimensional nuclear magnetic resonance. Results During screening procedure, SUK 25 exhibited good antimicrobial potential against several strains of MRSA. The best biological activity was shown from fraction number VII and its subfractions F2 and F3 with minimum inhibitory concentration values at 16 µg/mL and 8 µg/mL, respectively. These two subfractions were identified as diketopiperazine cyclo-(tryptophanyl-prolyl) and chloramphenicol. Conclusion On the basis of obtained results, SUK 25 isolated from Z. spectabile can be regarded as a new valuable source to produce secondary metabolites against bacteria, especially MRSA.
Collapse
Affiliation(s)
- Muhanna M Alshaibani
- Programme of Biomedical Science, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Juriyati Jalil
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nik M Sidik
- School of Bioscience and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Ruangelie Edrada-Ebel
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland
| | - Noraziah M Zin
- Programme of Biomedical Science, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
Implication of PKS type I gene and chromatographic strategy for the biodiscovery of antimicrobial polyketide metabolites from endosymbiotic Nocardiopsis prasina CLA68. Naturwissenschaften 2016; 103:45. [DOI: 10.1007/s00114-016-1370-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 12/21/2022]
|
29
|
Polkade AV, Mantri SS, Patwekar UJ, Jangid K. Quorum Sensing: An Under-Explored Phenomenon in the Phylum Actinobacteria. Front Microbiol 2016; 7:131. [PMID: 26904007 PMCID: PMC4748050 DOI: 10.3389/fmicb.2016.00131] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/25/2016] [Indexed: 01/05/2023] Open
Abstract
Quorum sensing is known to play a major role in the regulation of secondary metabolite production, especially, antibiotics, and morphogenesis in the phylum Actinobacteria. Although it is one of the largest bacterial phylum, only 25 of the 342 genera have been reported to use quorum sensing. Of these, only nine have accompanying experimental evidence; the rest are only known through bioinformatic analysis of gene/genome sequences. It is evident that this important communication mechanism is not extensively explored in Actinobacteria. In this review, we summarize the different quorum sensing systems while identifying the limitations of the existing screening strategies and addressing the improvements that have taken place in this field in recent years. The γ-butyrolactone system turned out to be almost exclusively limited to this phylum. In addition, methylenomycin furans, AI-2 and other putative AHL-like signaling molecules are also reported in Actinobacteria. The lack of existing screening systems in detecting minute quantities and of a wider range of signaling molecules was a major reason behind the limited information available on quorum sensing in this phylum. However, recent improvements in screening strategies hold a promising future and are likely to increase the discovery of new signaling molecules. Further, the quorum quenching ability in many Actinobacteria has a great potential in controlling the spread of plant and animal pathogens. A systematic and coordinated effort is required to screen and exploit the enormous potential that quorum sensing in the phylum Actinobacteria has to offer for human benefit.
Collapse
Affiliation(s)
| | | | | | - Kamlesh Jangid
- Microbial Culture Collection, National Centre for Cell Science, Savitribai Phule Pune University CampusPune, India
| |
Collapse
|
30
|
Abstract
For thousands of years people were delivered helplessly to various kinds of infections, which often reached epidemic proportions and have cost the lives of millions of people. This is precisely the age since mankind has been thinking of infectious diseases and the question of their causes. However, due to a lack of knowledge, the search for strategies to fight, heal, and prevent the spread of communicable diseases was unsuccessful for a long time. It was not until the discovery of the healing effects of (antibiotic producing) molds, the first microscopic observations of microorganisms in the seventeenth century, the refutation of the abiogenesis theory, and the dissolution of the question "What is the nature of infectious diseases?" that the first milestones within the history of antibiotics research were set. Then new discoveries accelerated rapidly: Bacteria could be isolated and cultured and were identified as possible agents of diseases as well as producers of bioactive metabolites. At the same time the first synthetic antibiotics were developed and shortly thereafter, thousands of synthetic substances as well as millions of soil borne bacteria and fungi were screened for bioactivity within numerous microbial laboratories of pharmaceutical companies. New antibiotic classes with different targets were discovered as on assembly line production. With the beginning of the twentieth century, many of the diseases which reached epidemic proportions at the time-e.g., cholera, syphilis, plague, tuberculosis, or typhoid fever, just to name a few, could be combatted with new discovered antibiotics. It should be considered that hundred years ago the market launch of new antibiotics was significantly faster and less complicated than today (where it takes 10-12 years in average between the discovery of a new antibiotic until the launch). After the first euphoria it was quickly realized that bacteria are able to develop, acquire, and spread numerous resistance mechanisms. Whenever a new antibiotic reached the market it did not take long until scientists observed the first resistant germs. Since the marketing of the first antibiotic there is a neck-on-neck race between scientists who discover natural or develop semisynthetic and synthetic bioactive molecules and bacteria, which have developed resistance mechanisms. The emphasis of this chapter is to give an overview of the history of antibiotics research. The situation within the pre-antibiotic era as well as in the early antibiotic era will be described until the Golden Age of Antibiotics will conclude this time travel. The most important antibiotic classes, information about their discovery, activity spectrum, mode of action, resistance mechanisms, and current application will be presented.
Collapse
Affiliation(s)
- Kathrin I Mohr
- Department Microbial Drugs and German Center for Infection Research, Helmholtz-Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany.
| |
Collapse
|
31
|
Iftime D, Jasyk M, Kulik A, Imhoff JF, Stegmann E, Wohlleben W, Süssmuth RD, Weber T. Streptocollin, a Type IV Lanthipeptide Produced by Streptomyces collinus Tü 365. Chembiochem 2015; 16:2615-23. [PMID: 26437689 DOI: 10.1002/cbic.201500377] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Indexed: 11/10/2022]
Abstract
Lanthipeptides are ribosomally synthesized and post-translationally modified microbial secondary metabolites. Here, we report the identification and isolation of streptocollin from Streptomyces collinus Tü 365, a new member of class IV lanthipeptides. Insertion of the constitutive ermE* promoter upstream of the lanthipeptide synthetase gene stcL resulted in peptide production. The streptocollin gene cluster was heterologously expressed in S. coelicolor M1146 and M1152 with 3.5- and 5.5-fold increased yields, respectively. The structure and ring topology of streptocollin were determined by high resolution MS/MS analysis. Streptocollin contains four macrocyclic rings, with one lanthionine and three methyllanthionine residues. To the best of our knowledge, this is the first report on the isolation of a class IV lanthipeptide in preparative amounts, and on the successful heterologous expression of a class IV lanthipeptide gene cluster.
Collapse
Affiliation(s)
- Dumitrita Iftime
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen, Mikrobiologie/Biotechnologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Martin Jasyk
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623, Berlin, Germany
| | - Andreas Kulik
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen, Mikrobiologie/Biotechnologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Johannes F Imhoff
- GEOMAR, Helmholtz-Zentrum für Ozeanforschung Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany
| | - Evi Stegmann
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen, Mikrobiologie/Biotechnologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany.,Deutsches Zentrum für Infektionsforschung, Partner Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Wolfgang Wohlleben
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen, Mikrobiologie/Biotechnologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany.,Deutsches Zentrum für Infektionsforschung, Partner Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Roderich D Süssmuth
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623, Berlin, Germany
| | - Tilmann Weber
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen, Mikrobiologie/Biotechnologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany. .,Deutsches Zentrum für Infektionsforschung, Partner Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany. .,The Novo Nordisk foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, 2970, Hørsholm, Denmark.
| |
Collapse
|
32
|
Iftime D, Kulik A, Härtner T, Rohrer S, Niedermeyer THJ, Stegmann E, Weber T, Wohlleben W. Identification and activation of novel biosynthetic gene clusters by genome mining in the kirromycin producer Streptomyces collinus Tü 365. J Ind Microbiol Biotechnol 2015; 43:277-91. [PMID: 26433383 DOI: 10.1007/s10295-015-1685-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/09/2015] [Indexed: 11/27/2022]
Abstract
Streptomycetes are prolific sources of novel biologically active secondary metabolites with pharmaceutical potential. S. collinus Tü 365 is a Streptomyces strain, isolated 1972 from Kouroussa (Guinea). It is best known as producer of the antibiotic kirromycin, an inhibitor of the protein biosynthesis interacting with elongation factor EF-Tu. Genome Mining revealed 32 gene clusters encoding the biosynthesis of diverse secondary metabolites in the genome of Streptomyces collinus Tü 365, indicating an enormous biosynthetic potential of this strain. The structural diversity of secondary metabolisms predicted for S. collinus Tü 365 includes PKS, NRPS, PKS-NRPS hybrids, a lanthipeptide, terpenes and siderophores. While some of these gene clusters were found to contain genes related to known secondary metabolites, which also could be detected in HPLC-MS analyses, most of the uncharacterized gene clusters are not expressed under standard laboratory conditions. With this study we aimed to characterize the genome information of S. collinus Tü 365 to make use of gene clusters, which previously have not been described for this strain. We were able to connect the gene clusters of a lanthipeptide, a carotenoid, five terpenoid compounds, an ectoine, a siderophore and a spore pigment-associated gene cluster to their respective biosynthesis products.
Collapse
Affiliation(s)
- Dumitrita Iftime
- Lehrstuhl für Mikrobiologie/Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076, Tübingen, Germany
| | - Andreas Kulik
- Lehrstuhl für Mikrobiologie/Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Thomas Härtner
- Lehrstuhl für Mikrobiologie/Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Sabrina Rohrer
- Lehrstuhl für Mikrobiologie/Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Timo Horst Johannes Niedermeyer
- Lehrstuhl für Mikrobiologie/Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076, Tübingen, Germany
| | - Evi Stegmann
- Lehrstuhl für Mikrobiologie/Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076, Tübingen, Germany
| | - Tilmann Weber
- Lehrstuhl für Mikrobiologie/Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076, Tübingen, Germany
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, 2970, Hørsholm, Denmark
| | - Wolfgang Wohlleben
- Lehrstuhl für Mikrobiologie/Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany.
- German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
33
|
Kunitake H, Hiramatsu T, Kinashi H, Arakawa K. Isolation and Biosynthesis of an Azoxyalkene Compound Produced by a Multiple Gene Disruptant ofStreptomyces rochei. Chembiochem 2015; 16:2237-43. [DOI: 10.1002/cbic.201500393] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Hirofumi Kunitake
- Department of Molecular Biotechnology; Graduate School of Advanced Sciences of Matter; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima Hiroshima 739-8530 Japan
| | - Takahiro Hiramatsu
- Department of Molecular Biotechnology; Graduate School of Advanced Sciences of Matter; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima Hiroshima 739-8530 Japan
| | - Haruyasu Kinashi
- Department of Molecular Biotechnology; Graduate School of Advanced Sciences of Matter; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima Hiroshima 739-8530 Japan
| | - Kenji Arakawa
- Department of Molecular Biotechnology; Graduate School of Advanced Sciences of Matter; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima Hiroshima 739-8530 Japan
| |
Collapse
|
34
|
Diez V, Loznik M, Taylor S, Winn M, Rattray NJW, Podmore H, Micklefield J, Goodacre R, Medema MH, Müller U, Bovenberg R, Janssen DB, Takano E. Functional Exchangeability of Oxidase and Dehydrogenase Reactions in the Biosynthesis of Hydroxyphenylglycine, a Nonribosomal Peptide Building Block. ACS Synth Biol 2015; 4:796-807. [PMID: 25713978 DOI: 10.1021/sb500368w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A key problem in the engineering of pathways for the production of pharmaceutical compounds is the limited diversity of biosynthetic enzymes, which restricts the attainability of suitable traits such as less harmful byproducts, enhanced expression features, or different cofactor requirements. A promising synthetic biology approach is to redesign the biosynthetic pathway by replacing the native enzymes by heterologous proteins from unrelated pathways. In this study, we applied this method to effectively re-engineer the biosynthesis of hydroxyphenylglycine (HPG), a building block for the calcium-dependent antibiotic of Streptomyces coelicolor, a nonribosomal peptide. A key step in HPG biosynthesis is the conversion of 4-hydroxymandelate to 4-hydroxyphenylglyoxylate, catalyzed by hydroxymandelate oxidase (HmO), with concomitant generation of H2O2. The same reaction can also be catalyzed by O2-independent mandelate dehydrogenase (MdlB), which is a catabolic enzyme involved in bacterial mandelate utilization. In this work, we engineered alternative HPG biosynthetic pathways by replacing the native HmO in S. coelicolor by both heterologous oxidases and MdlB dehydrogenases from various sources and confirmed the restoration of calcium-dependent antibiotic biosynthesis by biological and UHPLC-MS analysis. The alternative enzymes were isolated and kinetically characterized, confirming their divergent substrate specificities and catalytic mechanisms. These results demonstrate that heterologous enzymes with different physiological contexts can be used in a Streptomyces host to provide an expanded library of enzymatic reactions for a synthetic biology approach. This study thus broadens the options for the engineering of antibiotic production by using enzymes with different catalytic and structural features.
Collapse
Affiliation(s)
| | | | | | | | | | - Helen Podmore
- ThermoFisher Scientific, 1 Boundary
Way, Hemel Hempstead, Herts, HP2 7GE, United Kingdom
| | | | | | | | - Ulrike Müller
- DSM Biotechnology Center, R&D, P.O. Box 1, 2600 AM Delft, The Netherlands
| | - Roel Bovenberg
- DSM Biotechnology Center, R&D, P.O. Box 1, 2600 AM Delft, The Netherlands
| | | | | |
Collapse
|
35
|
Weber T, Charusanti P, Musiol-Kroll EM, Jiang X, Tong Y, Kim HU, Lee SY. Metabolic engineering of antibiotic factories: new tools for antibiotic production in actinomycetes. Trends Biotechnol 2014; 33:15-26. [PMID: 25497361 DOI: 10.1016/j.tibtech.2014.10.009] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/21/2014] [Accepted: 10/31/2014] [Indexed: 12/15/2022]
Abstract
Actinomycetes are excellent sources for novel bioactive compounds, which serve as potential drug candidates for antibiotics development. While industrial efforts to find and develop novel antimicrobials have been severely reduced during the past two decades, the increasing threat of multidrug-resistant pathogens and the development of new technologies to find and produce such compounds have again attracted interest in this field. Based on improvements in whole-genome sequencing, novel methods have been developed to identify the secondary metabolite biosynthetic gene clusters by genome mining, to clone them, and to express them in heterologous hosts in much higher throughput than before. These technologies now enable metabolic engineering approaches to optimize production yields and to directly manipulate the pathways to generate modified products.
Collapse
Affiliation(s)
- Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, Hørsholm, Denmark
| | - Pep Charusanti
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, Hørsholm, Denmark; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Ewa Maria Musiol-Kroll
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, Hørsholm, Denmark
| | - Xinglin Jiang
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, Hørsholm, Denmark
| | - Yaojun Tong
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, Hørsholm, Denmark
| | - Hyun Uk Kim
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, Hørsholm, Denmark; Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, BioInformatics Research Center, and BioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Sang Yup Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, Hørsholm, Denmark; Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, BioInformatics Research Center, and BioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea.
| |
Collapse
|
36
|
Fair RJ, Tor Y. Antibiotics and bacterial resistance in the 21st century. PERSPECTIVES IN MEDICINAL CHEMISTRY 2014; 6:25-64. [PMID: 25232278 PMCID: PMC4159373 DOI: 10.4137/pmc.s14459] [Citation(s) in RCA: 871] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/24/2014] [Accepted: 06/24/2014] [Indexed: 12/11/2022]
Abstract
Dangerous, antibiotic resistant bacteria have been observed with increasing frequency over the past several decades. In this review the factors that have been linked to this phenomenon are addressed. Profiles of bacterial species that are deemed to be particularly concerning at the present time are illustrated. Factors including economic impact, intrinsic and acquired drug resistance, morbidity and mortality rates, and means of infection are taken into account. Synchronously with the waxing of bacterial resistance there has been waning antibiotic development. The approaches that scientists are employing in the pursuit of new antibacterial agents are briefly described. The standings of established antibiotic classes as well as potentially emerging classes are assessed with an emphasis on molecules that have been clinically approved or are in advanced stages of development. Historical perspectives, mechanisms of action and resistance, spectrum of activity, and preeminent members of each class are discussed.
Collapse
Affiliation(s)
- Richard J Fair
- Department for Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Berlin, Germany
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
37
|
Manivasagan P, Kang KH, Sivakumar K, Li-Chan ECY, Oh HM, Kim SK. Marine actinobacteria: an important source of bioactive natural products. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:172-188. [PMID: 24959957 DOI: 10.1016/j.etap.2014.05.014] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/21/2014] [Accepted: 05/26/2014] [Indexed: 06/03/2023]
Abstract
Marine environment is largely an untapped source for deriving actinobacteria, having potential to produce novel, bioactive natural products. Actinobacteria are the prolific producers of pharmaceutically active secondary metabolites, accounting for about 70% of the naturally derived compounds that are currently in clinical use. Among the various actinobacterial genera, Actinomadura, Actinoplanes, Amycolatopsis, Marinispora, Micromonospora, Nocardiopsis, Saccharopolyspora, Salinispora, Streptomyces and Verrucosispora are the major potential producers of commercially important bioactive natural products. In this respect, Streptomyces ranks first with a large number of bioactive natural products. Marine actinobacteria are unique enhancing quite different biological properties including antimicrobial, anticancer, antiviral, insecticidal and enzyme inhibitory activities. They have attracted global in the last ten years for their ability to produce pharmaceutically active compounds. In this review, we have focused attention on the bioactive natural products isolated from marine actinobacteria, possessing unique chemical structures that may form the basis for synthesis of novel drugs that could be used to combat resistant pathogenic microorganisms.
Collapse
Affiliation(s)
- Panchanathan Manivasagan
- Specialized Graduate School Science & Technology Convergence, Department of Marine-Bio. Convergence Science and Marine Bioprocess Research Center, Pukyong National University, Busan 608-739, Republic of Korea
| | - Kyong-Hwa Kang
- Specialized Graduate School Science & Technology Convergence, Department of Marine-Bio. Convergence Science and Marine Bioprocess Research Center, Pukyong National University, Busan 608-739, Republic of Korea
| | - Kannan Sivakumar
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608 502, Tamil Nadu, India
| | - Eunice C Y Li-Chan
- The University of British Columbia, Faculty of Land and Food Systems, Food Nutrition and Health Program, 2205 East Mall, Vancouver, British Columbia, Canada V6T 1Z4
| | - Hyun-Myung Oh
- Specialized Graduate School Science & Technology Convergence, Department of Marine-Bio. Convergence Science and Marine Bioprocess Research Center, Pukyong National University, Busan 608-739, Republic of Korea
| | - Se-Kwon Kim
- Specialized Graduate School Science & Technology Convergence, Department of Marine-Bio. Convergence Science and Marine Bioprocess Research Center, Pukyong National University, Busan 608-739, Republic of Korea.
| |
Collapse
|
38
|
Atlas of nonribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of nonmodular enzymes. Proc Natl Acad Sci U S A 2014; 111:9259-64. [PMID: 24927540 DOI: 10.1073/pnas.1401734111] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Nonribosomal peptides and polyketides are a diverse group of natural products with complex chemical structures and enormous pharmaceutical potential. They are synthesized on modular nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) enzyme complexes by a conserved thiotemplate mechanism. Here, we report the widespread occurrence of NRPS and PKS genetic machinery across the three domains of life with the discovery of 3,339 gene clusters from 991 organisms, by examining a total of 2,699 genomes. These gene clusters display extraordinarily diverse organizations, and a total of 1,147 hybrid NRPS/PKS clusters were found. Surprisingly, 10% of bacterial gene clusters lacked modular organization, and instead catalytic domains were mostly encoded as separate proteins. The finding of common occurrence of nonmodular NRPS differs substantially from the current classification. Sequence analysis indicates that the evolution of NRPS machineries was driven by a combination of common descent and horizontal gene transfer. We identified related siderophore NRPS gene clusters that encoded modular and nonmodular NRPS enzymes organized in a gradient. A higher frequency of the NRPS and PKS gene clusters was detected from bacteria compared with archaea or eukarya. They commonly occurred in the phyla of Proteobacteria, Actinobacteria, Firmicutes, and Cyanobacteria in bacteria and the phylum of Ascomycota in fungi. The majority of these NRPS and PKS gene clusters have unknown end products highlighting the power of genome mining in identifying novel genetic machinery for the biosynthesis of secondary metabolites.
Collapse
|
39
|
Petříčková K, Pospíšil S, Kuzma M, Tylová T, Jágr M, Tomek P, Chroňáková A, Brabcová E, Anděra L, Krištůfek V, Petříček M. Biosynthesis of colabomycin E, a new manumycin-family metabolite, involves an unusual chain-length factor. Chembiochem 2014; 15:1334-45. [PMID: 24838618 DOI: 10.1002/cbic.201400068] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Indexed: 11/11/2022]
Abstract
Colabomycin E is a new member of the manumycin-type metabolites produced by the strain Streptomyces aureus SOK1/5-04 and identified by genetic screening from a library of streptomycete strains. The structures of colabomycin E and accompanying congeners were resolved. The entire biosynthetic gene cluster was cloned and expressed in Streptomyces lividans. Bioinformatic analysis and mutagenic studies identified components of the biosynthetic pathway that are involved in the formation of both polyketide chains. Recombinant polyketide synthases (PKSs) assembled from the components of colabomycin E and asukamycin biosynthetic routes catalyzing the biosynthesis of "lower" carbon chains were constructed and expressed in S. aureus SOK1/5-04 ΔcolC11-14 deletion mutant. Analysis of the metabolites produced by recombinant strains provided evidence that in both biosynthetic pathways the length of the lower carbon chain is controlled by an unusual chain-length factor supporting biosynthesis either of a triketide in asukamycin or of a tetraketide in colabomycin E. Biological activity assays indicated that colabomycin E significantly inhibited IL-1β release from THP-1 cells and might thus potentially act as an anti-inflammatory agent.
Collapse
Affiliation(s)
- Kateřina Petříčková
- Institute of Microbiology AS CR, v.v.i. Vídeňská 1083, 142 00 Prague 4 (Czech Republic)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Cummings M, Breitling R, Takano E. Steps towards the synthetic biology of polyketide biosynthesis. FEMS Microbiol Lett 2014; 351:116-25. [PMID: 24372666 PMCID: PMC4237116 DOI: 10.1111/1574-6968.12365] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 11/29/2022] Open
Abstract
Nature is providing a bountiful pool of valuable secondary metabolites, many of which possess therapeutic properties. However, the discovery of new bioactive secondary metabolites is slowing down, at a time when the rise of multidrug-resistant pathogens and the realization of acute and long-term side effects of widely used drugs lead to an urgent need for new therapeutic agents. Approaches such as synthetic biology are promising to deliver a much-needed boost to secondary metabolite drug development through plug-and-play optimized hosts and refactoring novel or cryptic bacterial gene clusters. Here, we discuss this prospect focusing on one comprehensively studied class of clinically relevant bioactive molecules, the polyketides. Extensive efforts towards optimization and derivatization of compounds via combinatorial biosynthesis and classical engineering have elucidated the modularity, flexibility and promiscuity of polyketide biosynthetic enzymes. Hence, a synthetic biology approach can build upon a solid basis of guidelines and principles, while providing a new perspective towards the discovery and generation of novel and new-to-nature compounds. We discuss the lessons learned from the classical engineering of polyketide synthases and indicate their importance when attempting to engineer biosynthetic pathways using synthetic biology approaches for the introduction of novelty and overexpression of products in a controllable manner.
Collapse
Affiliation(s)
- Matthew Cummings
- Faculty of Life Sciences, Manchester Institute of Biotechnology, The University of ManchesterManchester, UK
| | - Rainer Breitling
- Faculty of Life Sciences, Manchester Institute of Biotechnology, The University of ManchesterManchester, UK
| | - Eriko Takano
- Faculty of Life Sciences, Manchester Institute of Biotechnology, The University of ManchesterManchester, UK
| |
Collapse
|
41
|
Falagas ME, Grammatikos AP, Michalopoulos A. Potential of old-generation antibiotics to address current need for new antibiotics. Expert Rev Anti Infect Ther 2014; 6:593-600. [DOI: 10.1586/14787210.6.5.593] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Craney A, Ahmed S, Nodwell J. Towards a new science of secondary metabolism. J Antibiot (Tokyo) 2013; 66:387-400. [PMID: 23612726 DOI: 10.1038/ja.2013.25] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/12/2013] [Accepted: 02/12/2013] [Indexed: 12/20/2022]
Abstract
Secondary metabolites are a reliable and very important source of medicinal compounds. While these molecules have been mined extensively, genome sequencing has suggested that there is a great deal of chemical diversity and bioactivity that remains to be discovered and characterized. A central challenge to the field is that many of the novel or poorly understood molecules are expressed at low levels in the laboratory-such molecules are often described as the 'cryptic' secondary metabolites. In this review, we will discuss evidence that research in this field has provided us with sufficient knowledge and tools to express and purify any secondary metabolite of interest. We will describe 'unselective' strategies that bring about global changes in secondary metabolite output as well as 'selective' strategies where a specific biosynthetic gene cluster of interest is manipulated to enhance the yield of a single product.
Collapse
Affiliation(s)
- Arryn Craney
- Department of Biochemistry and Biomedical Sciences, McMaster University, Michael Degroote Institute for Infectious Diseases Research, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
43
|
RETRACTED: Marine actinobacterial metabolites: current status and future perspectives. Microbiol Res 2013; 168:311-332. [PMID: 23480961 DOI: 10.1016/j.micres.2013.02.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 01/25/2013] [Accepted: 02/06/2013] [Indexed: 11/24/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).
This article has been retracted at the request of the Editor. Authors and Editor agreed to retract this article because substantial parts of the text were copied from the following sources without proper attribution: Lam, K.S. (2006), Discovery of novel metabolites from marine actinomycetes. Current Opinion in Microbiology 9(3), pp. 245–251; Subramani, R., Aalbersberg, W. (2012), Marine actinomycetes: An ongoing source of novel bioactive metabolites. Microbiological Research 167(10), pp. 571–580; Dharmaraj, S. (2010), Marine Streptomyces as a novel source of bioactive substances. World Journal of Microbiology and Biotechnology 26(12), pp. 2123–2139. The authors apologize for this oversight and any inconvenience caused.
Collapse
|
44
|
Erb W, Zhu J. From natural product to marketed drug: the tiacumicin odyssey. Nat Prod Rep 2013; 30:161-74. [DOI: 10.1039/c2np20080e] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
45
|
Wang S, Zhao R, Liu K, Zhu M, Li A, He J. Essential role of an unknown gene aziU3 in the production of antitumor antibiotic azinomycin B verified by utilizing optimized genetic manipulation systems for Streptomyces sahachiroi. FEMS Microbiol Lett 2012; 337:147-54. [PMID: 23039858 DOI: 10.1111/1574-6968.12020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/21/2012] [Accepted: 10/02/2012] [Indexed: 11/30/2022] Open
Abstract
Streptomyces sahachiroi ATCC 33158 produces the potent antitumor antibiotic azinomycin B, which is featured with a set of unusual functionalized moieties. However, the genetic analyses of azinomycin B biosynthetic pathway are hampered by the low efficiency of S. sahachiroi genetic manipulation. In this study, we developed two efficient DNA transfer systems for S. sahachiroi ATCC 33158 by optimizing a variety of parameters known to affect intergeneric conjugation and protoplast transformation. High efficiencies of 4 × 10(2) transformants per μg DNA and 2.47 × 10(-4) conjugants per recipient were achieved when using the integrative vector pJTU2554. With the use of these improved genetic manipulation systems, aziU3 was discovered to play a key role in the biosynthesis of azinomycin B. In-frame deletion and complementation experiments demonstrated clearly that aziU3 is essential for azinomycin B biosynthesis. Changing the native promoter and insertion of an additional aziU3 gene copy resulted in two mutant strains over-producing azinomycin B. Real-time PCR verified that overexpression of aziU3 significantly improved the azinomycin B production in these mutant strains.
Collapse
Affiliation(s)
- Shan Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | | | | | | | | |
Collapse
|
46
|
Anaerobic bacteria as producers of antibiotics. Appl Microbiol Biotechnol 2012; 96:61-7. [PMID: 22854892 DOI: 10.1007/s00253-012-4285-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/04/2012] [Accepted: 07/04/2012] [Indexed: 01/09/2023]
Abstract
Anaerobic bacteria are the oldest terrestrial creatures. They occur ubiquitously in soil and in the intestine of higher organisms and play a major role in human health, ecology, and industry. However, until lately no antibiotic or any other secondary metabolite has been known from anaerobes. Mining the genome sequences of Clostridium spp. has revealed a high prevalence of putative biosynthesis genes (PKS and NRPS), and only recently the first antibiotic from the anaerobic world, closthioamide, has been isolated from the cellulose degrading bacterium Clostridium cellulolyticum. The successful genetic induction of antibiotic biosynthesis in an anaerobe encourages further investigations of obligate anaerobes to tap their hidden biosynthetic potential.
Collapse
|
47
|
Miller KI, Qing C, Sze DMY, Neilan BA. Investigation of the biosynthetic potential of endophytes in traditional Chinese anticancer herbs. PLoS One 2012; 7:e35953. [PMID: 22629306 PMCID: PMC3358349 DOI: 10.1371/journal.pone.0035953] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 03/26/2012] [Indexed: 01/07/2023] Open
Abstract
Traditional Chinese medicine encompasses a rich empirical knowledge of the use of plants for the treatment of disease. In addition, the microorganisms associated with medicinal plants are also of interest as the producers of the compounds responsible for the observed plant bioactivity. The present study has pioneered the use of genetic screening to assess the potential of endophytes to synthesize bioactive compounds, as indicated by the presence of non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) genes. The total DNA extracts of 30 traditional Chinese herbs, were screened for functional genes involved in the biosynthesis of bioactive compounds. The four PCR screens were successful in targeting four bacterial PKS, six bacterial NRPS, ten fungal PKS and three fungal NRPS gene fragments. Analysis of the detected endophyte gene fragments afforded consideration of the possible bioactivity of the natural products produced by endophytes in medicinal herbs. This investigation describes a rapid method for the initial screening of medicinal herbs and has highlighted a subset of those plants that host endophytes with biosynthetic potential. These selected plants can be the focus of more comprehensive endophyte isolation and natural product studies.
Collapse
Affiliation(s)
- Kristin I. Miller
- Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Chen Qing
- Yunnan Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Science, Kunming Medical University, Kunming, China
| | - Daniel Man Yuen Sze
- Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom Kowloon, Hong Kong
| | - Brett A. Neilan
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
- Australian Centre for Astrobiology, The University of New South Wales, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
48
|
Jankevics A, Merlo ME, de Vries M, Vonk RJ, Takano E, Breitling R. Metabolomic analysis of a synthetic metabolic switch in Streptomyces coelicolor A3(2). Proteomics 2011; 11:4622-31. [PMID: 21956891 DOI: 10.1002/pmic.201100254] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 08/12/2011] [Accepted: 09/13/2011] [Indexed: 01/09/2023]
Abstract
The global analysis of metabolism by liquid chromatography coupled to mass spectrometry is often hampered by a large amount of biological and technical variability. Here, we introduce an experimental and analytical strategy that can produce robust metabolome profiles in the face of this challenge. By applying a new computational approach based on concordance analysis to an extremely large number of analytical replicates, we are able to show that the overexpression of an antisense non-coding RNA targeting glutamine synthetase I results in a major reorganization of the metabolism of Streptomyces coelicolor, the model species of antibiotic-producing bacteria. We identified 97 metabolites with statistically significant reproducible dynamic behavior across the time series. The observed metabolic changes are very rapid, specific and widespread across metabolism, but focus on the nitrogen assimilation pathways. Our results demonstrate the power of highly replicated experimental designs for the robust characterization of metabolite dynamics. The identified global rearrangement of metabolism suggests the usefulness of RNA interference as an efficient strategy to manipulate the physiology of bacteria with wider biotechnological applicability in microorganisms.
Collapse
Affiliation(s)
- Andris Jankevics
- Groningen Bioinformatics Centre, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
49
|
Wu X, Qian C, Fang H, Wen Y, Zhou J, Zhan Z, Ding R, Li O, Gao H. Paenimacrolidin, a novel macrolide antibiotic from Paenibacillus sp. F6-B70 active against methicillin-resistant Staphylococcus aureus. Microb Biotechnol 2011; 4:491-502. [PMID: 21375709 PMCID: PMC3815261 DOI: 10.1111/j.1751-7915.2010.00201.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Accepted: 07/07/2010] [Indexed: 01/08/2023] Open
Abstract
Paenibacillus sp. F6-B70 was selected from several dozens of isolates with activity against methicillin-resistant Staphylococcus aureus using a 16S rDNA-based screening method. F6-B70 contained polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) clusters in its genome revealed by PCR amplification of conserved adenylation and ketosynthase (KS) domains. Phylogenetic data suggested that the strain hosts trans-AT PKSs and their product may be a branched molecule. An antibiotic was subsequently isolated from the methanol extract of F6-B70 cells. The molecular formula of the antibiotic was deduced to be C(33) H(50) NaO(6) ([M + Na](+) , m/z 565.3505) by analysis of electrospray ionization mass spectral data. Elucidation of the structure by nuclear magnetic resonance and infrared spectroscopy revealed that the active compound, paenimacrolidin (PAM), was a novel 22-membered macrolide with side-chains. The new antibiotic, mainly as a bacteriostatic agent, inhibits a couple of multidrug-resistant Staphylococcus sp. strains. The antibiotic capacity of PAM was compromised by its instability, which can be overcome significantly with addition of an anti-oxidant. To our knowledge, this is the first report of the isolation of an active macrolide from paenibacilli, which may be a promising source of novel antibiotics.
Collapse
MESH Headings
- Anti-Bacterial Agents/chemistry
- Anti-Bacterial Agents/isolation & purification
- Anti-Bacterial Agents/metabolism
- Anti-Bacterial Agents/pharmacology
- Cluster Analysis
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Macrolides/chemistry
- Macrolides/isolation & purification
- Macrolides/metabolism
- Macrolides/pharmacology
- Magnetic Resonance Spectroscopy
- Metabolic Networks and Pathways/genetics
- Methicillin-Resistant Staphylococcus aureus/drug effects
- Molecular Sequence Data
- Molecular Structure
- Multigene Family
- Paenibacillus/classification
- Paenibacillus/isolation & purification
- Paenibacillus/metabolism
- Phylogeny
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Spectrometry, Mass, Electrospray Ionization
- Spectrophotometry, Infrared
Collapse
Affiliation(s)
- Xue‐Chang Wu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | | | | | | - Haichun Gao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
50
|
Gottardi EM, Krawczyk JM, von Suchodoletz H, Schadt S, Mühlenweg A, Uguru GC, Pelzer S, Fiedler HP, Bibb MJ, Stach JEM, Süssmuth RD. Abyssomicin biosynthesis: formation of an unusual polyketide, antibiotic-feeding studies and genetic analysis. Chembiochem 2011; 12:1401-10. [PMID: 21656887 PMCID: PMC3625739 DOI: 10.1002/cbic.201100172] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Indexed: 11/24/2022]
Affiliation(s)
- Elvira M Gottardi
- Technische Universität Berlin, Institut für ChemieStrasse des 17. Juni 124, 10623 Berlin (Germany), Fax: (+49) 30-314-79651
| | - Joanna M Krawczyk
- Technische Universität Berlin, Institut für ChemieStrasse des 17. Juni 124, 10623 Berlin (Germany), Fax: (+49) 30-314-79651
| | - Hanna von Suchodoletz
- Technische Universität Berlin, Institut für ChemieStrasse des 17. Juni 124, 10623 Berlin (Germany), Fax: (+49) 30-314-79651
| | - Simone Schadt
- Technische Universität Berlin, Institut für ChemieStrasse des 17. Juni 124, 10623 Berlin (Germany), Fax: (+49) 30-314-79651
| | - Agnes Mühlenweg
- Technische Universität Berlin, Institut für ChemieStrasse des 17. Juni 124, 10623 Berlin (Germany), Fax: (+49) 30-314-79651
| | - Gabriel C Uguru
- School of Biology, Newcastle UniversityNewcastle-upon-Tyne, NE1 7RU (UK)
| | - Stefan Pelzer
- B.R.A.I.N. AktiengesellschaftDarmstädter Strasse 34, 64673 Zwingenberg (Germany)
| | - Hans-Peter Fiedler
- Dept. of Microbiology/Biotechnology, Universität TübingenAuf der Morgenstelle 28, 72076 Tübingen (Germany)
| | - Mervyn J Bibb
- Department of Molecular Microbiology, John Innes CentreNorwich, NR4 7UH (UK)
| | - James E M Stach
- School of Biology, Newcastle UniversityNewcastle-upon-Tyne, NE1 7RU (UK)
| | - Roderich D Süssmuth
- Technische Universität Berlin, Institut für ChemieStrasse des 17. Juni 124, 10623 Berlin (Germany), Fax: (+49) 30-314-79651
| |
Collapse
|